Home Calorimetric study of Zn13La
Article
Licensed
Unlicensed Requires Authentication

Calorimetric study of Zn13La

  • Masao Morishita EMAIL logo , Koichiro Koyama and Kouhei Tsuboki
Published/Copyright: February 8, 2022
Become an author with De Gruyter Brill

Abstract

The thermodynamic properties of Zn13La were investigated by calorimetry. The standard entropy of formation at 298 K, ΔfS298° was determined from measuring the heat capacities, Cp, from near absolute zero (2 K) to 300 K by the relaxation method. The standard enthalpy of formation at 298 K, ΔfH298° was determined by solution calorimetry in hydrochloric acid solution. The standard Gibbs energy of formation at 298 K, ΔfG298° was determined from these data. The coefficient, γ, of the electronic term contributing to the heat capacity of Zn13La was similar to the composition average of the values of pure Zn and La, indicating that the 5d- and 4f-electron states for La are localized in the vicinity of the Fermi energy level.


Prof. Masao Morishita Department of Materials Science and Chemistry University of Hyogo 2167 Shosha, Himeji, 671-2201 Japan Tel.: +81 792 67 4915 Fax: +81 792 66 8868

References

[1] R. Agarwal, S.G. Fries, H.L. Lukas, G. Petzow, F. Sommer, T.G. Chart, G. Effenberg: Z. Metallkd. 83 (1992) 216.10.1515/ijmr-1992-830402Search in Google Scholar

[2] M. Morishita, K. Koyama: Z. Metallkd. 94 (2003) 967.10.3139/146.030967Search in Google Scholar

[3] M. Morishita, A. Navrotsky: J. Am. Ceram. Soc. 86 (2003) 1927.10.1111/j.1151-2916.2003.tb03583.xSearch in Google Scholar

[4] M. Morishita, K. Koyama, K. Maeda, G. Zhang: Mater. Trans. JIM. 40 (1999) 600.10.2320/matertrans1989.40.600Search in Google Scholar

[5] M. Morishita, K. Koyama, S. Yagi, G. Zhang: J. Alloys and Comp. 314 (2001) 212.10.1016/S0925-8388(00)01258-5Search in Google Scholar

[6] S. Hagiwara, M. Daimon: Hi-Hakai-Kensa 48 (1999) 195.10.1023/A:1007031809319Search in Google Scholar

[7] J.S. Hwang, K.J. Lin, C. Tien: Rev. Sci. Instrum. 68 (1997) 94.10.1063/1.1147722Search in Google Scholar

[8] J.W. Visser: J. Appl. Cryst. 2 (1969) 89.10.1107/S0021889869006649Search in Google Scholar

[9] K.A. Gschneidner Jr., in: T.B. Massalski (Ed.), Binary Alloy Phase Diagrams, 2nd Ed., ASM OH, 3 (1990) 2442.Search in Google Scholar

[10] M.W. Chase: NIST-JANAF Thermochemical Tables (1998) 1936.Search in Google Scholar

[11] I. Barin: Thermochem. Data Pure Substances, VCH Verlagsge-sellschaft, Weinheim, Germany (1989) 779.Search in Google Scholar

[12] J.R. Taylor: An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, Second Edition, University Sci. Book, Sausalito CA (1997) 75.Search in Google Scholar

[13] M.W. Chase: NIST-JANAF Thermochemical Tables (1998) 1006.Search in Google Scholar

[14] J.B. Ott, J. Boerio-Goates: Chemical Thermodynamics: Principles and Applications, Academic Press, San Diego (2000) 184.10.1016/B978-012530990-5/50011-0Search in Google Scholar

[15] T.H.K. Barron, G.K. White: Heat Capacity and Thermal Expansion at Low Temperatures, Plenum Publishers, New York (1999) 234.10.1007/978-1-4615-4695-5Search in Google Scholar

[16] C. Kittel: Introduction to Solid State Physics, Seventh Edition, Translated to Japanese, Maruzen, Tokyo (1998) 173.Search in Google Scholar

[17] J. Friedel: Can. J. Phys. 34 (1956) 1190.10.1139/p56-134Search in Google Scholar

[18] J. Friedel: J. Phys. Radium 19 (1958) 573.10.1051/jphysrad:01958001906057300Search in Google Scholar

[19] P.W. Anderson: Phys. Rev. 124 (1961) 41.10.1103/PhysRev.124.41Search in Google Scholar

[20] W. Biltz: Z. Metallkd. 29 (1937) 73.10.1515/ijmr-1937-291-1225Search in Google Scholar

[21] R.A. Swalin: Thermodynamics of Solids, Translated to Japanese, Corona, Tokyo (1974) 42.Search in Google Scholar

Received: 2003-11-24
Accepted: 2004-04-14
Published Online: 2022-02-08

© 2004 Carl Hanser Verlag, München

Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2004-0131/html
Scroll to top button