Home Modeling of deformation behavior of copper under equal channel angular pressing
Article
Licensed
Unlicensed Requires Authentication

Modeling of deformation behavior of copper under equal channel angular pressing

  • Seung Chul Baik , Ralph Jörg Hellmig , Yuri Estrin EMAIL logo and Hyoung Seop Kim
Published/Copyright: February 16, 2022
Become an author with De Gruyter Brill

Abstract

The deformation behavior of copper during equal channel angular pressing (ECAP) was calculated using a three-dimensional version of a constitutive model based on the dislocation density evolution. Finite element simulations of the variation of the dislocation density and the dislocation cell size with the number of ECAP passes are reported. The calculated stress, strain and cell size are compared with the experimental data for Cu deformed by ECAP in a modified route-C regime. The results of finite element (FE) analysis were found to be in good agreement with the experiments. After a rapid initial decrease down to about 200 nm in the first ECAP pass, the average cell size was found to change little with further passes. Similarly, the strength increased steeply after the first pass, but tended to saturate with further pressings. The FE simulations also showed strain non-uniformities and the dependence of the resulting strength on the location within the workpiece.

Abstract

Auf der Basis einer dreidimensionalen Variante eines Versetzungsevolutionsmodells wurde das Verformungsverhalten von Kupfer während des Winkelpressens (ECAP) modelliert. Es wird hier über die Ergebnisse der Finite-Elemente-Simulation in Bezug auf die Variation der Versetzungsdichte und -zellgröße berichtet. Die berechnete Spannung, Dehnung und Zellgröße von Kupfer werden mit experimentellen Daten für eine modifizierte ECAP-Route C verglichen. Es zeigt sich eine gute Übereinstimmung der Finite-Elemente (FE)-Simulationen mit den experimentellen Ergebnissen. Die mittlere Zellgröße ändert sich nach einem schnellen Absinken auf etwa 200 nm nach dem ersten ECAP-Durchgang nur wenig durch weitere ECAP-Verformung. In ähnlicher Weise verhält sich die Festigkeit, die nach dem 1. ECAP-Durchgang steil ansteigt, um dann ab dem 2. Pressvorgang kontinuierlich einem Sättigungswert zuzustreben. Die FE-Simulationen zeigen zusätzlich Dehnungsinhomogenitäten sowie die Abhängigkeit der Festigkeit von der Position im verformten Werkstück.


Dedicated to Professor Dr. Otmar Vöhringer on the occasion of his 65th birthday



Prof. Dr. Yuri Estrin Institut für Werkstoffkunde und Werkstofftechnik Technische Universität Clausthal Agricolastr. 6, D-38678 Clausthal-Zellerfeld, Germany Tel.: + 49 5323 722 004 Fax: + 49 5323 723 148

  1. This work was supported by the Deutsche Forschungsgemeinschaft under grant ES74-9/1. The authors acknowledge useful discussions with Min Hong Seo. One of the authors (S. C. B) gratefully acknowledges support from the Ministry of Science and Culture of Lower Saxony for a research fellowship at Clausthal University of Technology. H. S.K acknowledges support from the Center for Advanced Materials Processing (CAMP) of the 21th Century Frontier R & D Program funded by the Ministry of Science and Technology of Korea.

References

[1] V.M. Segal: USSR Patent No. 575892 (1977).Search in Google Scholar

[2] V.M. Segal, V. Reznikov, A. Drobyshevkiy, V. Kopylov: Russia Metall. 1 (1981) 99.Search in Google Scholar

[3] V.M. Segal: Mater. Sci. Eng. A 197 (1995) 157.10.1016/0921-5093(95)09705-8Search in Google Scholar

[4] R. Goforth, K. Hartwig, L. Cornwell, in: Investigations and Applications of Severe Plastic Deformation: T. Lowe, R. Valiev (Eds.), Kluwer Academic Publishers, Dordrecht (2000) 3.10.1007/978-94-011-4062-1_1Search in Google Scholar

[5] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Progress Mater. Sci. 45 (2000) 103.10.1016/S0079-6425(99)00007-9Search in Google Scholar

[6] A. Belyakov, T. Sakai, H. Miura, K. Tsuzaki: Phil. Mag. 81 (2001) 2629.10.1080/01418610108216659Search in Google Scholar

[7] Y. Estrin, L.S. Tóth, A. Molinari, Y. Bréchet: Acta mater. 46 (1998) 5509.10.1016/S1359-6454(98)00196-7Search in Google Scholar

[8] L.S. Tóth, A. Molinari, Y. Estrin: J. Eng. Mater. Technol. 124 (2002) 71.10.1115/1.1421350Search in Google Scholar

[9] S.C. Baik, Y. Estrin, H.S. Kim, R.J. Hellmig: Mater. Sci. Eng. A, 351 (2003) 86.10.1016/S0921-5093(02)00847-XSearch in Google Scholar

[10] M. Müller, M. Zehetbauer, A. Borbély, T. Ungár: Z. Metallkd. 86 (1995) 827.10.1515/ijmr-1995-861205Search in Google Scholar

[11] M. Müller,M. Zehetbauer, A. Borbély, T. Ungár: Scripta mater. 35 (1996) 1461.10.1016/S1359-6462(96)00319-3Search in Google Scholar

