Abstract
The unit cell parameters and the unit cell volumes were investigated for Si- and Ge-containing solid solutions based on the 3d body-centred cubic transition metals. Excepting the high-temperature solid solution δ-Mn(Si), the solubility of Si increases with increasing number of 3d electrons. In contradiction to the large atomic volume of Si, which is substantially larger than that of the 3d transition metals, the unit cell volume of the terminal solid solutions decreases with increasing Si content. For solid solutions showing a large homogeneity range – α-Fe(Si) and α-Fe(Ge) –, the partial atomic volumes of Si and Ge were evaluated. Comparing the quasihomological Al- and Si-containing solid solutions α-Fe(Al) and α-Fe(Si), the higher bond energy occurs between atoms of Si and Fe than between Al and Fe atoms. Taking into consideration the homology of metalloids in the solid solutions α-Fe(Si) and α-Fe(Ge), the higher bond energy can also be expected between Si and Fe than between Ge and Fe atoms.
References
1 Westbrook, J.H.; Fleischer, R.L. (eds.): Intermetallic Compounds, Principles and Practices, Volume 2, J. Wiley and Sons, New York (1995)211.Search in Google Scholar
2 Gladyshevskii, E.I.: Kristallochimiia silicidov i germanidov, Metallurgiia, Moscow (1971).Search in Google Scholar
3 Pearson, W.B.: The Crystal Chemistry and Physics of Metalls andAlloys, Wiley-Interscience, New York (1972) 174.Search in Google Scholar
4 Ellner, M.: J. Less-Common Metals 60 (1978) P15-P39.10.1016/0022-5088(78)90187-XSearch in Google Scholar
5 Massalski, Vols. 1-3, T.ASM B. (Editor-International, in-Chief): Materials Binary Park, Alloy OH Phase (1990Diagrams, ).Search in Google Scholar
6 Bruning, H.A.C.M.: Philips Res. Reports 22 (1967) 349.10.2307/40200118Search in Google Scholar
7 Efimov, Yu.V: Z. Neorg. Khim. 8 (1963) 1522.Search in Google Scholar
8 Goldschmidt, H.J.; Brand, J.A.: J. Less-Common Metals 3 (1961) 44.10.1016/0022-5088(61)90042-XSearch in Google Scholar
9 Chang, Y.A.: Trans. Metall. AIME 242 (1968) 1509.Search in Google Scholar
10 Farquhar, M.C.M.; Lipson, H.; Weill, A.R.: J. Iron Steel Inst. (London) 152 (1945) 457.Search in Google Scholar
11 Selisskii, Y.P.: Zh. Fiz. Khim. 20 (1946) 597.Search in Google Scholar
12 Lihl, F.; Ebel, H.: Arch. Eisenhüttenw. 32 (1963) 489.10.1002/srin.196103292Search in Google Scholar
13 Turbil, J.-P.; Michel, A.: Ann. Chimie, Paris 8 (1973) 377.Search in Google Scholar
14 Polcarová, M.; Godwod, K.; Bak-Misiuk, J.; Kadečková, S.; Bradler, J.: Physica Status Sol. (a) 106 (1988) 17.10.1002/pssa.2211060103Search in Google Scholar
15 Villars, P.; Calvert, L.D.: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM International, Materials Park, OH (1991).Search in Google Scholar
16 Villars, P.: Pearson’s Handbook, Desk Edition, ASM International, Materials Park, OH (1997).Search in Google Scholar
17 Zagryazhkii, Ya.P; Shtols, A.K.; Geld, P.V.: Izvestija Akad. Nauk SSSR, Neorganicheskie Materialy 1 (1965) 1733.Search in Google Scholar
18 Godat, D.; Feschotte, P.: J. Less-Common Metals 72 (1980) 7.10.1016/0022-5088(80)90248-9Search in Google Scholar
19 Chessin, H.; Arajs, S.; Colvin, R.V.; Miller, D.S.: J. Phys. Chem. Solids 24 (1963) 261.10.1016/0022-3697(63)90131-8Search in Google Scholar
20 Shtolts, A.K.; Geld, P.V.: Fiz. Metal. Metalloved. 13 (1961) 159.Search in Google Scholar
21 Buschow, K.H.J.; van Engen, P.G.; Jongebreur, R.: J. Magnet. Magnet. Mat. 38 (1982) 81.10.1016/0304-8853(83)90097-5Search in Google Scholar
22 Hume-Rothery, W.: Atomic Theory for the Students of Metallurgy, The Institute of Metals, London (1955) 257.Search in Google Scholar
23 Teatum, E.T.; Gschneidner Jr., K.A.; Waber, J.T.: Compilation of Calculated Data Useful in Predicting Metallurgical Behavior of the Elements in Binary Alloy Systems, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, (1968) 11.10.2172/4789465Search in Google Scholar
24 Ellner, M.; Park, I.: Metall. Trans., in press.Search in Google Scholar
25 Predel, B: Phasengleichgewichte, kristallographische und thermodynamische Daten binärer Legierungen, in: Landolt-Börnstein, Neue Serie, Band 5, Springer Verlag, Berlin (1991-1998).Search in Google Scholar
26 Miedema, A.R.; Boom, R.; de Boer, F.R.: J. Less-Common Metals 41 (1975) 283.10.1016/0022-5088(75)90034-XSearch in Google Scholar
27 Miedema, A.R.: J. Less-Common Metals 46 (1976) 67.10.1016/0022-5088(76)90180-6Search in Google Scholar
© 2002 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Aufsätze/Articles
- Dilatometric study of the effect of soluble boron on the continuous and isothermal austenite decomposition in 0.15C–1.6Mn steel
- Use of duplex microstructures in steel for estimation of plastic deformation in high-speed machining chips
- Stability of strengthened niobium alloys in long-term high-temperature loading conditions
- Effect of rare-earth metals on the hot strength of HSLA steels
- Wear behaviour of Ni–Cr–Mo–V steel under dry sliding
- Thermodynamic calculation of the phase diagram of the Co–Nb–Ta system
- Peritectic equilibrium in Fe-Co alloys
- A thermodynamic description of the B–Co system: modeling and experiment
- Thermodynamic interpretation of thermoelectric phenomena
- Unit cell volumes of the silicon- and germanium-containing solid solutions based on the 3d bcc transition metals
- Artificial silicide barrier coatings in titanium matrix composites
- Notifications/Mitteilungen
- Personal/Personelles
- DGM Training/DGM Fortbildung
- Conferences/Konferenzen
Articles in the same Issue
- Frontmatter
- Aufsätze/Articles
- Dilatometric study of the effect of soluble boron on the continuous and isothermal austenite decomposition in 0.15C–1.6Mn steel
- Use of duplex microstructures in steel for estimation of plastic deformation in high-speed machining chips
- Stability of strengthened niobium alloys in long-term high-temperature loading conditions
- Effect of rare-earth metals on the hot strength of HSLA steels
- Wear behaviour of Ni–Cr–Mo–V steel under dry sliding
- Thermodynamic calculation of the phase diagram of the Co–Nb–Ta system
- Peritectic equilibrium in Fe-Co alloys
- A thermodynamic description of the B–Co system: modeling and experiment
- Thermodynamic interpretation of thermoelectric phenomena
- Unit cell volumes of the silicon- and germanium-containing solid solutions based on the 3d bcc transition metals
- Artificial silicide barrier coatings in titanium matrix composites
- Notifications/Mitteilungen
- Personal/Personelles
- DGM Training/DGM Fortbildung
- Conferences/Konferenzen