Abstract
The transformation behavior of Ni50.5Mn30.4Ga19.1 and Ni53.7Mn26.4Ga19.9 was studied with ac magnetic susceptibility, differential scanning calorimetry, in-situ optical microscopy and X-ray diffractometry. The liquidus, solidus and L21⟶B2’ temperatures were detected for the alloys. The transformation enthalpies of melting, solidification and martensitic/reverse reactions were determined. In Ni53.7Mn26.4Ga19.9 the magnetic transition was clearly below the parent to martensite phase transformation and did not have hysteresis. The transformation sequence is suggested as Pparam ⟶Tparam ⟶ Tferrom with reverse reactions in respective order. In Ni50.5Mn30.4Ga19.1 the temperatures of the magnetic transition and structural phase transformations are close to each other and the Curie temperature shows a hysteresis of 9 K during cooling-heating cycle. Based on the combined measurements, the transformation sequences are assumed to be during cooling Pparam ⟶ 7Mparam ⟶ 7Mferrom ⟶ Tferrom and Tferrom ⟶ Tparam ⟶ 7Mparam ⟶ Pparam during heating. Consequently, the hysteresis in the magnetic transition is explained with the intermartensitic reaction and the difference of the Curie points of 7M and T phases.
References
[1] P.J. Webster, K.R.A. Ziebeck, S.L. Town, M.S. Peak: Phil. Mag. B 49 (1984) 297.10.1080/13642817408246515Search in Google Scholar
[2] V.A. Chernenko, V.V. Kokorin, I.N. Vitenko: Scripta Met. Mater. 33 (1995) 1240.10.1016/0956-716X(95)00370-BSearch in Google Scholar
[3] V.A. Chernenko, C. Seguí, E. Cesari, J. Pons, V.V. Kokorin: Phys. Rev. B 57 (1998) 2659.10.1103/PhysRevB.57.2659Search in Google Scholar
[4] V.A. Chernenko, J. Pons, C. Seguí, E. Cesari: Acta Mater. 50 (2002) 55.10.1016/S1359-6454(01)00320-2Search in Google Scholar
[5] J. Pons, V.A. Chernenko, R. Santamarta, E. Cesari: Acta Mater. 48 (2000) 3029.10.1016/S1359-6454(00)00130-0Search in Google Scholar
[6] S.K. Wu, S.T. Yang: Mater. Lett. 57 (200) 4292.Search in Google Scholar
[7] X. Lu, Z.X. Qin, X.Q. Chen: Materials Science Forum 294–295 (2002) 550.10.1080/00131720208984844Search in Google Scholar
[8] K. Tsuchiya, A. Ohashi, D. Ohtoyo, H. Nakayama, M. Umemoto, P. McCormick: Materials Transactions JIM 41 (2000) 939.10.2320/matertrans1989.41.938Search in Google Scholar
[9] V.V. Martynov, V.V.Kokorin: Journal de Physique III France 2 (1992) 747.10.1051/jp3:1992155Search in Google Scholar
[10] V.V. Martynov: Journal de Physique IV 5 : C8 (1995) 97.Search in Google Scholar
[11] S. Wirth, A. Leithe-Jasper, A.N. Vasil’ev, J.M.D. Coey: J. Magn. and Magn. Mater. 167 (1997) L9.10.1016/S0304-8853(96)00745-7Search in Google Scholar
[12] A.N. Vasil’ev, A.D. Bozhko, V.V. Khovailo, I.E. Dikshtein, V.G. Shavrov, V.G. Buchelnikov,M. Matsumoto, S. Suzuki, T. Takagi, J. Tani: Phys. Rev. B 59 (1999) 1115.Search in Google Scholar
[13] C.B. Jiang, G. Feng, H.B. Xu: Appl. Phys. Lett. 80 (2002) 1619.10.1063/1.1457528Search in Google Scholar
[14] C.B. Jiang, T. Liang, H. Xu, M. Zhang, G.H. Wu: Appl. Phys. Lett. 81 (2002) 2818.10.1063/1.1512948Search in Google Scholar
[15] V.A. Chernenko, C. Seguí, E. Cesari, J. Pons, V.V. Kokorin: Phys. Rev. B 57 (1998) 2662.10.1103/PhysRevB.57.2659Search in Google Scholar
[16] V.A. Chernenko, J. Pons, C. Seguí, E. Cesari: Acta Mater. 50 (2002) 57.10.1016/S1359-6454(01)00320-2Search in Google Scholar
[17] A.N. Vasil’ev, A.D. Bozhko, V.V. Khovailo, I.E. Dikshtein, V.G. Shavrov, V.G. Buchelnikov,M. Matsumoto, S. Suzuki, T. Takagi, J. Tani: Phys. Rev. B 59 (1999) 1120.10.1103/PhysRevB.59.1113Search in Google Scholar
[18] V.V. Khovailo, T. Takagi, J. Tani, R.Z. Levitin, A.A. Cherechukin, M. Matsumoto, R. Note: Phys. Rev. B 65 (2002) 092410-1.10.1103/PhysRevB.65.092410Search in Google Scholar
[19] V.V. Khovailo, T. Takagi, J. Tani, R.Z. Levitin, A.A. Cherechukin, M. Matsumoto, R. Note: Phys. Rev. B 65 (2002) 092410-3.10.1103/PhysRevB.65.092410Search in Google Scholar
[20] V.A. Chernenko, V.A. L’vov, S.P. Zagorodnyuk, T. Takagi: Phys. Rev. B 67 (2003) 064407 4.10.1103/PhysRevB.67.064407Search in Google Scholar
