Startseite Influence of Ultrasonic Pretreatment with Hot Air Drying on Nutritional Quality and Structural Related Changes in Dried Sweet Potatoes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of Ultrasonic Pretreatment with Hot Air Drying on Nutritional Quality and Structural Related Changes in Dried Sweet Potatoes

  • Muhammad Tayyab Rashid , Haile Ma EMAIL logo , Mushtaque Ahmed Jatoi , Malik Muhammad Hashim , Asif Wali und Bushra Safdar
Veröffentlicht/Copyright: 19. März 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The drying of sweet potatoes not only helps to prolong its storage life but the dried form reportedly enriched with high bioactive compounds than regular sweet potatoes. The study aims to investigate the influence of dual-frequency ultrasound pretreatments (40 and 60 kHz) at two different hot air drying temperatures (70 °C and 80 °C) on quality of dried product. Ultrasound pretreatment at 40 kHz with 70 °C maintained the phytochemical compounds in the dried sweet potatoes. Ellagic acid and chlorogenic acid were found as predominant phenolic acids using HPLC analysis, while identification of two new bioactive compounds quercetin-3-rhamnoside and quercetin 3-β-D-glucoside were the novel finding of the current study. A short new band appeared in FTIR in all treatments from 2164 to 2041 cm−1 which refers to C = C alkenes functional group. The multivariate analysis showed a great influence of USH3 and USH1 with a positive relationship with most of bioactive compounds.

Abbreviations

CT

Control

FTIR-ATR

Fourier transform infrared spectroscopy-Attenuated Total Reflectance

kHz

Frequency Unit

PCA

Principal Component analysis

SEM

Scanning Electron Microscopy

TCC

Total carotenoids content

TFC

Total flavonoid content

TPC

Total phenolic content

USH

Ultrasound Hot air drying

Acknowledgements

The authors wish to express their deep gratitude and appreciation for the support obtained from the national high-tech research and development program of China (2013AA102203-02), the policy guidance program, research cooperation of Jiangsu (BY201072-03) and the social development program (General Project) of Jiangsu Project (BE2016779).

  1. Conflict of Interest The authors confirm no conflict of interest.

References

[1] Van Hal M. Quality of sweet potato flour during processing and storage. Food Rev Int [Internet]. 2000;16:1–37. Available from: http://www.tandfonline.com/doi/abs/10.1081/FRI-100100280.10.1081/FRI-100100280Suche in Google Scholar

[2] Ahmed M, Sorifa AM, Eun JB. Effect of pretreatments and drying temperatures on sweet potato flour. Int J Food Sci Technol. 2010;45:726–32.10.1111/j.1365-2621.2010.02191.xSuche in Google Scholar

[3] Do Nascimento EM, Mulet A, Ascheri JL, de Carvalho CW, Cárcel JA. Effects of high-intensity ultrasound on drying kinetics and antioxidant properties of passion fruit peel. J Food Eng [Internet]. 2016;170:108–18. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0260877415004136.10.1016/j.jfoodeng.2015.09.015Suche in Google Scholar

[4] Aadil RM, Zeng XA, Wang MS, Liu ZW, Han Z, Zhang ZH, et al. A potential of ultrasound on minerals, micro-organisms, phenolic compounds and colouring pigments of grapefruit juice. Int J Food Sci Technol [Internet]. 2015;50:1144–50. DOI: 10.1111/ijfs.12767.Suche in Google Scholar

[5] Puig A, Perez-Munuera I, Carcel JA, Hernando I, Garcia-Perez JV. Moisture loss kinetics and microstructural changes in eggplant (Solanum melongena L.) during conventional and ultrasonically assisted convective drying. Food Bioprod Process [Internet]. 2012;90:624–32. Available from: http://www.sciencedirect.com/science/article/pii/S0960308512000557.10.1016/j.fbp.2012.07.001Suche in Google Scholar

[6] Jambrak A, Mason T, Paniwnyk L. Accelerated drying of button mushrooms, Brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. J Food Eng [Internet] Engineering VL-J of F, 2007 U. 2007 [cited 2018 Jun 6];81:88–97. Available from: https://www.sciencedirect.com/science/article/pii/S0260877406006431.10.1016/j.jfoodeng.2006.10.009Suche in Google Scholar

