Startseite Naturwissenschaften Physico-chemical Characterization of Turbidity-Causing Particles in Beet Sugar Solutions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Physico-chemical Characterization of Turbidity-Causing Particles in Beet Sugar Solutions

  • El-Sayed Abdel-Rahman EMAIL logo und Eckhard Floeter
Veröffentlicht/Copyright: 22. Januar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The occurrence of turbidity is a frequently observed phenomenon in beet sugar manufacturing, particularly in thick juice. The presence of small dispersed turbidity-causing particles can have a direct impact on the consumer’s perceivable quality of white sugar containing products. Therefore, this work aims to characterize those turbidity-causing particles and elucidate the mechanism of their formation. Samples from various European beet sugar plants were collected during different sugar production periods. The turbidity of white sugar is found to be mainly related to small calcium oxalate particles (0.45–1 µm). Their occurrence is obviously related to the presence of calcium and oxalate. However, the analysis presented documents that beyond the levels of these ions, other factors like storage time, the change of environment due to microbiological processes as well as simple processing steps have a profound effect on turbidity levels. The results confirm that also at an industrial scale calcium oxalate dihydrate precipitates from concentrated sucrose solutions despite the fact that calcium oxalate monohydrate is the most stable form. In summary our analysis of turbidity at an industrial scale marks a starting point for any further turbidity reduction approach.

Acknowledgments

The authors thank several European sugar factories for their support and the opportunity to perform some of the research on site.

References

1. Kochergin V, Tzschätzsch O. Ion exchange thin juice softening using fractal technology. Int Sugar J 2005;107:342–53.10.5274/ASSBT.2005.82Suche in Google Scholar

2. Cosmeur A, Mathlouthi M. Study of the effect of some impurities from stored thick beet juices on the quality of crystalline sugar, CITS Proceedings. Antwerp, Bartens, Berlin, 1999, 266–81.Suche in Google Scholar

3. Clarke SJ. Turbidity – raw sugar, juice and syrup quality. Publication of technical papers and proceedings, 54th annual meeting of S. I. T. La Romana, Dominican Republic, 1995;54:253–262,.Suche in Google Scholar

4. Plews RW, Mead AN, Day J. On-line Monitoring of colour and turbidity in sugar process liquors. Int Sugar J 1990;92:16–18.Suche in Google Scholar

5. Bensouissi A, Rousse C, Roge B, Douglade J, Mathlouthi M. Isolation and characterisation of scale and turbid particles in beet sugar processing and the quality of granulated sugar. Food Chem 2009;70:1570–5.10.1016/j.foodchem.2008.11.089Suche in Google Scholar

6. Bensouissi A, Roger B, Rousse C, Douglade J, Mathlouthi M. Unveiling the nature, morphology and localization of particles responsible for white sugar turbidity. Int Sugar J 2009;111:187–91.Suche in Google Scholar

7. Doherty WO. Effect of calcium and magnesium ion on calcium oxalate formation in sugar solutions. Int Eng Chem Res 2006;45:642–7.10.1021/ie0509037Suche in Google Scholar

8. ICUMSA. International Commission for Uniform Methods of Sugar Analysis. Berlin, Germany: Dr. Albert Bartens KG, 1994.Suche in Google Scholar

9. Walford SN, Walthew DC. Preliminary model for oxalate formation in evaporator scale. Proc S Afr Sug Technol 1996;70:231–5.Suche in Google Scholar

10. Carruthers A, Oldfield JFT, Shore M, Wootton AE. Studies relating to the solubility of calcium compounds in juice. Ninth Ann Tech Con Br Sug Corp 1956;9:1–51.Suche in Google Scholar

11. Carpenter FG. Separation of turbidity from color. Sugar J. Publication of technical paper and proceeding of sixty-third annual meeting of S. I. T. Vancouver, Canada, 1983, paper 685.Suche in Google Scholar

12. Carruthers A, Oldfield JF, Shore M. Constituents of standard liquor filter cake. Int Sug J 1966;68:363–6.Suche in Google Scholar

13. Rogé B, Bensouissi A, Mathlouthi M. Effect of calcium on white sugar turbidity. Zuckerindustrie 2007;132:170–4.Suche in Google Scholar

14. Doherty WO, Wright PG. A solubility model for calcium oxalate formation in a sugar mill. Proc Aust Soc Sugar Cane Technol 2004;26.Suche in Google Scholar

15. Hibbert D, Phillipson RT. The determination of extraneous, water-insoluble matter in white sugar using membrane filters. Int Sugar J 1966;68:39–44.Suche in Google Scholar

16. Grases F, Millan A, Conte A. Production of calcium oxalate monohydrate, dihydrate or trihydrate, a comparative study. Urol Res 1990;18:17–20.10.1007/BF00294575Suche in Google Scholar PubMed

17. Wagner G. Entwicklung eines automatisierten Bildanalyseverfahrens zur Beurteilung der Kristallqualität in Saccarosekristallsuspensionen. Berlin, Germany: Techn. Univ, 2003.Suche in Google Scholar

18. Kuntsche J, Bunjes H, Fahr A, Pappinen S, Ronkk S, Suhonen M, et al. Interaction of lipid nanoparticles with human epidermis and an organotypic cell culture model. Int J Pharm 2008;354:180–95.10.1016/j.ijpharm.2007.08.028Suche in Google Scholar PubMed