[21] C.B. Jiang, T. Liang, H. Xu, M. Zhang, G.H. Wu: Appl. Phys. Lett. 81 (2002) 2820.10.1063/1.1512948Search in Google Scholar
[22] D.L. Schlagel, Y.L. Wu, W. Zhang, T.A. Lograsso: J. of Alloys and Compounds 312 (2000) 8410.1016/S0925-8388(00)01161-0Search in Google Scholar
[23] C. Wedel, K. Itagaki: J. of Phase Equil. 22 (2001) 327.10.1361/105497101770338833Search in Google Scholar
[24] J. Soltys: Acta Phys. Pol. A47 (1975) 522.Search in Google Scholar
[25] R.W. Overholser, M. Wuttig, D.A. Neuman: Scripta Mater. 40 (1999) 1098.10.1016/S1359-6462(99)00080-9Search in Google Scholar
[26] V.V. Khovailo, T. Takagi, A.N. Vasilev, H. Miki, M. Matsumoto, R. Kainuma: Phys. Stat. Sol. (a) 183 (2001) R1.10.1002/1521-396X(200102)183:2<R1::AID-PSSA99991>3.0.CO;2-BSearch in Google Scholar
[27] K. Tsuchiya, D. Ohtoyo, M. Umemoto, H. Ohtsuka: Trans. Mat. Res. Soc. Japan 25 (2000) 521.Search in Google Scholar
[28] M. Pasquale, C. Sasso, S. Besseghini, F. Passaretti, E. Villa, A. Sciacca: IEEE Transactions on Magnetics 5 (2000) 3263.10.1109/20.908762Search in Google Scholar
[29] S. Besseghini, M. Pasquale, F. Passaretti, A. Sciacca, E. Villa: Scripta Mater. 44 (2001) 2683.10.1016/S1359-6462(01)00972-1Search in Google Scholar
[30] M. Kreissl, K.-U. Neumann, T. Stephens, K.R.A. Ziebeck: J. Phys. Cond. Matter 15 (2003) 3838.10.1088/0953-8984/15/22/317Search in Google Scholar
[31] Y. Ge, E. Heikinheimo, O. Söderberg, V.K. Lindroos; in: J. Keränen, K. Sillanpää (Eds.) Proceedings of Scandem 2002, The 53rd Annual Meeting of The Scandinavian Society of Electron Microscopy, Tampere Finland (2002) 120.Search in Google Scholar
[32] M. Friman, M. Hämäläinen: J. de Physique IV France Proceedings 112 (2003) 930.10.1051/jp4:20031033Search in Google Scholar
[33] N. Lanska, O. Söderberg, A. Sozinov, Y. Ge, K. Ullakko, V.K. Lindroos: accepted for publication in J. Appl. Phys. June 15 issue (2004) 4.Search in Google Scholar
[34] Qi Pan, R.D. James: J. Appl. Phys. 87 (2000) 4703.10.1063/1.373134Search in Google Scholar
[35] D.L. Schlagel , Y.L. Wu, W. Zhang, T.A. Lograsso: J. of Alloys and Compounds 312 (2000) 79.10.1016/S0925-8388(00)01161-0Search in Google Scholar
[36] R.W. Overholser, M. Wuttig, D.A. Neuman: Scripta Mater. 40 (1999) 1099.10.1016/S1359-6462(99)00080-9Search in Google Scholar
[37] J. Pons, V.A. Chernenko, R. Santamarta, E. Cesari: Acta Mater. 48 (2000) 3029.10.1016/S1359-6454(00)00130-0Search in Google Scholar
© 2004 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Articles Basic
- Thermodynamic modeling of the Ni–S system
- Some control mechanisms of spatial solidification in light alloys
- Density and excess volume of liquid copper, nickel, iron, and their binary alloys
- The absolute thermoelectric power of Nb–Mo alloys
- Articles Applied
- Structural and mechanical characteristics of ZA27-7 wt.% SiC composites produced by powder metallurgy techniques
- Calorimetric study of Zn13La
- Effect of grain size on the static strain aging of a ULC-bake hardening steel
- Kinetics of ferrite to Widmanstätten austenite transformation in a high-strength low-alloy steel revisited
- Transformation behavior of two Ni–Mn–Ga alloys
- Notifications/Mitteilungen
- Personal/Personelles
- News/Aktuelles
Articles in the same Issue
- Frontmatter
- Articles Basic
- Thermodynamic modeling of the Ni–S system
- Some control mechanisms of spatial solidification in light alloys
- Density and excess volume of liquid copper, nickel, iron, and their binary alloys
- The absolute thermoelectric power of Nb–Mo alloys
- Articles Applied
- Structural and mechanical characteristics of ZA27-7 wt.% SiC composites produced by powder metallurgy techniques
- Calorimetric study of Zn13La
- Effect of grain size on the static strain aging of a ULC-bake hardening steel
- Kinetics of ferrite to Widmanstätten austenite transformation in a high-strength low-alloy steel revisited
- Transformation behavior of two Ni–Mn–Ga alloys
- Notifications/Mitteilungen
- Personal/Personelles
- News/Aktuelles