[7] Golmohamadi A, Möller G, Powers J, Nindo C. Ultrasonics sonochemistry effect of ultrasound frequency on antioxidant activity, total phenolic and anthocyanin content of red raspberry puree. Ultrason Sonochem [Internet]. 2013;1–8. DOI: http://dx.doi.org/10.1016/j.ultsonch.2013.01.020.Suche in Google Scholar PubMed

[8] Nowacka M, Wedzik M. Effect of ultrasound treatment on microstructure, colour and carotenoid content in fresh and dried carrot tissue. Appl Acoust [Internet]. 2016;103:163–71. Available from: https://www.sciencedirect.com/science/article/pii/S0003682X15001772.10.1016/j.apacoust.2015.06.011Suche in Google Scholar

[9] Yadollahinia A, Latifi A, Mahdavi R. New method for determination of potato slice shrinkage during drying. Comput Electron Agric [Internet]. 2009;65:268–74. .10.1016/j.compag.2008.11.003Suche in Google Scholar

[10] Nandutu AM, Clifford M, Howell NK. Analysis of phenolic compounds in Ugandan sweet potato varieties (NSP, SPK AND TZ). African J Biochem Res [Internet]. 2007;1:29–36. Available from: http://www.academicjournals.org/AJBR/abstracts/abstracts/abstract2007/Aug/Nandutuetal.htm.Suche in Google Scholar

[11] Oki T, Masuda M, Furuta S, Nishiba Y, Terahara N, Suda I. Involvement of anthocyanins and other phenolic compounds in radical-scavenging activity of purple-fleshed sweet potato cultivars. J Food Sci [Internet]. 2002;67:1752–6. DOI: 10.1111/j.1365-2621.2002.tb08718.x.Suche in Google Scholar

[12] Santacatalina JV, Rodríguez O, Simal S, Cárcel JA, Mulet A, García-Pérez JV. Ultrasonically enhanced low-temperature drying of apple: influence on drying kinetics and antioxidant potential. J Food Eng [Internet]. 2014;138:35–44. Available from: https://www.sciencedirect.com/science/article/pii/S0260877414001575.10.1016/j.jfoodeng.2014.04.003Suche in Google Scholar

[13] Yang J, Gadi RL. Effects of steaming and dehydration on anthocyanins, antioxidant activity,total phenols and color characteristics of purple-fleshed sweet potatoes(Ipomoea batatas). Am J Food Technol [Internet]. 2008;3:224–34. Available from: http://www.scialert.net/abstract/?doi=ajft.2008.224.234.10.3923/ajft.2008.224.234Suche in Google Scholar

[14] AOAC Official Methods of Analysis of AOAC. No Title. Gaithersburg, MD: Association of Official Analysis Chemists Inter- national, 2000.Suche in Google Scholar

[15] Ju HY, Zhang Q, Mujumdar AS, Fang XM, Xiao HW, Gao ZJ. Hot-air drying kinetics of yam slices under step change in relative humidity. Int J Food Eng [Internet]. 2016;12:783–92. Available from: https://www.degruyter.com/view/j/ijfe.2016.12.issue-8/ijfe-2015-0340/ijfe-2015-0340.xml.10.1515/ijfe-2015-0340Suche in Google Scholar

[16] Rashid MT, Ma H, Jatoi MA, Wali A, El‐Mesery HS, Ali Z, & Sarpong F. Effect of infrared drying with multifrequency ultrasound pretreatments on the stability of phytochemical properties, antioxidant potential, and textural quality of dried sweet potatoes. Journal of Food Biochemistry, 2019;e12809.10.1111/jfbc.12809Suche in Google Scholar

[17] Xu BJ, Chang SK. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J Food Sci [Internet]. 2007;72:S159–66. DOI: 10.1111/j.1750-3841.2006.00260.x.Suche in Google Scholar

[18] Ruangchakpet A, Sajjaanantakul T. Effect of browning on total phenolic, flavonoid content and antioxidant activity in Indian gooseberry ( Phyllanthus emblica Linn.). Kasetsart J (Nat Sci), 2007;337:331–7.Suche in Google Scholar

