Thermodynamics of ordered intermetallic compounds containing point defects
-
J. Breuer
Abstract
A pair interaction model applying the Bragg–Williams approach is presented. The formalism is given in a general form; ternary ordered compounds with different crystal structures and all possible point defect types are considered. Some applications are discussed. The Bragg –Williams approach is an easily applicable formalism that leads – proper use supposed – to accurate predictions concerning thermodynamic data as well as defect concentrations.
References
[1] J.H.Westbrook, R.L. Fleischer: Intermetallic Compounds: Principles and Practice, Wiley, New York (1995).Search in Google Scholar
[2] J. Breuer, F. Sommer, E.J. Mittemeijer: Metall. Mater. Trans. A 32 (2001) 2157.10.1007/s11661-001-0191-xSearch in Google Scholar
[3] A. Seeger: Crystal Lattice Defects 4 (1973) 221.Search in Google Scholar
[4] R.O. Simmons, R.W. Balluffi: Phys. Rev. 117 (1960) 52.10.1103/PhysRev.117.52Search in Google Scholar
[5] R. Kerl, J. Wolff, T. Hehenkamp. Intermetallics 7 (1999) 301.10.1016/S0966-9795(98)00118-6Search in Google Scholar
[6] R. Würschum, K. Badura –Gergen, E.A. Kümmerle, C. Grupp, H.E. Schaefer: Phys. Rev. B 54 (1996) 849.10.1103/PhysRevB.54.849Search in Google Scholar
[7] H. Xiao, I. Baker: Acta Metall. Mater. 42 (1994) 1535.10.1016/0956-7151(94)90363-8Search in Google Scholar
[8] D. Paris, P. Lesbats: J. Nucl. Mater. 69 (1978) 628.10.1016/0022-3115(78)90297-0Search in Google Scholar
[9] E. Wachtel, V. Linse, V. Gerold: J. Phys. Chem. Solids 34 (1973) 1461.10.1016/S0022-3697(73)80218-5Search in Google Scholar
[10] G. Vogl, B. Sepiol: Acta Metall. Mater. 42 (1994) 3175.10.1016/0956-7151(94)90416-2Search in Google Scholar
[11] J. Mayer, C. Elsässer, M. Fähnle: phys. stat. sol. (b) 191 (1995) 283.10.1002/pssb.2221910205Search in Google Scholar
[12] V. Schott, M. Fähnle: Phys. Stat. Sol. (b) 204 (1997) 617.10.1002/1521-3951(199712)204:2<617::AID-PSSB617>3.0.CO;2-LSearch in Google Scholar
[13] R. Krachler, H. Ipser, B. Sepiol, G. Vogl: Intermetallics 3 (1995) 83.10.1016/0966-9795(94)P3690-PSearch in Google Scholar
[14] W.L. Bragg, E.J.Williams: Proc. Roy. Soc., London A 145 (1934) 699.10.1098/rspa.1934.0132Search in Google Scholar
[15] C. Wagner: Thermodynamics of Alloys, Addison–Wesley Press, Cambridge (1952).Search in Google Scholar
[16] R. Krachler, O.P. Semenova, H. Ipser: phys. stat. sol. (b) 216 (1999) 943.10.1002/(SICI)1521-3951(199912)216:2<943::AID-PSSB943>3.0.CO;2-6Search in Google Scholar
[17] X.B. Ren, K. Otsuka: Phil. Mag. A 80 (2000) 467.10.1080/01418610008212062Search in Google Scholar
[18] J. Breuer, F. Sommer, E.J. Mittemeijer: Phil. Mag. A 82 (2002) 479.10.1007/978-3-322-94394-1_5Search in Google Scholar
[19] F. Ducastelle: Order and Phase Stability in Alloys, Vol. 3, Cohesion and Structure, North-Holland, Amsterdam (1991).Search in Google Scholar
[20] S.L. Chen, C.R. Kao, Y.A. Chang: Intermetallics 3 (1995) 233.10.1016/0966-9795(95)98934-ZSearch in Google Scholar
[21] A.J. Bradley, A. Taylor: Proc. Roy. Soc., London A (1937) 56.Search in Google Scholar
[22] R.J. Wasilewski: J. Phys. Chem. Sol. 29 (1968) 39.10.1016/0022-3697(68)90252-7Search in Google Scholar
[23] E.-T. Henig, H.L. Lukas: Z. Metallkd. 66 (1975) 98.10.1515/ijmr-1975-660207Search in Google Scholar
[24] A. Steiner, K.L. Komarek: Trans. Metall. Soc. AIME 230 (1964) 786.Search in Google Scholar
[25] B. Meyer, M. Fähnle: Phys. Rev. B 59 (1999) 6072.10.1103/PhysRevB.59.6072Search in Google Scholar
[26] M. Kogachi, Y. Takeda, T. Tanahashi: Intermetallics 3 (1995) 129.10.1016/0966-9795(95)92677-RSearch in Google Scholar
[27] M. Kogachi, T. Tanahashi: Scripta Mater. 35 (1996) 849.10.1016/1359-6462(96)00204-7Search in Google Scholar
[28] X.B. Ren, K. Otsuka, M. Kogachi: Scripta Mater. 41 (1999) 907.10.1016/S1359-6462(99)00235-3Search in Google Scholar
[29] A. Grün, E.-T. Henig, F. Sommer: Z. Metallkd. 89 (1998) 591.Search in Google Scholar
[30] T.B. Massalski: Binary Alloy Phase Diagrams 2 American Society for Metals, Metals Park, Ohio (1986).Search in Google Scholar
