Home Strength and ductility of thin Cu wires
Article
Licensed
Unlicensed Requires Authentication

Strength and ductility of thin Cu wires

  • Golta Khatibi , Roland Stickler EMAIL logo and Brigitte Weiss
Published/Copyright: February 16, 2022
Become an author with De Gruyter Brill

Abstract

The stress– strain behavior of thin copper wires in the range 20 – 250 μm diameter and various purities (3N, 5N) have been investigated. The wires were subjected to a recrystallization heat treatment and tensile properties were determined. Tensile testing was performed using a microtensile testing machine equipped with a non-contacting laser-optical speckle correlation sensor adapted for high-resolution strain measurement. The fracture elongation of all specimens exhibited lower values than that of bulk Cu with a decreasing trend for thinner wires. High-purity wires with a pronounced bamboo structure showed a size dependence of the yield strength which increased with decreasing wire diameter. Surface topography and fracture surfaces of the specimens were examined. The microstructural investigations were performed to arrive at an understanding and interpretation of our experimental results.

Abstract

Das Spannung–Dehnung-Verhalten von dünnen Cu Drähten zwischen 20 und 250 μm Durchmesser und unterschiedlichen Reinheitsgraden (5N, 3N) wurde untersucht. Die Bestimmung der Zugfestigkeitseigenschaften der rekristallisierten Drähte erfolgte mit Hilfe einer Mikrozugfestigkeitsprüfanlage, die mit einem berührungslosen laseroptischen Korrelationssensor für hochauflösende Dehnungsmessungen ausgerüstet war. Die Bruchdehnungen aller Drahtproben zeigten geringere Werte als für massive Proben, mit einer abnehmenden Tendenz für dünnere Drähte. Die hochreinen Drähte mit einer ausgeprägten Bambus-Struktur wiesen eine Abhängigkeit der Streckgrenze vom Drahtdurchmesser auf, mit einer Zunahme der Messwerte mit abnehmendem Durchmesser. Oberflächentopographie und Bruchflächenausbildung der geprüften Proben wurden untersucht, um die experimentellen Ergebnisse zu verstehen und zu interpretieren.


Dedicated to Professor Dr. Otmar Vöhringer on the occasion of his 65th birthday



Prof. Dr. Roland Stickler Institut für Physikalische Chemie, Universität Wien Währinger Straße 42, A-1090 Wien, AustriaTel.: +43 1 4277 52430 Fax: +43 1 4277 9524

  1. The research work was partly funded by the Austrian Research Foundation (Project No. P-14732 TEC). The authors thank Mag. R. Rettner for unpublished experimental data and Prof. V. Gröger for helpful discussions.

References

[1] T. Yi, C.J. Kim: Meas. Sci. Technol. 10 (1999) 706.10.1088/0957-0233/10/8/305Search in Google Scholar

[2] E. Arzt: Acta metall. mater. 46 (1998) 5611.10.1016/S1359-6454(98)00231-6Search in Google Scholar

[3] J. H. Suzuki, S. Ikeda, S. Takeuchi: J. Phys. Soc. Japan 11 (1955) 382.10.1143/JPSJ.11.382Search in Google Scholar

[4] L.S. Rubenstein: NASA, Lewis Res. Center, Cleveland, OH (1968).Search in Google Scholar

[5] T. Tabata, H. Fujita, S. Yamamoto, T. Cyoji: J. Phys. Soc. Japan 40 (1976) 792.10.1143/JPSJ.40.792Search in Google Scholar

[6] N. Uno, S. Inoue: Furukawa Electric Rev. 66 (1979) 57.Search in Google Scholar

[7] M. Beilin, V.N. Fedorov, N.N. Kharlamova, T.N. Grishna: Russian Metallurgy 1 (1987) 142.Search in Google Scholar

[8] J.W. Hutchinson, Int. J. Solids Struct. 37 (2000) 225.10.1016/S0020-7683(99)00090-6Search in Google Scholar

[9] N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Acta metall. mater. 42 (1993) 475.10.1016/0956-7151(94)90502-9Search in Google Scholar

[10] H.D. Espinosa, B.C. Prorok, submitted to J. Mech. Phys. Solids (2002).Search in Google Scholar

[11] M. Anwander, B. Weiss, B. Zagar, H. Weiss, in: Experimental Mechanics, I. M. Allison (Ed.), Balkema, Rotterdam (1998) 697.Search in Google Scholar

[12] B. Weiss, V. Gröger, G. Khatibi, A. Kotas, P. Zimprich, R. Stickler, B. Zagar: Sensors and Actuators A 99 (2002) 172.10.1016/S0924-4247(01)00877-9Search in Google Scholar

Received: 2002-11-03
Published Online: 2022-02-16

© 2003 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Articles/Aufsätze
  3. Bedeutung von Eigenspannungsabbau und mikrostrukturellen Veränderungen für die Lebensdauervorhersage schwingbeanspruchter Schweißverbindungen
  4. Factors affecting cyclic lifetime of EB-PVD thermal barrier coatings with various bond coats
  5. Depth-resolved X-ray residual stress analysis in PVD (Ti, Cr) N hard coatings
  6. Crystal orientation and residual stress in TiN film by synchrotron radiation
  7. Characterization of thermal and anodic oxide layers on β- and on near-β-titanium alloys for biomedical application
  8. Micromechanisms and modelling of crack initiation and growth in tool steels: role of primary carbides
  9. Fatigue crack nucleation at grain boundaries – experiment and simulation
  10. Fatigue and fracture-induced defect structures of metals investigated by positron microscopy
  11. Deformation and fracture of Nb/α-Al2O3 composites in compression and bending studied by optical methods
  12. Dislocation microstructures of single crystal ⟨001⟩ CMSX-4 specimens tensile tested at 700 and 1000°C
  13. Influence of mechanical surface treatments on the HCF performance of the Ni-superalloy Udimet 720 LI
  14. Precipitation of β-phase and twinning during deformation of Mg–Al alloy AZ91 at 150 °C after solution treatment
  15. Nanograin size, high-nitrogen austenitic stainless steels
  16. Der dynamische SD-Effekt und der Einfluss auf die Fließortkurve
  17. Einfluss der Umformgeschwindigkeit und -temperatur auf das Fließverhalten metallischer Werkstoffe
  18. Mean stress sensitivity of sintered iron and steel
  19. Thermozyklisches Kriechen einer kurzfaserverstärkten Aluminium-Kolbenlegierung
  20. Strength and ductility of thin Cu wires
  21. Modeling of deformation behavior of copper under equal channel angular pressing
  22. Reaktionssintern von AlMg–MgO zur Herstellung von Bauteilen auf Spinellbasis
  23. Determination of the local oxygen distribution in a commercial titanium alloy by 3-dimensional atom probe
  24. Phase diagram of the Al–Cu–Fe quasicrystal-forming alloy system
  25. Notifications/Mitteilungen
  26. Personal/Personelles
  27. Books/Bücher
  28. Conferences/Konferenzen
Downloaded on 21.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2003-0129/html
Scroll to top button