Abstract
The B–Co system is investigated via thermodynamic modeling and experiments. In the modeling section, all of the experimental phase diagram and thermodynamic data available from the literature were critically reviewed and assessed by using thermodynamic models for the Gibbs energies of individual phases. In the experimental section, 6 key alloys were prepared by arc melting Co slug and B pieces and annealing at 900 °C for 9 days. Water-quenched samples were analysed by using X-ray diffraction, optical microscopy, electron probe microanalysis and differential thermal analysis techniques. The measured invariant reaction temperatures are: 1136 ± 2 °C for Liquid (L) ↔ (αCo) + Co3B, 1157 ± 2 °C for L + Co2B ↔ Co3B, 1263 ± 2 °C for L ↔ Co2B + CoB, and 1358 ± 2 °C for L ↔ CoB + B. A consistent thermodynamic data set for the B–Co system is finally obtained by considering the present experimental results and reliable literature data. Comparisons between the calculated and measured phase diagram and thermodynamic quantities show that all of the accurate experimental information is satisfactorily accounted for by the thermodynamic description.
Abstract
Das System B–Co wurde mittels experimenteller Messungen und thermodynamischer Modellierung untersucht. Alle in der Literatur verfügbaren experimentellen thermodynamischen und Phasendiagramm-Daten wurden kritisch durchgesehen und mittels thermodynamischer Modelle für die freie Enthalpie bewertet. Danach wurden 6 charakteristische Legierungen aus Co und B im Lichtbogen erschmolzen und bei 900 °C 9 Tage lang geglüht. Die in Wasser abgeschreckten Proben wurden mit Röntgenbeugung, Licht- und Elektronenmikroskopie sowie Differenzialthermoanalyse untersucht. Es wurden folgende invarianten Temperaturen beobachtet: 1136 ± 2 °C für Schmelze (L) ↔ αCo + Co3B, 1157 ± 2 °C für L + Co2B ↔ Co3B, 1263 ± 2 °C für L Co2B + Co3B, und 1358 ± 2 °C für L ↔ CoB + B. Mit diesen Ergebnissen sowie als verlässlich befundenen Literaturdaten wurde ein konsistenter Satz thermodynamischer Daten für das System B–Co erhalten. Der Vergleich von berechneten und beobachteten Phasendiagrammen und thermodynamischen Daten zeigt, dass sämtliche experimentelle Informationen durch diese thermodynamische Modellierung zufriedenstellend beschrieben werden.
-
One of the authors (Y. Du) acknowledges discussions with Drs. S.-L. Chen, F. Y. Xie, F. Zhang, Mrs. Y. Yang and Mr. M. L. Huang. Partial financial support from the Accelerated Insertion of Materials Program from DARPA, and the USAF through the contract F33615-00-C-5215, is greatly acknowledged. We also wish to thank Dr. Dan Backman of GE for his interest in this work.
References
07Jas du Jassonneix, A.B.: Compt. Rend. 145 (1907) 240.Search in Google Scholar
33Bju Bjurström, T.: Arkiv Kemi Mineral. Geol. A 11 (1933) 1.Search in Google Scholar
38Kös Köster, W.; Mulfinger, W.: Z. Metallkd. 30 (1938) 348.10.1515/ijmr-1938-300917Search in Google Scholar
40Chi Chizhevskii, N.P.; Shmelev, B.A.: Trudy Moskovskogo Inst. Stali im. I. V. Stalina 17 (1940) 3.Search in Google Scholar
48Red Redlich, O.; Kister, A.T.: Indust. Eng. Chem. 40 (1948) 345.10.1021/ie50458a036Search in Google Scholar
58Run Rundqvist, S.: Acta Chem. Scand. 12 (1958) 658.10.3891/acta.chem.scand.12-0658Search in Google Scholar
59Aro Aronsson, B.; Lundgren, G.: Acta Chem. Scand. 13 (1959) 434.10.3891/acta.chem.scand.13-2155Search in Google Scholar
59Fru Fruchart, R.; Michel, A.: Bull. Soc. Chim. France 25 (1959) 422.Search in Google Scholar
59Kol Kolomytsev, P.T.: Dokl. Akad. Nauk SSSR 124 (1959) 1247.Search in Google Scholar