[12] H. Yaguchi, H. Mitani, K. Nagano, T. Fujii, M. Kato: Mater. Sci. Eng. A 315 (2001) 189.10.1016/S0921-5093(01)01156-XSearch in Google Scholar

[13] U.F. Kocks: J. Eng. Mater. Technol. 98 (1976) 76.10.1115/1.3443340Search in Google Scholar

[14] H. Mecking, U.F. Kocks: Acta metall. 28 (1981) 1865.10.1016/0001-6160(81)90112-7Search in Google Scholar

[15] Y. Estrin, H. Mecking: Acta metall. 32 (1984) 57.10.1016/0001-6160(84)90202-5Search in Google Scholar

[16] Y. Estrin, Unified Constitutive Laws of Plastic Deformation, in: A.S. Krausz, K. Krausz (Eds), Academic Press, San Diego, CA (1995) 69.10.1016/B978-012425970-6/50003-5Search in Google Scholar

[17] ABAQUS/Standard, Version 5.8, Hibbitt, Karlsson & Sorensen, Inc. (1998).Search in Google Scholar

[18] E.A. Brandes: Smithells Metals Reference Book, 6th Edition, Butterworths, Oxford (1983) 15-1.Search in Google Scholar

[19] B. Nicklas: Diploma Thesis, RWTH Aachen, Germany (1979).Search in Google Scholar

[20] J. Suh, H. Kim, J. Park, J. Chang: Scripta mater. 44 (2001) 677.10.1016/S1359-6462(00)00645-XSearch in Google Scholar

[21] R.Z. Valiev, N.K. Tsenev, in: Hot Deformation of Aluminium Alloys, T.G. Langdon, H.D. Merchant, J.G. Morris, M.A. Zaidi (Eds.), The Minerals, Metals and Materials Society, Warrendale, PA (1991) 319.Search in Google Scholar

[22] R.Z. Valiev, N.K. Krasilnikov, N.K. Tsenev: Mater. Sci. Eng. A 137 (1991) 35.10.1016/0921-5093(91)90316-FSearch in Google Scholar

[23] K. Nakashima, Z. Horita, M. Nemoto, T.G. Langdon: Acta mater. 46 (1998) 1589.10.1016/S1359-6454(97)00355-8Search in Google Scholar

[24] Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon: Acta mater. 45 (1997) 4733.10.1016/S1359-6454(97)00100-6Search in Google Scholar

[25] B. Mingler, H.P. Karnthaler, M. Zehetbauer, R.Z. Valiev: Mater. Sci. Eng. A 319 (2001) 242.10.1016/S0921-5093(01)00975-3Search in Google Scholar

[26] S. Komura, Z. Horita, M. Nemoto, T.G. Langdon: J. Mater. Res. 14 (1999) 4044.10.1557/JMR.1999.0546Search in Google Scholar

[27] K. Neischi, Z. Horita, T.G. Langdon: Mater. Sci. Eng. A 325 (2002) 54.10.1016/S0921-5093(01)01404-6Search in Google Scholar

Received: 2002-10-27
Published Online: 2022-02-16

© 2003 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Articles/Aufsätze
  3. Bedeutung von Eigenspannungsabbau und mikrostrukturellen Veränderungen für die Lebensdauervorhersage schwingbeanspruchter Schweißverbindungen
  4. Factors affecting cyclic lifetime of EB-PVD thermal barrier coatings with various bond coats
  5. Depth-resolved X-ray residual stress analysis in PVD (Ti, Cr) N hard coatings
  6. Crystal orientation and residual stress in TiN film by synchrotron radiation
  7. Characterization of thermal and anodic oxide layers on β- and on near-β-titanium alloys for biomedical application
  8. Micromechanisms and modelling of crack initiation and growth in tool steels: role of primary carbides
  9. Fatigue crack nucleation at grain boundaries – experiment and simulation
  10. Fatigue and fracture-induced defect structures of metals investigated by positron microscopy
  11. Deformation and fracture of Nb/α-Al2O3 composites in compression and bending studied by optical methods
  12. Dislocation microstructures of single crystal ⟨001⟩ CMSX-4 specimens tensile tested at 700 and 1000°C
  13. Influence of mechanical surface treatments on the HCF performance of the Ni-superalloy Udimet 720 LI
  14. Precipitation of β-phase and twinning during deformation of Mg–Al alloy AZ91 at 150 °C after solution treatment
  15. Nanograin size, high-nitrogen austenitic stainless steels
  16. Der dynamische SD-Effekt und der Einfluss auf die Fließortkurve
  17. Einfluss der Umformgeschwindigkeit und -temperatur auf das Fließverhalten metallischer Werkstoffe
  18. Mean stress sensitivity of sintered iron and steel
  19. Thermozyklisches Kriechen einer kurzfaserverstärkten Aluminium-Kolbenlegierung
  20. Strength and ductility of thin Cu wires
  21. Modeling of deformation behavior of copper under equal channel angular pressing
  22. Reaktionssintern von AlMg–MgO zur Herstellung von Bauteilen auf Spinellbasis
  23. Determination of the local oxygen distribution in a commercial titanium alloy by 3-dimensional atom probe
  24. Phase diagram of the Al–Cu–Fe quasicrystal-forming alloy system
  25. Notifications/Mitteilungen
  26. Personal/Personelles
  27. Books/Bücher
  28. Conferences/Konferenzen
Downloaded on 21.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2003-0130/html
Scroll to top button