Home A thermodynamic description of the B–Co system: modeling and experiment
Article
Licensed
Unlicensed Requires Authentication

A thermodynamic description of the B–Co system: modeling and experiment

  • Yong Du EMAIL logo , Julius Clemens Schuster , Y. Austin Chang , Zhanpeng Jin and Baiyun Huang
Published/Copyright: February 9, 2022
Become an author with De Gruyter Brill

Abstract

The B–Co system is investigated via thermodynamic modeling and experiments. In the modeling section, all of the experimental phase diagram and thermodynamic data available from the literature were critically reviewed and assessed by using thermodynamic models for the Gibbs energies of individual phases. In the experimental section, 6 key alloys were prepared by arc melting Co slug and B pieces and annealing at 900 °C for 9 days. Water-quenched samples were analysed by using X-ray diffraction, optical microscopy, electron probe microanalysis and differential thermal analysis techniques. The measured invariant reaction temperatures are: 1136 ± 2 °C for Liquid (L) ↔ (αCo) + Co3B, 1157 ± 2 °C for L + Co2B ↔ Co3B, 1263 ± 2 °C for L ↔ Co2B + CoB, and 1358 ± 2 °C for L ↔ CoB + B. A consistent thermodynamic data set for the B–Co system is finally obtained by considering the present experimental results and reliable literature data. Comparisons between the calculated and measured phase diagram and thermodynamic quantities show that all of the accurate experimental information is satisfactorily accounted for by the thermodynamic description.

Abstract

Das System B–Co wurde mittels experimenteller Messungen und thermodynamischer Modellierung untersucht. Alle in der Literatur verfügbaren experimentellen thermodynamischen und Phasendiagramm-Daten wurden kritisch durchgesehen und mittels thermodynamischer Modelle für die freie Enthalpie bewertet. Danach wurden 6 charakteristische Legierungen aus Co und B im Lichtbogen erschmolzen und bei 900 °C 9 Tage lang geglüht. Die in Wasser abgeschreckten Proben wurden mit Röntgenbeugung, Licht- und Elektronenmikroskopie sowie Differenzialthermoanalyse untersucht. Es wurden folgende invarianten Temperaturen beobachtet: 1136 ± 2 °C für Schmelze (L) ↔ αCo + Co3B, 1157 ± 2 °C für L + Co2B ↔ Co3B, 1263 ± 2 °C für L Co2B + Co3B, und 1358 ± 2 °C für L ↔ CoB + B. Mit diesen Ergebnissen sowie als verlässlich befundenen Literaturdaten wurde ein konsistenter Satz thermodynamischer Daten für das System B–Co erhalten. Der Vergleich von berechneten und beobachteten Phasendiagrammen und thermodynamischen Daten zeigt, dass sämtliche experimentelle Informationen durch diese thermodynamische Modellierung zufriedenstellend beschrieben werden.


Dr. Yong Du State Key Laboratory for Powder Metallurgy Central South University, Changsha, Hunan, 410083, P R China Tel.: +86 731 887 6630 Fax: +86 731 871 0855

  1. One of the authors (Y. Du) acknowledges discussions with Drs. S.-L. Chen, F. Y. Xie, F. Zhang, Mrs. Y. Yang and Mr. M. L. Huang. Partial financial support from the Accelerated Insertion of Materials Program from DARPA, and the USAF through the contract F33615-00-C-5215, is greatly acknowledged. We also wish to thank Dr. Dan Backman of GE for his interest in this work.

References

07Jas du Jassonneix, A.B.: Compt. Rend. 145 (1907) 240.Search in Google Scholar

33Bju Bjurström, T.: Arkiv Kemi Mineral. Geol. A 11 (1933) 1.Search in Google Scholar

38Kös Köster, W.; Mulfinger, W.: Z. Metallkd. 30 (1938) 348.10.1515/ijmr-1938-300917Search in Google Scholar

40Chi Chizhevskii, N.P.; Shmelev, B.A.: Trudy Moskovskogo Inst. Stali im. I. V. Stalina 17 (1940) 3.Search in Google Scholar

48Red Redlich, O.; Kister, A.T.: Indust. Eng. Chem. 40 (1948) 345.10.1021/ie50458a036Search in Google Scholar

