Home Determination of RuAl phase boundaries in binary Ru–Al phase diagram at room temperature and 1200 °C
Article
Licensed
Unlicensed Requires Authentication

Determination of RuAl phase boundaries in binary Ru–Al phase diagram at room temperature and 1200 °C

  • H. A. Gobran EMAIL logo , D. Heger and F. Mücklich
Published/Copyright: February 16, 2022
Become an author with De Gruyter Brill

Abstract

Binary Ru–Al alloys with nominal compositions from 29.39 at.% Al up to 60.47 at.% Al were manufactured by powder-metallurgy processing. Single-phase RuAl with a homogeneous microstructure was prepared which is difficult to achieve by melting metallurgy. The microstructure and lattice parameters of the alloys were investigated by optical and scanning electron microscopy, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy and X-ray diffraction. The parametric method was employed to determine the RuAl phase boundaries. Single-phase RuAl was found to exist from near-stoichiometry up to 53.8 at.% Al at room temperature and up to 54.5 at.% Al at 1200 °C, respectively. In addition, the phase Ru2Al3 was found to be stable at room temperature and to have a very narrow range of stoichiometry.


H. A. Gobran Saarland University Department of Materials Science D-66041 Saarbrücken, Germany Tel.: +49 681 302 2458 Fax: +49 681 302 4876

Dedicated to Professor Dr.-Ing. habil. Dr. h. c. Heinrich Oettel on the occasion of his 65th birthday


References

[1] R.L. Fleischer: Metall. Trans. A 24 (1993) 227.10.1007/BF02669620Search in Google Scholar

[2] N. Ilic, F. Mücklich: Intermetallics, accepted.Search in Google Scholar

[3] R.L. Fleischer, R.D. Field, C.L. Briant: Metall. Trans. A 22 (1991) 403.10.1007/BF02656808Search in Google Scholar

[4] I.M. Wolff: JOM 49 (1997) 34.10.1007/BF02914630Search in Google Scholar

[5] R.L. Fleischer: Acta metall mater 41 (1993) 863.10.1016/0956-7151(93)90020-SSearch in Google Scholar

[6] I. M. Wolff, G. Sauthoff: Acta Metall Inc. (1997) 2949.10.1016/S1359-6454(96)00389-8Search in Google Scholar

[7] F. Soldera, N. Ilic, S. Brännström, I. Barrientos, H. Gobran,F. Mücklich: Oxidation of Metals 59 (2003) 529.10.1023/A:1023623323815Search in Google Scholar

[8] T.B. Massalski: Binary Alloys Phase Diagrams 2 ed., ASM International, Materials Park Ohio (1990) p. 203.Search in Google Scholar

[9] W. Obrowski: Metallwissenschaft und Technik 17 (1963) 108.Search in Google Scholar

[10] S.M. Anlage, P. Nach, R. Ramachandran, R.B. Schwarz, J. Less-Common: Met. 136 (1988) 237.10.1016/0022-5088(88)90427-4Search in Google Scholar

[11] T.D. Boniface, L.A. Cornish: J. Alloys Comp. 233 (1996) 241.10.1016/0925-8388(95)01934-0Search in Google Scholar

[12] S. Mi, S. Balanetsky, B. Grushko: Intermetallics 11 (2003) 643.10.1016/S0966-9795(03)00052-9Search in Google Scholar

[13] A.N. Varich, R.B. Lyukevich: Russ. Metall. 1 (1973) 73.Search in Google Scholar

[14] Z.A. Chaudhury, G.V.S. Sastry, C. Suryanarayana: Z. Metallkd 73 (1982) 201.10.1515/ijmr-1982-730401Search in Google Scholar

[15] O. Schwomma, H. Nowotny, A. Wittmann: Monatshefte für Chemie 94 (1963) 924.10.1007/BF00902366Search in Google Scholar

[16] L. Edshammar: Acta Chem. Scand. 19 (1965) 2124.10.3891/acta.chem.scand.19-2124Search in Google Scholar

[17] L. Edshammar: Acta Chem. Scand. 20 (1966) 427.10.3891/acta.chem.scand.20-0427Search in Google Scholar

[18] L. Edshammar: Acta Chem. Scand. 22 (1968) 2374.10.3891/acta.chem.scand.22-2374Search in Google Scholar

[19] T.D. Boniface, L.A. Cornish: J. Alloys Comp. 234 (1996) 275.10.1016/0925-8388(95)01933-2Search in Google Scholar

