Startseite Optimization of Ultrasonic-Assisted Extraction for Pinocembrin from Flospopuli Using Response Surface Methodology
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Optimization of Ultrasonic-Assisted Extraction for Pinocembrin from Flospopuli Using Response Surface Methodology

  • Zunlai Sheng , Biying Wang , Jiahong Zhao und Wenhui Yu EMAIL logo
Veröffentlicht/Copyright: 25. März 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, the ultrasound-assisted extraction (UAE) was used for extraction of pinocembrin from Flos populi. Based on the results of the single-factor experiment, four independent parameters, including ethanol concentration (40–80 %), extraction temperature (50–70 °C), extraction time (25–45 min) and electrical acoustic intensity (40.8–81.5 W/m2) were further investigated using response surface methodology (RSM) coupled with Box-Behnken design. The experimental data were fitted to the quadratic response surface model using multiple regression analysis with high adjusted determination coefficient value (R2) of 0.9697. The highest yield (134.2 ± 1.53 mg/g) of pinocembrin was obtained under the optimal conditions (ethanol concentration of 68 %, extraction temperature of 69 °C, extraction time of 42 min and electrical acoustic intensity of 66.81 W/cm2), which agreed to the predicted value of 132.9 mg/g. Moreover, the comparison between the UAE and reflux extraction also showed the suitability of UAE for pinocembrin from Flos populi.

Funding statement: This research was supported by National Natural Science Foundation of China (Grant No. 31572559), Academic Backbone Project of Northeast Agricultural University (Grant No. 16XG16).

References

1. AbouZid S, Sleem A. Hepatoprotective and antioxidant activities of Tamarix nilotica flowers. Pharm Biol. 2011;49:392–395.10.3109/13880209.2010.518971Suche in Google Scholar PubMed

2. Custodio L, Fernandes E, Escapa AL, Lopez-Aviles S, Fajardo A, Aligue R, et al. Antioxidant activity and in vitro inhibition of tumor cell growth by leaf extracts from the carob tree (Ceratonia siliqua). Pharm Biol. 2009;47:721–728.10.1080/13880200902936891Suche in Google Scholar

3. Edwin S, Jarald EE, Deb L, Jain A, Kinger H, Dutt KR, et al. Wound healing and antioxidant activity of achyranthes aspera. Pharm Biol. 2008;46:824–828.10.1080/13880200802366645Suche in Google Scholar

4. Pal C, Bindu S, Dey S, Alam A, Goyal M, Iqbal MS, et al. Tryptamine-gallic acid hybrid prevents non-steroidal anti-inflammatory drug-induced gastropathy: Correction of mitochondrial dysfunction and inhibition of apoptosis in gastric mucosal cells. J Biol Chem. 2012;287:3495–3509.10.1074/jbc.W119.012035Suche in Google Scholar PubMed PubMed Central

5. Mohammad MK, Almasri IM, Tawaha K, Issa A, Al-Nadaf A, Hudaib M, et al. Antihyperuricemic and xanthine oxidase inhibitory activities of Hyoscyamus reticulatus. Pharm Biol. 2010;48:1376–1383.10.3109/13880209.2010.483521Suche in Google Scholar PubMed

6. Deng HY, Fang Y. Anti-inflammatory gallic acid and wedelolactone are G protein-coupled receptor-35 agonists. Pharmacology. 2012;89:211–219.10.1159/000337184Suche in Google Scholar PubMed

7. Suleiman MM, Bagla V, Naidoo V, Eloff JN. Evaluation of selected South African plant species for antioxidant, antiplatelet, and cytotoxic activity. Pharm Biol. 2010;48:643–650.10.3109/13880200903229114Suche in Google Scholar PubMed

8. Kizil G, Kizil M, Yavuz M, Emen S, Hakimoglu F. Antioxidant activities of ethanol extracts of Hypericum triquetrifolium and Hypericum scabroides. Pharm Biol. 2008;46:231–242.10.1080/13880200701739363Suche in Google Scholar

9. Zhao Y, Tang GS, Cai EB, Liu SL, Zhang LX, Wang SJ. Hypolipidaemic and antioxidant properties of ethanol extract from Flos populi. Nat Prod Res. 2014;28:1467–1470.10.1080/14786419.2014.905564Suche in Google Scholar PubMed