58Run Rundqvist, S.: Acta Chem. Scand. 12 (1958) 658.10.3891/acta.chem.scand.12-0658Search in Google Scholar

59Aro Aronsson, B.; Lundgren, G.: Acta Chem. Scand. 13 (1959) 434.10.3891/acta.chem.scand.13-2155Search in Google Scholar

59Fru Fruchart, R.; Michel, A.: Bull. Soc. Chim. France 25 (1959) 422.Search in Google Scholar

59Kol Kolomytsev, P.T.: Dokl. Akad. Nauk SSSR 124 (1959) 1247.Search in Google Scholar

60Kol Kolomytsev, P.T.: Dokl. Akad. Nauk SSSR 130 (1960) 767.Search in Google Scholar

60Sey Seybolt, A.U.: Trans. ASM 52 (1960) 971.Search in Google Scholar

63Sta Stadelmaier, H.H.; Schöbel, J.-D.; Burgess, R.E.: Metall. (Berlin) 17 (1963) 781.Search in Google Scholar

66Sch Schöbel, J.-D.; Stadelmaier, H.H.: Z. Metallkd. 57 (1966) 323.10.1515/ijmr-1966-570413Search in Google Scholar

72Hav Havinga, E.E.; Damsma, H.; Hokkeling, P.: J. Less-Comm. Met. 27 (1972) 169.10.1016/0022-5088(72)90028-8Search in Google Scholar

73Ler Lerner, C.; Cadeville, M.C.: Scripta Metall. 7 (1973) 941.10.1016/0036-9748(73)90145-2Search in Google Scholar

75Esi Esin, Yu.0.; Bayev, V.M.; Petrushevskiy, M.S.; Gel’d, P.V.: Russ. Metall. 4 (1975) 63.Search in Google Scholar

76Omo1 Omori, S.; Hashimoto, Y.: Trans. Japan Inst. Met. 17 (1976) 571.10.2320/matertrans1960.17.571Search in Google Scholar

76Omo2 Omori, S.; Hashimoto, Y.: J. Japan. Inst. Met. 40 (1976) 601.10.2320/jinstmet1952.40.6_601Search in Google Scholar

77Sid Sidorenko, F.A.; Serebrennikov, N.N.; Budozhanov, V.D.; Putintsev, Yu, V.; Trushevskii, S.N.; Korabanova, V.D.; Gel’d, P.V.: High Temp. 15 (1977) 36.Search in Google Scholar

78Hil Hillert, M.; Jarl, M.: Calphad 2 (1978) 227.10.1016/0364-5916(78)90011-1Search in Google Scholar

78Pra Pradelli, G.; Gianoglio, C.; Quadrini, E.: Metall. Ita. 70 (1978) 122.Search in Google Scholar

79Kub Kubaschewski, 0.; Alcock, C.B.; Metallurgical Thermochemistry, 5th ed., Pergamon Press, 0xford, New York, Seoul, Tokyo (1979) 268.Search in Google Scholar

79Kuz Kuz’ma, Yu.B.; Chaban, N.F.; Vityk, 0.S.: Soviet Powder Metall. Metal Ceram. 18 (1979) 672.10.1007/BF01159630Search in Google Scholar

80Esi Esin, Yu.0.; Baev, V.M.; Gel’d, P.V.: Pr-vo Ferrosplavov, Moskva 8 (1980) 32.Search in Google Scholar

80Gia Gianoglio, C.; Quadrini, E.: Atti Della Accad. Delle Sci. Di Torino 114(1980) 125.Search in Google Scholar

80Rog Rogl, P.; Schuster, J.C.; Nowotny, H., in: S.K. Banerji, J.E. Morral (eds.), Boron in Steel, Proc. Int. Symp., Metall. Soc. AIME, Milwaukee, WI (1980) 33.Search in Google Scholar

81Bas Bashev, V.F. ; Miroshnichenko, I.S.; Sergeev, G.A.: Inorg. Mater. 17 (1981) 892.Search in Google Scholar

82Sat Sato, S.; Kleppa, 0.J.: Metall. Trans. B 13 (1982) 251.10.1007/BF02664582Search in Google Scholar

