Home Dislocation microstructures of single crystal ⟨001⟩ CMSX-4 specimens tensile tested at 700 and 1000°C
Article
Licensed
Unlicensed Requires Authentication

Dislocation microstructures of single crystal ⟨001⟩ CMSX-4 specimens tensile tested at 700 and 1000°C

  • Florian Schubert EMAIL logo , Heinz-Josef Penkalla and Lorenz Singheiser
Published/Copyright: February 16, 2022
Become an author with De Gruyter Brill

Abstract

Two principal methods are used to derive constitutive equations for single crystal Ni-base superalloys: development of a creep potential according the Hill’s theory and the summarization of all activated slip systems: theoretically, the octahedral and the cubic slip system must be considered. An overview of dislocation structure evolution has been performed using transmission electron microscopy (TEM) techniques on 〈001〉-orientated CMSX-4 specimens after tensile tests. The aim of the applied conventional TEM methods was to provide with more details about the influence of temperature and deformation rate on the deformation behaviour of CMSX-4 nickel-base single crystal. A correlation of the γ' phase deformation mechanisms and associated mechanical responses for different tensile testing conditions has been done. With TEM methods the dislocation dipole identification as well as the stacking fault nature has been demonstrated.


Dedicated to Professor Dr. Otmar Vöhringer on the occasion of his 65th birthday



Professor Dr. F. Schubert Forschungszentrum Jülich Institute for Materials and Processes in Energy Systems D-52425 Jülich, Germany Tel.: +49 2461 61 3229 Fax: +49 2461 61 3699

References

[1] C.K. Boulloggh, M. Toulios, M. Oehl, P. Lukas: Proc. 6th Liege Conf. on Materials for Advanced Power Engineering 1998, J. Lecomte –Beckers, F. Schubert, P.J. Ennis (Eds.), Forschungszentrum Jülich, Jülich (1998) 861.Search in Google Scholar

[2] F. Schubert, T. Steinhaus, G. Fleury: as Ref. [1], p. 1045.Search in Google Scholar

[3] E.P. Busso, M. Toulios, G. Gailalerand: Proc. 7th Liege Conf. on Materials for Advanced Power Engineering 1998, J. Lecomte – Beckers, M. Carton, F. Schubert, P.J. Ennis (Eds.), Forschungszentrum Jülich, Jülich (1998) 23.Search in Google Scholar

[4] P. Caron, T. Khan: As Ref. [1], p. 897.Search in Google Scholar

[5] D. Danciu: Ph. D. Thesis, AGH Cracow, Poland (2003).Search in Google Scholar

[6] K.P.L. Fullagar, R.W. Bromfield, M. Hulands, K. Harris, G.L. Erickson, S.L. Sikkenga: Trans. ASME 118 (1996) 380.10.1115/1.2816600Search in Google Scholar

[7] T.M. Pollock, A.S. Argon: Acta Mater. 40 (1992) 1.10.1016/0956-7151(92)90195-KSearch in Google Scholar

[8] T.M. Pollock, R.D. Field, W.H. Murphy: Int. Conf. on Modelling on Microstructural Evolution in Creep Resistant Materials, September 29–30, 1998, London, Institute of Metals, Book 723, A. Strang, M. McLean (Eds.), The University Press, Cambridge (1999) 193.Search in Google Scholar

[9] D.P. Pope, S.S. Ezz: Metal Rev. 29 (1984) 136.10.1179/imr.1984.29.1.136Search in Google Scholar

[10] W. Schneider, J. Hammer, H. Mughrabi: Superalloys 1992, S.D. Antolovich, R.W. Stusrud (Eds.), The Minerals, Metals & Materials Society, Warrendale, PA (1992) 589.Search in Google Scholar

[11] S. Neves, H.J. Penkalla, F. Schubert: to be published.Search in Google Scholar

[12] D. Mukherji, F. Jiao, W. Chen, R.P. Wahi: Acta Metall. Mater. 39 (1991) 1515.10.1016/0956-7151(91)90237-USearch in Google Scholar

[13] G. Scheunemann –Frerker, H. Gabrisch, M. Feller –Kniepmeier: Phil. Mag. A 65 (1992) 1353.10.1080/01418619208205609Search in Google Scholar

[14] V. Sass, M. Feller –Kniepmeier: Mater. Sci. Eng. A 245 (1998) 19.10.1016/S0921-5093(97)00709-0Search in Google Scholar

[15] M. Rühle, M. Wilkens: Phys. Metall. II, R.W. Cahn, P. Hansen (Eds.), North Holland, Amsterdam (1996) 19.Search in Google Scholar

[16] J.A. Edington, in: Practical Electron Microscopy in Material Science, Philips Technical Library, Eindhoven (1975) II-1; II-28; III-10.Search in Google Scholar

[17] B. Decamps, J.M. Penisson: Scripta Metall. Mater. 30 (1994) 1425.10.1016/0956-716X(94)90240-2Search in Google Scholar

Received: 2002-10-17
Published Online: 2022-02-16

© 2003 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Articles/Aufsätze
  3. Bedeutung von Eigenspannungsabbau und mikrostrukturellen Veränderungen für die Lebensdauervorhersage schwingbeanspruchter Schweißverbindungen
  4. Factors affecting cyclic lifetime of EB-PVD thermal barrier coatings with various bond coats
  5. Depth-resolved X-ray residual stress analysis in PVD (Ti, Cr) N hard coatings
  6. Crystal orientation and residual stress in TiN film by synchrotron radiation
  7. Characterization of thermal and anodic oxide layers on β- and on near-β-titanium alloys for biomedical application
  8. Micromechanisms and modelling of crack initiation and growth in tool steels: role of primary carbides
  9. Fatigue crack nucleation at grain boundaries – experiment and simulation
  10. Fatigue and fracture-induced defect structures of metals investigated by positron microscopy
  11. Deformation and fracture of Nb/α-Al2O3 composites in compression and bending studied by optical methods
  12. Dislocation microstructures of single crystal ⟨001⟩ CMSX-4 specimens tensile tested at 700 and 1000°C
  13. Influence of mechanical surface treatments on the HCF performance of the Ni-superalloy Udimet 720 LI
  14. Precipitation of β-phase and twinning during deformation of Mg–Al alloy AZ91 at 150 °C after solution treatment
  15. Nanograin size, high-nitrogen austenitic stainless steels
  16. Der dynamische SD-Effekt und der Einfluss auf die Fließortkurve
  17. Einfluss der Umformgeschwindigkeit und -temperatur auf das Fließverhalten metallischer Werkstoffe
  18. Mean stress sensitivity of sintered iron and steel
  19. Thermozyklisches Kriechen einer kurzfaserverstärkten Aluminium-Kolbenlegierung
  20. Strength and ductility of thin Cu wires
  21. Modeling of deformation behavior of copper under equal channel angular pressing
  22. Reaktionssintern von AlMg–MgO zur Herstellung von Bauteilen auf Spinellbasis
  23. Determination of the local oxygen distribution in a commercial titanium alloy by 3-dimensional atom probe
  24. Phase diagram of the Al–Cu–Fe quasicrystal-forming alloy system
  25. Notifications/Mitteilungen
  26. Personal/Personelles
  27. Books/Bücher
  28. Conferences/Konferenzen
Downloaded on 21.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2003-0121/html
Scroll to top button