10. Li Y, Fabiano-Tixier AS, Tomao V, Cravotto G, Chemat F. Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent. Ultrason Sonochem. 2013;20:12–18.10.1016/j.ultsonch.2012.07.005Suche in Google Scholar PubMed

11. Chemat F, Khan MK. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason Sonochem. 2011;18:813–835.10.1016/j.ultsonch.2010.11.023Suche in Google Scholar

12. Ahmed M, Akter MS, Eun JB. Optimization conditions for anthocyanin and phenolic content extraction form purple sweet potato using response surface methodology. Int J Food Sci Nutr. 2011;62:91–96.10.3109/09637486.2010.511167Suche in Google Scholar

13. Soria AC, Villamiel M. Effect of ultrasound on the technological properties and bioactivity of food: A review. Trends Food Sci Tech. 2010;21:323–331.10.1016/j.tifs.2010.04.003Suche in Google Scholar

14. Vinatoru M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason Sonochem. 2001;8:303–313.10.1016/S1350-4177(01)00071-2Suche in Google Scholar

15. Jacotet-Navarro M, Rombaut N, Deslis S, Fabiano-Tixier AS, Pierre FX, Bily A, et al. Towards a “dry” bio-refinery without solvents or added water using microwaves and ultrasound for total valorization of fruit and vegetable by-products. Green Chem. 2016;10:3106–3115.10.1039/C5GC02542GSuche in Google Scholar

16. Jakobek L, Boc M, Barron AR. Optimization of ultrasonic-assisted extraction of phenolic compounds from apples. Food Anal Method. 2015;8:2612–2625.10.1007/s12161-015-0161-3Suche in Google Scholar

17. Cheok CY, Chin NL, Yusof YA, Talib RA, Law CL. Optimization of total phenolic content extracted from Garcinia mangostana Linn. hull using response surface methodology versus artificial neural network. Ind Crop Prod. 2012;40:247–253.10.1016/j.indcrop.2012.03.019Suche in Google Scholar

18. Raza A, Li F, Xu X, Tang J. Optimization of ultrasonic-assisted extraction of antioxidant polysaccharides from the stem of Trapa quadrispinosa using response surface methodology. Int J Biol Macromol. 2017;94:335–344.10.1016/j.ijbiomac.2016.10.033Suche in Google Scholar PubMed

19. Jiang HL, Yang JL, Shi YP. Optimization of ultrasonic cell grinder extraction of anthocyanins from blueberry using response surface methodology. Ultrason Sonochem. 2017;34:325–331.10.1016/j.ultsonch.2016.06.003Suche in Google Scholar PubMed

20. Sun Y, Liu D, Chen J, Ye X, Yu D. Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-β-carotene from citrus peels. Ultrason Sonochem. 2011;18:243–249.10.1016/j.ultsonch.2010.05.014Suche in Google Scholar PubMed

21. Sheng ZL, Wan PF, Dong CL, Li YH. Optimization of total flavonoids content extracted from Flos Populi using response surface methodology. Ind Crop Prod. 2013;43:778–786.10.1016/j.indcrop.2012.08.020Suche in Google Scholar

22. Maran JP, Priya B, Nivetha CV. Optimization of ultrasound-assisted extraction of natural pigments from Bougainvillea glabra flowers. Ind Crops Prod. 2015;63:182–189.10.1016/j.indcrop.2014.09.059Suche in Google Scholar

23. Zhu CP, Zhai XC, Li LQ, Wu XX, Li B. Response surface optimization of ultrasound-assisted polysaccharides extraction from pomegranate peel. Food Chem. 2015;177:139–146.10.1016/j.foodchem.2015.01.022Suche in Google Scholar PubMed

24. Chen BY, Kuo CH, Liu YC, Ye LY, Chen JH, Shieh CJ. Ultrasonic-assisted extraction of the botanical dietary supplement resveratrol and other constituents of Polygonum cuspidatum. J Nat Prod. 2012;75:1810–1813.10.1021/np300392nSuche in Google Scholar PubMed

25. Saraf I, Choudhary A, Sharma RJ, Dandi K, Marsh KJ, Foley WJ, et al. Extraction of pinocembrin from leaves of different species of eucalyptus and its quantitative analysis by qNMR and HPTLC. Nat Prod Commun. 2015;10:379–382.10.1177/1934578X1501000301Suche in Google Scholar