[20] N. Ilic, R. Rein, M. Göken, M. Kempf, F. Soldera, F. Mücklich: Mater. Sci. Eng. A 329 (2002) 38.10.1016/S0921-5093(01)01542-8Search in Google Scholar

[21] N. Ilic: Ph.D. thesis, Saarland University, Germany (2003).Search in Google Scholar

[22] Y. Xu, S.A. Makhlouf, E. Ivanov, K. Wakoh, K. Sumiyama, K. Suzuki: Nanostructure Mater. 4 (1994) 437.10.1016/0965-9773(94)90114-7Search in Google Scholar

[23] H.A. Gobran, N. Ilic, F. Mücklich: Intermetallics 12 (2004) 555.10.1016/j.intermet.2004.02.001Search in Google Scholar

[24] I.M. Wolff: Metall. Mater. Trans. A 27 (1996) 3688.10.1007/BF02595461Search in Google Scholar

[25] H.A. Gobran, K.W. Liu, D. Heger, F. Mücklich: Scripta mater. 49 (2003) 1097.10.1016/j.scriptamat.2003.08.005Search in Google Scholar

[26] K.E. Mohamed, D. Stover, H.P. Buchkremer: J. Mater. Eng. Perf. 6(6) (1997) 771.10.1007/s11665-997-0080-6Search in Google Scholar

[27] M. Kogachi, T. Tanahashi, Y. Shirai, M. Yamaguchi: Scripta mater. 34 (1996) 243.10.1016/1359-6462(95)00514-5Search in Google Scholar

[28] M. Kogachi, T. Tanahashi: Scripta matr. 35 (1996) 849.10.1016/1359-6462(96)00204-7Search in Google Scholar

[29] X. Ren, K. Outsuka: Phil. Mag. A 80 (2000) 469.10.1080/01418610008212062Search in Google Scholar

[30] B.D. Cullity, S.R. Stoch: Elements of X-ray Diffraction; third edition, Prentic Hall, Inc. (2001) p. 342.Search in Google Scholar

[31] H.A. Gobran, F. Mücklich: to be published in Intermetallics (2005).Search in Google Scholar

Received: 2004-05-19
Accepted: 2005-04-22
Published Online: 2022-02-16

© 2005 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Heinrich Oettel – 65 Jahre
  4. Articles Basic
  5. Misorientations and geometrically necessary dislocations in deformed copper crystals: A microstructural analysis of X-ray rocking curves
  6. Microstructure and lattice defects in highly deformed metals by X-ray diffraction whole powder pattern modelling
  7. Magnetoplasticity
  8. Articles Applied
  9. Finite-element analysis of the hot-pressing consolidation of continuous Al2O3 fibers-reinforced NiAl composites
  10. Modelling the stress state of a thermal barrier coating system at high temperatures
  11. Impedance spectroscopy of thermal barrier coatings as non-destructive evaluation tool for failure detection
  12. Diffraction by image processing and its application in materials science
  13. On the preferred orientation in Ti1–xAlxN and Ti1–xyAlxSiyN thin films
  14. Boron segregation and creep in ultra-fine grained tempered martensite ferritic steels
  15. Numeric simulation of the α/γ-phase ratio of ferritic-austenitic duplex steels
  16. Deformation behaviour and microscopic investigations of cyclically loaded railway wheels and tyres
  17. Similarity considerations on the simulation of turning processes of steels
  18. Crack-tip residual stresses and crack propagation in cyclically-loaded specimens under different loading modes
  19. On the effect of oxide scale stability on the internal nitridation process in high-temperature alloys
  20. Nitriding behaviour of the intermetallic alloy FeAl
  21. Material-related fundamentals of cutting techniques for GaAs wafer manufacturing
  22. Determination of RuAl phase boundaries in binary Ru–Al phase diagram at room temperature and 1200 °C
  23. On the Orowan stress in intermetallic ODS alloys and its superposition with grain size and solid solution hardening
  24. Effects of particle reinforcement on creep behaviour of AlSi1MgCu
  25. Effect of preaging on the precipitation behaviour of AlMgSi1
  26. Corrosion behaviour of hard coatings on Mg substrates
  27. Phase transformations in creep resistant MgYNdScMn alloy
  28. Notifications/Mitteilungen
  29. Personal/Personelles
  30. Press/Presse
  31. Conferences
Downloaded on 29.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2005-0138/html?lang=en
Scroll to top button