60Kol Kolomytsev, P.T.: Dokl. Akad. Nauk SSSR 130 (1960) 767.Search in Google Scholar
60Sey Seybolt, A.U.: Trans. ASM 52 (1960) 971.Search in Google Scholar
63Sta Stadelmaier, H.H.; Schöbel, J.-D.; Burgess, R.E.: Metall. (Berlin) 17 (1963) 781.Search in Google Scholar
66Sch Schöbel, J.-D.; Stadelmaier, H.H.: Z. Metallkd. 57 (1966) 323.10.1515/ijmr-1966-570413Search in Google Scholar
72Hav Havinga, E.E.; Damsma, H.; Hokkeling, P.: J. Less-Comm. Met. 27 (1972) 169.10.1016/0022-5088(72)90028-8Search in Google Scholar
73Ler Lerner, C.; Cadeville, M.C.: Scripta Metall. 7 (1973) 941.10.1016/0036-9748(73)90145-2Search in Google Scholar
75Esi Esin, Yu.0.; Bayev, V.M.; Petrushevskiy, M.S.; Gel’d, P.V.: Russ. Metall. 4 (1975) 63.Search in Google Scholar
76Omo1 Omori, S.; Hashimoto, Y.: Trans. Japan Inst. Met. 17 (1976) 571.10.2320/matertrans1960.17.571Search in Google Scholar
76Omo2 Omori, S.; Hashimoto, Y.: J. Japan. Inst. Met. 40 (1976) 601.10.2320/jinstmet1952.40.6_601Search in Google Scholar
77Sid Sidorenko, F.A.; Serebrennikov, N.N.; Budozhanov, V.D.; Putintsev, Yu, V.; Trushevskii, S.N.; Korabanova, V.D.; Gel’d, P.V.: High Temp. 15 (1977) 36.Search in Google Scholar
78Hil Hillert, M.; Jarl, M.: Calphad 2 (1978) 227.10.1016/0364-5916(78)90011-1Search in Google Scholar
78Pra Pradelli, G.; Gianoglio, C.; Quadrini, E.: Metall. Ita. 70 (1978) 122.Search in Google Scholar
79Kub Kubaschewski, 0.; Alcock, C.B.; Metallurgical Thermochemistry, 5th ed., Pergamon Press, 0xford, New York, Seoul, Tokyo (1979) 268.Search in Google Scholar
79Kuz Kuz’ma, Yu.B.; Chaban, N.F.; Vityk, 0.S.: Soviet Powder Metall. Metal Ceram. 18 (1979) 672.10.1007/BF01159630Search in Google Scholar
80Esi Esin, Yu.0.; Baev, V.M.; Gel’d, P.V.: Pr-vo Ferrosplavov, Moskva 8 (1980) 32.Search in Google Scholar
80Gia Gianoglio, C.; Quadrini, E.: Atti Della Accad. Delle Sci. Di Torino 114(1980) 125.Search in Google Scholar
80Rog Rogl, P.; Schuster, J.C.; Nowotny, H., in: S.K. Banerji, J.E. Morral (eds.), Boron in Steel, Proc. Int. Symp., Metall. Soc. AIME, Milwaukee, WI (1980) 33.Search in Google Scholar
81Bas Bashev, V.F. ; Miroshnichenko, I.S.; Sergeev, G.A.: Inorg. Mater. 17 (1981) 892.Search in Google Scholar
82Sat Sato, S.; Kleppa, 0.J.: Metall. Trans. B 13 (1982) 251.10.1007/BF02664582Search in Google Scholar
84Kau Kaufman, L.; Uhrenius, B.; Birnie, D.; Taylor, K.: Calphad 8 (1984) 25.10.1016/0364-5916(84)90026-9Search in Google Scholar
85Sun Sundman, B.; Jansson, B.; Andersson, J.-0.: Calphad 9 (1985) 153.10.1016/0364-5916(85)90021-5Search in Google Scholar
86Lah Lahrichi, M.; Machizaud, F.; Flechon, J.; Kuhnast, F.A.; Bouroukba, M.; Cunat, C.; Hertz, J.: Mem. Etud. Sci. Rev. Metall. 83 (1986) 367.Search in Google Scholar
87And Andersson, J.-0.; Guillermet, A.F.; Gustafson, P.; Hillert, M.; Jansson, B.; Jonsson, B.; Sundman, B.; Agren, J.: Calphad 11 (1987) 93.10.1016/0364-5916(87)90022-8Search in Google Scholar
88Lia Liao, P.K.; Spear, K.E.: Bull. Alloy Phase Diagrams 9 (1988) 452.10.1007/BF02881866Search in Google Scholar
89Koy Koyama, K.; Hashimoto, Y.: J. Japan Inst. Met. 53 (1989) 1129.10.2320/jinstmet1952.53.11_1129Search in Google Scholar
89Yuk Yukinobu, M.; 0gawa, 0.; Goto, S.: Metall. Trans. B 20 (1989) 705.10.1007/BF02655928Search in Google Scholar
90Tho Thomas, H. P.: Metrologia 27 (1990) 3.10.1088/0026-1394/27/1/002Search in Google Scholar
90Vit Vitusevich, V.T.; Shcheretskii, A.A.; Shumikhin, V.S.: Russ. Metall. 5 (1990) 47.Search in Google Scholar
91Din Dinsdale, A.T.: Calphad 15 (1991) 317.10.1016/0364-5916(91)90030-NSearch in Google Scholar