[19] Szôllôsi R, Szôllôsi Varga I. Total antioxidant power in some species of Labiatae (Adaptation of FRAP method). Acta Biol Szeged [Internet]. 2002;46:125–7. Available from: https://www2.sci.u-szeged.hu/ABS/2002/Acta HPb/s2/32-szool.pdf.Suche in Google Scholar

[20] Zhou C, Hu J, Ma H, Yagoub AE, Yu X, Owusu J, et al. Antioxidant peptides from corn gluten meal: orthogonal design evaluation. Food Chem [Internet]. 2015;187:270–8. Available from: https://www.sciencedirect.com/science/article/pii/S030881461500638X.10.1016/j.foodchem.2015.04.092Suche in Google Scholar

[21] Tang Y, Cai W, Xu B. Profiles of phenolics, carotenoids and antioxidative capacities of thermal processed white, yellow, orange and purple sweet potatoes grown in Guilin, China. Food Sci Hum Wellness [Internet]. 2015;4:123–32. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2213453015000427.10.1016/j.fshw.2015.07.003Suche in Google Scholar

[22] Sakihama Y, Cohen MF, Grace SC, Yamasaki H. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology [Internet]. 2002;177:67–80. Available from: https://www.sciencedirect.com/science/article/pii/S0300483X02001968.10.1016/S0300-483X(02)00196-8Suche in Google Scholar

[23] Di Scala K, Vega-Gálvez A, Uribe E, Oyanadel R, Miranda M, Vergara J, et al. Changes of quality characteristics of pepino fruit (Solanum muricatum Ait) during convective drying. Int J Food Sci Technol [Internet]. 2011;46:746–53. DOI: 10.1111/j.1365-2621.2011.02555.x.Suche in Google Scholar

[24] Heras-Ramírez ME, Quintero-Ramos A, Camacho-Dávila AA, Barnard J, Talamás-Abbud R, Torres-Muñoz JV, et al. Effect of blanching and drying temperature on polyphenolic compound stability and antioxidant capacity of apple pomace. Food Bioprocess Technol [Internet]. 2012;5:2201–10. Available from: http://link.springer.com/article/10.1007/s11947-011-0583-x.10.1007/s11947-011-0583-xSuche in Google Scholar

[25] Müller H. Determination of the carotenoid content in selected vegetables and fruit by HPLC and photodiode array detection. Zeitschrift für Leb und -forsch A [Internet]. 1997;204:88–94. Available from: http://link.springer.com/10.1007/s002170050042.10.1007/s002170050042Suche in Google Scholar

[26] Teow CC, Troung V, McFeeters RF, Thompson RL, Pecota KV, Yencho GC. Antioxidant activities, phenolic and beta-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem [Internet]. 2007;103:829–38. .10.1016/j.foodchem.2006.09.033Suche in Google Scholar

[27] Sanchez-Moreno C. Review: methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci Technol Int [Internet]. 2002;8:121–37. Available from: http://fst.sagepub.com/cgi/doi/10.1106/108201302026770.10.1177/1082013202008003770Suche in Google Scholar

[28] Rumbaoa R, Cornago D, Geronimo I. Phenolic content and antioxidant capacity of Philippine sweet potato (Ipomoea batatas) varieties. Food Chem [Internet]. 2009;113:1133–8. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0308814608010662.10.1016/j.foodchem.2008.08.088Suche in Google Scholar

[29] Benzie IF, Strain JJ. Ferric reducing (antioxidant) power as a measure of antioxidant capacity: the FRAP assay. Methods Enzym [Internet]. 1999;299:15–36. Available from: https://www.sciencedirect.com/science/article/pii/S0003269796902924.10.1016/S0076-6879(99)99005-5Suche in Google Scholar

[30] Burgos G, Amoros W, Muñoa L, Sosa P, Cayhualla E, Sanchez C, et al. Total phenolic, total anthocyanin and phenolic acid concentrations and antioxidant activity of purple-fleshed potatoes as affected by boiling. J Food Compos Anal [Internet]. 2013;30:6–12. Available from: https://www.sciencedirect.com/science/article/pii/S0889157513000021.10.1016/j.jfca.2012.12.001Suche in Google Scholar

