Home Unit cell volumes of the silicon- and germanium-containing solid solutions based on the 3d bcc transition metals
Article
Licensed
Unlicensed Requires Authentication

Unit cell volumes of the silicon- and germanium-containing solid solutions based on the 3d bcc transition metals

  • M. Ellner EMAIL logo and I. Park
Published/Copyright: February 12, 2022
Become an author with De Gruyter Brill

Abstract

The unit cell parameters and the unit cell volumes were investigated for Si- and Ge-containing solid solutions based on the 3d body-centred cubic transition metals. Excepting the high-temperature solid solution δ-Mn(Si), the solubility of Si increases with increasing number of 3d electrons. In contradiction to the large atomic volume of Si, which is substantially larger than that of the 3d transition metals, the unit cell volume of the terminal solid solutions decreases with increasing Si content. For solid solutions showing a large homogeneity range – α-Fe(Si) and α-Fe(Ge) –, the partial atomic volumes of Si and Ge were evaluated. Comparing the quasihomological Al- and Si-containing solid solutions α-Fe(Al) and α-Fe(Si), the higher bond energy occurs between atoms of Si and Fe than between Al and Fe atoms. Taking into consideration the homology of metalloids in the solid solutions α-Fe(Si) and α-Fe(Ge), the higher bond energy can also be expected between Si and Fe than between Ge and Fe atoms.


Dr. M. Ellner Max-Planck-Intitut für Metallforschung Heisenbergstr. 3 D-70569 Stuttgart, Germany Tel.: 0711/689 3369 Fax: 071/689 3312

References

1 Westbrook, J.H.; Fleischer, R.L. (eds.): Intermetallic Compounds, Principles and Practices, Volume 2, J. Wiley and Sons, New York (1995)211.Search in Google Scholar

2 Gladyshevskii, E.I.: Kristallochimiia silicidov i germanidov, Metallurgiia, Moscow (1971).Search in Google Scholar

3 Pearson, W.B.: The Crystal Chemistry and Physics of Metalls andAlloys, Wiley-Interscience, New York (1972) 174.Search in Google Scholar

4 Ellner, M.: J. Less-Common Metals 60 (1978) P15-P39.10.1016/0022-5088(78)90187-XSearch in Google Scholar

5 Massalski, Vols. 1-3, T.ASM B. (Editor-International, in-Chief): Materials Binary Park, Alloy OH Phase (1990Diagrams, ).Search in Google Scholar

6 Bruning, H.A.C.M.: Philips Res. Reports 22 (1967) 349.10.2307/40200118Search in Google Scholar

7 Efimov, Yu.V: Z. Neorg. Khim. 8 (1963) 1522.Search in Google Scholar

8 Goldschmidt, H.J.; Brand, J.A.: J. Less-Common Metals 3 (1961) 44.10.1016/0022-5088(61)90042-XSearch in Google Scholar

9 Chang, Y.A.: Trans. Metall. AIME 242 (1968) 1509.Search in Google Scholar

10 Farquhar, M.C.M.; Lipson, H.; Weill, A.R.: J. Iron Steel Inst. (London) 152 (1945) 457.Search in Google Scholar

11 Selisskii, Y.P.: Zh. Fiz. Khim. 20 (1946) 597.Search in Google Scholar

12 Lihl, F.; Ebel, H.: Arch. Eisenhüttenw. 32 (1963) 489.10.1002/srin.196103292Search in Google Scholar

13 Turbil, J.-P.; Michel, A.: Ann. Chimie, Paris 8 (1973) 377.Search in Google Scholar

14 Polcarová, M.; Godwod, K.; Bak-Misiuk, J.; Kadečková, S.; Bradler, J.: Physica Status Sol. (a) 106 (1988) 17.10.1002/pssa.2211060103Search in Google Scholar

15 Villars, P.; Calvert, L.D.: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM International, Materials Park, OH (1991).Search in Google Scholar

16 Villars, P.: Pearson’s Handbook, Desk Edition, ASM Interna­tional, Materials Park, OH (1997).Search in Google Scholar

17 Zagryazhkii, Ya.P; Shtols, A.K.; Geld, P.V.: Izvestija Akad. Nauk SSSR, Neorganicheskie Materialy 1 (1965) 1733.Search in Google Scholar

18 Godat, D.; Feschotte, P.: J. Less-Common Metals 72 (1980) 7.10.1016/0022-5088(80)90248-9Search in Google Scholar

19 Chessin, H.; Arajs, S.; Colvin, R.V.; Miller, D.S.: J. Phys. Chem. Solids 24 (1963) 261.10.1016/0022-3697(63)90131-8Search in Google Scholar

20 Shtolts, A.K.; Geld, P.V.: Fiz. Metal. Metalloved. 13 (1961) 159.Search in Google Scholar

21 Buschow, K.H.J.; van Engen, P.G.; Jongebreur, R.: J. Magnet. Magnet. Mat. 38 (1982) 81.10.1016/0304-8853(83)90097-5Search in Google Scholar

22 Hume-Rothery, W.: Atomic Theory for the Students of Metallurgy, The Institute of Metals, London (1955) 257.Search in Google Scholar

23 Teatum, E.T.; Gschneidner Jr., K.A.; Waber, J.T.: Compilation of Calculated Data Useful in Predicting Metallurgical Behavior of the Elements in Binary Alloy Systems, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, (1968) 11.10.2172/4789465Search in Google Scholar

24 Ellner, M.; Park, I.: Metall. Trans., in press.Search in Google Scholar

25 Predel, B: Phasengleichgewichte, kristallographische und thermodynamische Daten binärer Legierungen, in: Landolt-Börnstein, Neue Serie, Band 5, Springer Verlag, Berlin (1991-1998).Search in Google Scholar

26 Miedema, A.R.; Boom, R.; de Boer, F.R.: J. Less-Common Metals 41 (1975) 283.10.1016/0022-5088(75)90034-XSearch in Google Scholar

27 Miedema, A.R.: J. Less-Common Metals 46 (1976) 67.10.1016/0022-5088(76)90180-6Search in Google Scholar

Received: 2002-06-25
Published Online: 2022-02-12

© 2002 Carl Hanser Verlag, München

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2002-0200/html
Scroll to top button