91Vil Villars, P.; Calvert, L.D.: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM International, Materials Park, 0H (1991).Search in Google Scholar
95Wit Witusiewicz, V.T.: Thermochim. Acta 264 (1995) 41.10.1016/0040-6031(95)02345-3Search in Google Scholar
97Du Du, Y.; Schmid-Fetzer, R.; 0htani, H.: Z. Metallkd. 88 (1997) 545.Search in Google Scholar
98Du Du, Y.; Schuster, J.C.: Z. Metallkd. 89 (1998) 399.10.1023/A:1017116914247Search in Google Scholar
98Sir Sirota, N.N.; Vinokurov, V.A.; Noviko, V.V.: Russ. J. Phys. Chem. 72 (1998) 684.Search in Google Scholar
99Her Hernando, A.; Gonzalez, A.; Ballesteros, C.; Zern, A.; Fiorani, D.; Lucari, F.; D’0razio, F.: Nanostruct. Mater. 11 (1999) 783.10.1016/S0965-9773(99)00367-0Search in Google Scholar
99Mik Mikhailovskii, B.V.; Goryacheva, V.I.; Kutsenok, I.B.: Russ. J. Phys. Chem. 73 (1999) 667.Search in Google Scholar
99Sir Sirota, N.N.; Solomennik, V.D.; Novikov, V.V.; Vinokurov, V.A.; Kornev, B.I.: Russ. J. Phys. Chem. 73 (1999) 528.Search in Google Scholar
00Pan Pandat – Phase Diagram Calculation Engine for Multicomponent Systems, CompuTherm LLC, 437 S. Yellowstone Dr., Suite 217, Madison, WI (2000).Search in Google Scholar
00Win Winphad – Software Package for Binary Phase Diagram Calculation and 0ptimization, CompuTherm LLC, 437 S. Yellowstone Dr., Suite 217, Madison, WI (2000).Search in Google Scholar
01Mic Micke, K.; Richter, K.W.; Ipser, H.: Z. Metallkd. 92 (2001) 14.Search in Google Scholar
02Hsi Hsieh, K.-C.; Chang, Y.A.: Unpublished results (2002).Search in Google Scholar
© 2002 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Aufsätze/Articles
- Dilatometric study of the effect of soluble boron on the continuous and isothermal austenite decomposition in 0.15C–1.6Mn steel
- Use of duplex microstructures in steel for estimation of plastic deformation in high-speed machining chips
- Stability of strengthened niobium alloys in long-term high-temperature loading conditions
- Effect of rare-earth metals on the hot strength of HSLA steels
- Wear behaviour of Ni–Cr–Mo–V steel under dry sliding
- Thermodynamic calculation of the phase diagram of the Co–Nb–Ta system
- Peritectic equilibrium in Fe-Co alloys
- A thermodynamic description of the B–Co system: modeling and experiment
- Thermodynamic interpretation of thermoelectric phenomena
- Unit cell volumes of the silicon- and germanium-containing solid solutions based on the 3d bcc transition metals
- Artificial silicide barrier coatings in titanium matrix composites
- Notifications/Mitteilungen
- Personal/Personelles
- DGM Training/DGM Fortbildung
- Conferences/Konferenzen
Articles in the same Issue
- Frontmatter
- Aufsätze/Articles
- Dilatometric study of the effect of soluble boron on the continuous and isothermal austenite decomposition in 0.15C–1.6Mn steel
- Use of duplex microstructures in steel for estimation of plastic deformation in high-speed machining chips
- Stability of strengthened niobium alloys in long-term high-temperature loading conditions
- Effect of rare-earth metals on the hot strength of HSLA steels
- Wear behaviour of Ni–Cr–Mo–V steel under dry sliding
- Thermodynamic calculation of the phase diagram of the Co–Nb–Ta system
- Peritectic equilibrium in Fe-Co alloys
- A thermodynamic description of the B–Co system: modeling and experiment
- Thermodynamic interpretation of thermoelectric phenomena
- Unit cell volumes of the silicon- and germanium-containing solid solutions based on the 3d bcc transition metals
- Artificial silicide barrier coatings in titanium matrix composites
- Notifications/Mitteilungen
- Personal/Personelles
- DGM Training/DGM Fortbildung
- Conferences/Konferenzen