[31] Xu Y, Chen Y, Cao Y, Xia W, Jiang Q. Application of simultaneous combination of microwave and steam cooking to improve nutritional quality of cooked purple sweet potatoes and saving time. Innov Food Sci Emerg Technol [Internet] Elsevier Ltd; 2016;36:303–10. Available from. ;:. DOI: http://dx.doi.org/10.1016/j.ifset.2016.07.014.Suche in Google Scholar

[32] Papoutsis K, Pristijono P, Golding JB, Stathopoulos CE, Bowyer MC, Scarlett CJ, et al. Effect of vacuum-drying, hot air-drying and freeze-drying on polyphenols and antioxidant capacity of lemon (Citrus limon) pomace aqueous extracts. Int J Food Sci Technol [Internet]. 2017;52:880–7. DOI: 10.1111/ijfs.13351.Suche in Google Scholar

[33] Häkkinen S, Heinonen M, Kärenlampi S, Mykkänen H, Ruuskanen J, Törrönen R. Screening of selected flavonoids and phenolic acids in 19 berries. Food Res Int [Internet]. 1999;32:345–53. Available from: http://www.sciencedirect.com/science/article/pii/S0963996999000952.10.1016/S0963-9969(99)00095-2Suche in Google Scholar

[34] Hertog MG, Hollman PC, Venema DP. Optimization of a quantitative HPLC determination of potentially anticarcinogenic flavonoids in vegetables and fruits. J Agric Food Chem [Internet]. 1992;40:1591–8. Available from: http://pubs.acs.org/doi/abs/10.1021/jf00021a023.10.1021/jf00021a023Suche in Google Scholar

[35] Liu J, Wen Y, Dong N, Lai C, Zhao G. Authentication of lotus root powder adulterated with potato starch and / or sweet potato starch using Fourier transform mid-infrared spectroscopy. Food Chem [Internet]. 2013;141:3103–9. DOI: 10.1016/j.foodchem.2013.05.155.Suche in Google Scholar

[36] Mattinen ML, Filpponen I, Järvinen R, Li B, Kallio H, Lektinen P. Structure of the polyphenolic component of suberin isolated from potato (Solanum tuberosum war. Nikola). J Agric Food Chem [Internet]. 2009;57:9747–53.Available from http://pubs.acs.org/doi/abs/10.1021/jf9020834.10.1021/jf9020834Suche in Google Scholar

[37] Preserova J, Ranc V, Milde D, Kubistova V, Stavek J. Study of phenolic profile and antioxidant activity in selected Moravian wines during winemaking process by FT-IR spectroscopy. J Food Sci Technol [Internet]. 2015;52:6405–14. Available from: http://link.springer.com/10.1007/s13197-014-1644-8.10.1007/s13197-014-1644-8Suche in Google Scholar

[38] Masek A, Chrzescijanska E, Kosmalska A, Zaborski M. Characteristics of compounds in hops using cyclic voltammetry, UV-VIS, FTIR and GC-MS analysis. Food Chem [Internet]. 2014;156:353–61. Available from: https://www.sciencedirect.com/science/article/pii/S0308814614001708.10.1016/j.foodchem.2014.02.005Suche in Google Scholar

[39] Aguilera J, Chiralt A. Food dehydration and product structure.. Trends Food Sci Technol [Internet]. 2003;14:432–7.Technology PF-T in FS&, 2003 U Available fromhttps://www.sciencedirect.com/science/article/pii/S0924224403001225.10.1016/S0924-2244(03)00122-5Suche in Google Scholar

[40] Vega-Galvez A, et al. Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var.Granny Smith) slices. Food Chem [Internet]. 2012;132:51–9. Available from: https://www.sciencedirect.com/science/article/pii/S0308814611014622.10.1016/j.foodchem.2011.10.029Suche in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (DOI:https://doi.org/10.1515/ijfe-2018-0409).


Received: 2018-11-28
Revised: 2019-01-29
Accepted: 2019-02-23
Published Online: 2019-03-19

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijfe-2018-0409/html
Button zum nach oben scrollen