84Kau Kaufman, L.; Uhrenius, B.; Birnie, D.; Taylor, K.: Calphad 8 (1984) 25.10.1016/0364-5916(84)90026-9Search in Google Scholar

85Sun Sundman, B.; Jansson, B.; Andersson, J.-0.: Calphad 9 (1985) 153.10.1016/0364-5916(85)90021-5Search in Google Scholar

86Lah Lahrichi, M.; Machizaud, F.; Flechon, J.; Kuhnast, F.A.; Bouroukba, M.; Cunat, C.; Hertz, J.: Mem. Etud. Sci. Rev. Metall. 83 (1986) 367.Search in Google Scholar

87And Andersson, J.-0.; Guillermet, A.F.; Gustafson, P.; Hillert, M.; Jansson, B.; Jonsson, B.; Sundman, B.; Agren, J.: Calphad 11 (1987) 93.10.1016/0364-5916(87)90022-8Search in Google Scholar

88Lia Liao, P.K.; Spear, K.E.: Bull. Alloy Phase Diagrams 9 (1988) 452.10.1007/BF02881866Search in Google Scholar

89Koy Koyama, K.; Hashimoto, Y.: J. Japan Inst. Met. 53 (1989) 1129.10.2320/jinstmet1952.53.11_1129Search in Google Scholar

89Yuk Yukinobu, M.; 0gawa, 0.; Goto, S.: Metall. Trans. B 20 (1989) 705.10.1007/BF02655928Search in Google Scholar

90Tho Thomas, H. P.: Metrologia 27 (1990) 3.10.1088/0026-1394/27/1/002Search in Google Scholar

90Vit Vitusevich, V.T.; Shcheretskii, A.A.; Shumikhin, V.S.: Russ. Metall. 5 (1990) 47.Search in Google Scholar

91Din Dinsdale, A.T.: Calphad 15 (1991) 317.10.1016/0364-5916(91)90030-NSearch in Google Scholar

91Vil Villars, P.; Calvert, L.D.: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM International, Materials Park, 0H (1991).Search in Google Scholar

95Wit Witusiewicz, V.T.: Thermochim. Acta 264 (1995) 41.10.1016/0040-6031(95)02345-3Search in Google Scholar

97Du Du, Y.; Schmid-Fetzer, R.; 0htani, H.: Z. Metallkd. 88 (1997) 545.Search in Google Scholar

98Du Du, Y.; Schuster, J.C.: Z. Metallkd. 89 (1998) 399.10.1023/A:1017116914247Search in Google Scholar

98Sir Sirota, N.N.; Vinokurov, V.A.; Noviko, V.V.: Russ. J. Phys. Chem. 72 (1998) 684.Search in Google Scholar

99Her Hernando, A.; Gonzalez, A.; Ballesteros, C.; Zern, A.; Fiorani, D.; Lucari, F.; D’0razio, F.: Nanostruct. Mater. 11 (1999) 783.10.1016/S0965-9773(99)00367-0Search in Google Scholar

99Mik Mikhailovskii, B.V.; Goryacheva, V.I.; Kutsenok, I.B.: Russ. J. Phys. Chem. 73 (1999) 667.Search in Google Scholar

99Sir Sirota, N.N.; Solomennik, V.D.; Novikov, V.V.; Vinokurov, V.A.; Kornev, B.I.: Russ. J. Phys. Chem. 73 (1999) 528.Search in Google Scholar

00Pan Pandat – Phase Diagram Calculation Engine for Multicomponent Systems, CompuTherm LLC, 437 S. Yellowstone Dr., Suite 217, Madison, WI (2000).Search in Google Scholar

00Win Winphad – Software Package for Binary Phase Diagram Calculation and 0ptimization, CompuTherm LLC, 437 S. Yellowstone Dr., Suite 217, Madison, WI (2000).Search in Google Scholar

01Mic Micke, K.; Richter, K.W.; Ipser, H.: Z. Metallkd. 92 (2001) 14.Search in Google Scholar

02Hsi Hsieh, K.-C.; Chang, Y.A.: Unpublished results (2002).Search in Google Scholar

Received: 2002-04-25
Published Online: 2022-02-09

© 2002 Carl Hanser Verlag, München

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2002-0198/pdf
Scroll to top button