19. Reinefeld E, Shneider F. Analytische Betriebskontrolle der Zuckerindustrie. Gesamthaerte (Sume von Calcium und Magnesium). Berlin: Verlag Dr. Albert Bartens, 1983:21–2.Suche in Google Scholar

20. De Cort S. Sugar analysis. R0512082. Chaussée de Mons 1424, B-1070. Brussels, BELGIUM: Coca-Cola Service N. V, 2005.Suche in Google Scholar

21. CSM Technical Manual. Reverse osmosis membrane. water chemistry and pretreatment, prevention of scale formation. Republic of Korea: Woongjin Chemical Co., Ltd, 2010:23–37.Suche in Google Scholar

22. Abdel-Rahman EA, Schick R, Kurz T. Influence of dextran on sucrose crystallization. Zuckerindustrie 2007;132:453–60.Suche in Google Scholar

23. Ostwald W. Studien über die Bildung und Umwandlung fester Körper. Z Phys Chem 1897;22:289–93.10.1515/zpch-1897-2233Suche in Google Scholar

24. Abdel-Rahman E, Floeter E. Reduction of turbidity of beet sugar solutions by mechanical and chemical treatment. Int J Food Eng 2015;11:41–9.10.1515/ijfe-2014-0178Suche in Google Scholar

25. Arvaniti EC, Lioliou MG, Paraskeva CA, Payatakes AC, Østvold T, Koutsoukos PG. Calcium oxalate crystallization on concrete heterogeneities. Chem Eng Res Des 2010;88:1455–60.10.1016/j.cherd.2009.09.013Suche in Google Scholar

26. Bouropoulos N, Bouropoulos C, Klepetsanis PG, Melekos M, Barbalias G, Koutsoukos PG. A model system for the investigation of urinary stone formation. Br J Urol 1996;78:169.10.1046/j.1464-410X.1996.00602.xSuche in Google Scholar

27. Pitt K, Mitchell GP, Ray A, Heywood BR, Hounslow MJ. Micro-mechanical model of calcium oxalate monohydrate aggregation in supersaturated solutions: effect of crystal form and seed concentration. J Cryst Growth 2012;361:176–88.10.1016/j.jcrysgro.2012.09.020Suche in Google Scholar

28. Katz W. Die korrosion von verdampferrohren. Zuckerindustrie 1955;5:368–73.Suche in Google Scholar

29. East C, Fellows C, Doherty W. Aspects of the kinetics and solubility of silica and calcium oxalate composites in sugar solutions. J Food Eng 2013;117:291–8.10.1016/j.jfoodeng.2013.02.010Suche in Google Scholar

30. Zauner R, Jones A. Determination of nucleation, growth, agglomeration and disruption kinetics from experimental precipitation data: the calcium oxalate system. Chem Eng Sci 2000;55:4219–32.10.1016/S0009-2509(00)00059-2Suche in Google Scholar

31. Brecevic L, Skrtic D, Garside J. Transformation of calcium oxalate hydrates. J Cryst Growth 1986;74:399–408.10.1016/0022-0248(86)90131-4Suche in Google Scholar

32. Brecevic L, Kralj D, Garisde J. Factors influencing the distribution of hydrates in calcium oxalate precipitation. J Cryst Growth 1989;970:460–8.10.1016/0022-0248(89)90227-3Suche in Google Scholar

33. Geller DA, Ostrow JD, Moore EW, Celic L, Nancollas GH. Binding of calcium by organic anions, determined by perturbation of the equilibrium solubility of I4C calcium oxalate. Clin Chim Acta 1989;182:255–70.10.1016/0009-8981(89)90103-4Suche in Google Scholar

34. East C, Doherty WO, Fellows CM, Yu H. Formation of thermodynamically unstable calcium oxalate dihydrate in sugar solutions. Proc Aust Soc Sugar Cane Tech 2010;32:522–33.Suche in Google Scholar

35. Doherty WO, Crees OL, Senogles E. The preparation of calcium oxalate dihydrate crystals. Cryst Res Technol 1994;29:517–24.10.1002/crat.2170290412Suche in Google Scholar

36. Grohe B, Rogers KA, Goldberg HA, Hunter GK. Crystallization kinetics of calcium oxalate hydrates studied by scanning confocal interference microscopy. J Cryst Growth 2006;295:148–57.10.1016/j.jcrysgro.2006.07.029Suche in Google Scholar

37. Thongboonkerd V, Semangoen T, Chutipongtanate S. Factors determining types and morphologies of calcium oxalate crystals: molar concentrations, buffering, pH, stirring and temperature. Clin Chim Acta 2006;367:120–31.10.1016/j.cca.2005.11.033Suche in Google Scholar

38. Yu H, Sheikholeslami R, Doherty WO. Mechanisms, thermodynamics and kinetics of composite fouling of calcium oxalate and amorphous silica in sugar mill evaporators – a preliminary study. Chem Eng Sci 2002;57:1969–78.10.1016/S0009-2509(02)00077-5Suche in Google Scholar

39. Haselhuhn F, Doyle S, Kind M. Synchrotron radiation X-ray diffraction study of the particle formation of pseudo-polymorphic calcium oxalate. J Cryst Growth 2006;289:727–33.10.1016/j.jcrysgro.2005.12.115Suche in Google Scholar

Published Online: 2016-1-22
Published in Print: 2016-3-1

©2016 by De Gruyter

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijfe-2015-0129/html?lang=de
Button zum nach oben scrollen