26. Bayliak MM, Burdylyuk NI, Lushchak VI. Quercetin increases stress resistance in the yeast Saccharomyces cerevisiae not only as an antioxidant. Ann Microbiol. 2016;66:569–576.10.1007/s13213-015-1136-8Suche in Google Scholar

27. Hemwimol S, Pavasant P, Shotipruk A. Ultrasound-assisted extraction of anthraquinones from roots of Morinda citrifolia. Ultrason Sonochem. 2006;13:543–548.10.1016/j.ultsonch.2005.09.009Suche in Google Scholar PubMed

28. Vázquez MB, Comini L, Martini R, Montoya SN, Bottini S, Cabrera J. Ultrasonic-assisted extraction of anthraquinones from Heterophyllaea pustulata Hook f. (Rubiaceae) using ethanol–water mixtures. Ind Crops Prod. 2015;69:278–283.10.1016/j.indcrop.2015.01.065Suche in Google Scholar

29. Liu JL, Zheng SL, Fan QJ, Yuan JC, Yang SM, Kong FL. Optimization of high-pressure ultrasonic-assisted simultaneous extraction of six major constituents from ligusticum chuanxiong rhizome using response surface methodology. Molecules. 2014;19:1887–1911.10.3390/molecules19021887Suche in Google Scholar PubMed PubMed Central

30. Sun YS, Liu ZB, Wang JH, Yang SF, Li BQ, Xu N. Aqueous ionic liquid based ultrasonic assisted extraction of four acetophenones from the Chinese medicinal plant Cynanchum bungei Decne. Ultrason Sonochem. 2013;20:180–186.10.1016/j.ultsonch.2012.07.002Suche in Google Scholar PubMed

31. Hadi B, Sanagi MM, Ibrahim WAW, Jamil S, AbdullahiMu’azu M, Aboul-Enein HY. Ultrasonic-assisted extraction of curcumin complexed with methyl-beta-cyclodextrin. Food Anal Method. 2015;86:1373–1381.10.1007/s12161-014-0016-3Suche in Google Scholar

32. Yin GA, Dang Y. Optimization of extraction technology of the Lycium barbarum polysaccharides by Box–Behnken statistical design. Carbohyd Polym. 2008;74:603–610.10.1016/j.carbpol.2008.04.025Suche in Google Scholar

33. Vongsangnak W, Gua J, Chauvatcharin S, Zhong JJ. Towards efficient extraction of notoginseng saponins from cultured cells of Panax notoginseng. Biochem Eng J. 2004;18:115–120.10.1016/S1369-703X(03)00197-9Suche in Google Scholar

34. Zhang Q, Zhou MM, Chen PL, Cao YY, Tan XL. Optimization of ultrasonic-assisted enzymatic hydrolysis for the extraction of luteolin and apigenin from celery. J Food Sci. 2011;76:C680–C685.10.1111/j.1750-3841.2011.02174.xSuche in Google Scholar PubMed

35. Hong YK, Liu WJ, Li T, She SY. Optimization of extraction of Eucommia ulmoides polysaccharides by response surface methodology. Carbohyd Polym. 2013;92:1761–1766.10.1016/j.carbpol.2012.11.015Suche in Google Scholar PubMed

36. Moorthy IG, Maran JP, Surya SM, Naganyashree S, Shivamathi CS. Response surface optimization of ultrasound assisted extraction of pectin from pomegranate peel. Int J Biol Macromol. 2015;72:1323–1328.10.1016/j.ijbiomac.2014.10.037Suche in Google Scholar PubMed

37. Sun CL, Wu ZS, Wang ZY, Zhang HC. Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts. Evid-Based Compl Alt Med. 2015;2015:59539310.1155/2015/595393Suche in Google Scholar PubMed PubMed Central

38. Boukroufa M, Boutekedjiret C, Petigny L, Rakotomanomana N, Chemat F. Bio-refinery of orange peels waste: A new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin. Ultrason Sonochem. 2015;24:72–79.10.1016/j.ultsonch.2014.11.015Suche in Google Scholar PubMed

39. Achat S, Tomao V, Madani K, Chibane M, Elmaataoui M, Dangles O, et al. Direct enrichment of olive oil in oleuropein by ultrasound-assisted maceration at laboratory and pilot plant scale. Ultrason Sonochem. 2012;4:777–786.10.1016/j.ultsonch.2011.12.006Suche in Google Scholar PubMed

Published Online: 2017-3-25

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijfe-2016-0428/html?lang=de
Button zum nach oben scrollen