Abstract
Two unconventional approaches of controlling the size and distribution of primary particles in aluminium and magnesium alloys are suggested. The first approach uses the ultrasonic cavitation treatment for multiplication of solidification sites for primary crystals by activating catalytic impurities that are present in the melt. The second way, on the contrary, involves elimination of active solidification nuclei by melt overheating with subsequent nucleation of primary particles at a higher undercooling. Both approaches result in refinement of primary crystals.
References
[1] G.I. Eskin, D.G. Eskin: Ultrasonics Sonochemistry 10 (2003) 297.10.1016/S1350-4177(02)00158-XSearch in Google Scholar
[2] A.L. Greer, P.S. Cooper, M.W. Meredith, W. Schneider, P. Schumacher, J.A. Spittle, A. Tronche: Adv. Eng. Mater. 5 (2003) 81.10.1002/adem.200390013Search in Google Scholar
[3] V.I. Napalkov, B.I. Bondarev, V.I. Tararyshkin, M.V. Chukhrov: Ligatury dlya proizvodstva alyuminievykh i magnievykh splavov (Master Alloys for Production of Aluminium and Magnesium Alloys), Metallurgiya, Moscow (1983).Search in Google Scholar
[4] G.I. Eskin: Ultrasonic Treatment of Light Alloy Melts, Gordon and Breach Science Publishers, Amsterdam (1998).10.1201/9781498701792Search in Google Scholar
[5] G.I. Eskin: Ultrasonics Sonochemistry 1 (1996) S59.10.1016/1350-4177(94)90029-9Search in Google Scholar
[6] D.G. Eskin: Z. Metallkd. 87 (1996) 295.10.1515/ijmr-1996-870409Search in Google Scholar
[7] B. Cantor: Mater. Sci. Eng. A 226 (1997) 151.10.1016/S0921-5093(96)10608-0Search in Google Scholar
[8] D.M. Herlach: Mater. Sci. Eng. A 226 (1997) 348.10.1016/S0921-5093(96)10644-4Search in Google Scholar
[9] V.I. Danilov: O roli nerastvorimykh primesei pri kristallizatsii zhidkostei (On the Role of Insoluble Impurities in the Crystallization of Liquids), Akad. Nauk UkrSSR, Kiev (1948).Search in Google Scholar
[10] W.T. Richards: J. Amer. Chem. Soc. 54 (1938) 479.10.1021/ja01341a011Search in Google Scholar
[11] J. Frenkel: Kinetic Theory of Liquids, Oxford Press, Oxford (1946).Search in Google Scholar
[12] E.W. Harvey, W.D. McElory, A.N. Whiteley: J. Appl. Phys. 18 (1947) 162.10.1063/1.1697598Search in Google Scholar
[13] R.T. Knapp, J.W. Daily, F.F. Hammitt: Cavitation, McGraw-Hill, New York (1970).Search in Google Scholar
[14] R. Morando, H. Biloni, G.S Cole, G.F. Bolling: Metall. Trans. 1 (1970) 1407.10.1007/BF02900262Search in Google Scholar
[15] J. Leszcynski, N.J. Petch: J. Mater Sci. 8 (1974) 5.10.1007/BF00728542Search in Google Scholar
[16] D.G. Eskin: Tsvetn. Met. (5) (1989) 97.Search in Google Scholar
[17] W.J. Kyffin, W.M. Rainforth, H. Jones: Mater. Sci. Technol. 17 (2001) 901.10.1179/026708301101510870Search in Google Scholar
[18] G.I. Eskin, G.S. Makarov, Yu.P. Pimenov: Mater. Sci. Forum 242 (1997) 65.10.4028/www.scientific.net/MSF.242.65Search in Google Scholar
[19] O.D. Kazachkovsky: Collected papers of the Laboratory of Metals Physics, Akad. Nauk UkrSSR, Kiev (1948) 76.Search in Google Scholar
[20] L.A. Crum: Ultrasonics Sonochemistry 2 (1995) 147.10.1016/1350-4177(95)00018-2Search in Google Scholar
[21] I.G. Brodova, P.S. Popel, G.I. Eskin: Liquid Metal Processing: Applications to Aluminium Alloy Production, Taylor and Francis, London, New York (2002).10.1201/9781482264913Search in Google Scholar
[22] E.F. Emley: Principles of Magnesium Technology, Pergamon, Oxford (1966).Search in Google Scholar
[23] P. Šebo, J. Ivan, L. Táborsky´, A. Havalda: Kovové Materiály 11 (1975) 173.Search in Google Scholar
[24] F. Lihl, A. Schwaiger: Z. Metallkd. 58 (1967) 777.10.1515/ijmr-1967-581108Search in Google Scholar
[25] F.S. Yin, X.F. Sun, J.G. Li, H.R. Guan, Z.Q. Hu: Scripta Mater. 48 (2003) 425.10.1016/S1359-6462(02)00446-3Search in Google Scholar
[26] P. Li, V.I. Nikitin, E.G. Kandalova, K.V. Nikitin: Mater. Sci. Eng. A 332 (2002) 371.10.1016/S0921-5093(01)01864-0Search in Google Scholar
[27] G.G. Krushenko, V.I. Shpakov: Tekhnol. Legk. Spl. (4) (1973) 59.Search in Google Scholar
[28] T. Motegi: J. Jpn. Inst. Light Met. 43 (1992) 74.10.2464/jilm.42.74Search in Google Scholar
[29] G. Yang, B. Wei, Y. Zhou: Cast Met, 4 (1991) 2.10.1080/09534962.1991.11819047Search in Google Scholar
[30] J. Wang, S. He, B. Sun, K. Li, D. Shu, Y. Zhou: Mater. Sci. Eng. A 338 (2002) 101.10.1016/S0921-5093(02)00067-9Search in Google Scholar
© 2004 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Articles Basic
- Thermodynamic modeling of the Ni–S system
- Some control mechanisms of spatial solidification in light alloys
- Density and excess volume of liquid copper, nickel, iron, and their binary alloys
- The absolute thermoelectric power of Nb–Mo alloys
- Articles Applied
- Structural and mechanical characteristics of ZA27-7 wt.% SiC composites produced by powder metallurgy techniques
- Calorimetric study of Zn13La
- Effect of grain size on the static strain aging of a ULC-bake hardening steel
- Kinetics of ferrite to Widmanstätten austenite transformation in a high-strength low-alloy steel revisited
- Transformation behavior of two Ni–Mn–Ga alloys
- Notifications/Mitteilungen
- Personal/Personelles
- News/Aktuelles
Articles in the same Issue
- Frontmatter
- Articles Basic
- Thermodynamic modeling of the Ni–S system
- Some control mechanisms of spatial solidification in light alloys
- Density and excess volume of liquid copper, nickel, iron, and their binary alloys
- The absolute thermoelectric power of Nb–Mo alloys
- Articles Applied
- Structural and mechanical characteristics of ZA27-7 wt.% SiC composites produced by powder metallurgy techniques
- Calorimetric study of Zn13La
- Effect of grain size on the static strain aging of a ULC-bake hardening steel
- Kinetics of ferrite to Widmanstätten austenite transformation in a high-strength low-alloy steel revisited
- Transformation behavior of two Ni–Mn–Ga alloys
- Notifications/Mitteilungen
- Personal/Personelles
- News/Aktuelles