[31] Y.A. Chang, L.M. Pike, C.T. Liu, A.R. Bilbrey, D.S. Stone: Intermetallics 1 (1993) 107.10.1016/0966-9795(93)90028-TSearch in Google Scholar
[32] J.P. Neumann: Acta Metall. 28 (1980) 1165.10.1016/0001-6160(80)90099-1Search in Google Scholar
[33] J. Breuer, A. Grün, F. Sommer, E.J. Mittemeijer: Metall. Mater. Trans. B 32 (2001) 913.10.1007/s11663-001-0077-8Search in Google Scholar
[34] J. Eldridge, K.L. Komarek: Trans. Metall. Soc. AIME 230 (1964) 226.Search in Google Scholar
[35] J. Mayer, M. Fähnle: Acta Mater. 45 (1997) 2207.10.1016/S1359-6454(96)00334-5Search in Google Scholar
[36] Y.A. Chang, J.P. Neumann: Progr. Solid State Chem. 14 (1982) 221.10.1016/0079-6786(82)90004-8Search in Google Scholar
[37] B. Meyer, M. Fähnle: phys. stat. sol. (b) 229 (2002) 1139.10.1002/1521-3951(200202)229:3<1139::AID-PSSB1139>3.0.CO;2-4Search in Google Scholar
[38] L.M. Pike, Y.A. Chang, C.T. Liu: Acta Mater. 45 (1997) 3709.10.1016/S1359-6454(97)00028-1Search in Google Scholar
[39] F. Zobel: Ph.D. Thesis, Technical University, Berlin (1994).Search in Google Scholar
[40] M. Kogachi, T. Haraguchi: Mater. Sci. Eng. A 230 (1997) 124.10.1016/S0921-5093(97)00016-6Search in Google Scholar
© 2003 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Articles/Aufsätze
- Bulk and grain boundary diffusion of Ag in γ-FeNi alloy
- Thermodynamics of ordered intermetallic compounds containing point defects
- Relationship between the sodium oxide activity of ceramic (Na-β + β″)-alumina and the sodium activity in the ambience of the material
- Calorimetric study of MgZn2 and Mg2Zn11
- The (γ + γ′)/γ′ phase boundary in the Ni–Al phase diagram from 600 to 1200 °C
- Experimental investigation and thermodynamic calculation of ternary Al–Ca–Mg phase equilibria
- Texture development in Al alloys during tensile testing
- Dispersion strengthening of copper by internal oxidation of rapidly solidified Cu-RE alloys
- The effect of Cu and Al on the mechanical properties of gravity-cast hyper-eutectic Zn–Al-based alloys
- Hot deformation characteristics of Ti-6Al-4V
- Effect of carbon and nitrogen on the stacking fault energy of high-alloyed iron-based austenite
- Influence of charged hydrogen on tensile behavior of a pressure vessel steel at relatively high temperatures
- The damping behavior of a Ni-50 at.%Ti shape memory alloy
- Development of SMD 32.768 kHz tuning fork-type crystals
- Investigation of the miscibility gap region in liquid Ga–Pb alloys
- Notifications/Mitteilungen
- Werner-Köster-Preis 2002
- Personal/Personelles
- Information
- Books/Bücher
- Conferences/Konferenzen
Articles in the same Issue
- Frontmatter
- Articles/Aufsätze
- Bulk and grain boundary diffusion of Ag in γ-FeNi alloy
- Thermodynamics of ordered intermetallic compounds containing point defects
- Relationship between the sodium oxide activity of ceramic (Na-β + β″)-alumina and the sodium activity in the ambience of the material
- Calorimetric study of MgZn2 and Mg2Zn11
- The (γ + γ′)/γ′ phase boundary in the Ni–Al phase diagram from 600 to 1200 °C
- Experimental investigation and thermodynamic calculation of ternary Al–Ca–Mg phase equilibria
- Texture development in Al alloys during tensile testing
- Dispersion strengthening of copper by internal oxidation of rapidly solidified Cu-RE alloys
- The effect of Cu and Al on the mechanical properties of gravity-cast hyper-eutectic Zn–Al-based alloys
- Hot deformation characteristics of Ti-6Al-4V
- Effect of carbon and nitrogen on the stacking fault energy of high-alloyed iron-based austenite
- Influence of charged hydrogen on tensile behavior of a pressure vessel steel at relatively high temperatures
- The damping behavior of a Ni-50 at.%Ti shape memory alloy
- Development of SMD 32.768 kHz tuning fork-type crystals
- Investigation of the miscibility gap region in liquid Ga–Pb alloys
- Notifications/Mitteilungen
- Werner-Köster-Preis 2002
- Personal/Personelles
- Information
- Books/Bücher
- Conferences/Konferenzen