Startseite Improvement of the Temperature Parametric (TP) Method for Fast Tracking of Maximum Power Point in Photovoltaic Modules
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Improvement of the Temperature Parametric (TP) Method for Fast Tracking of Maximum Power Point in Photovoltaic Modules

  • Lahcen El Mentaly ORCID logo EMAIL logo , Abdellah Amghar und Hassan Sahsah
Veröffentlicht/Copyright: 22. Oktober 2019

Abstract

In this work we have presented a generalization of the Temperature Parametric (TP) Method which is based on the detection of the maximum power point by the prediction of the corresponding optimal voltage. This operating voltage is determined by the continuous measurement of the ambient temperature and solar irradiation. This new approach is based on a 3D linear regression model linking these quantities and which allows to our method to realize the maximum power point tracking in real time. The simulation shows that this new technique has a better MPPT efficiency compared to Hill Climbing technique.

References

[1] Harrag A, Messalti S. Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller. Renewable and Sustainable Energy Rev. 2015;49:1247–60.10.1016/j.rser.2015.05.003Suche in Google Scholar

[2] Jiang JA, Su YL, Shieh JC, Kuo KC, Lin TS, Lin TT, et al. On application of a new hybrid maximum power point tracking (MPPT) based photovoltaic system to the closed plant factory. Appl Energy. 2014;124:309–24.10.1016/j.apenergy.2014.03.017Suche in Google Scholar

[3] El-Khozondar HJ, El-Khozondar RJ, Matter K. Parameters influence on MPP value of the photo voltaic cell. Energy Procedia. 2015;74:1142–9.10.1016/j.egypro.2015.07.756Suche in Google Scholar

[4] El mentaly L, Amghar A, Sahsah H. Comparison between HC, FOCV and TG MPPT algorithms for PV solar systems using buck converter. 2017 International Conference on IEEE, Wireless Technologies, Embedded and Intelligent Systems (WITS), 2017.10.1109/WITS.2017.7934609Suche in Google Scholar

[5] Bounechba H, Bouzid A, Snani H, Lashab A. Real time simulation of MPPT algorithms for PV energy system. Int J Electr Power Energy Syst. 2016;83:67–78.10.1016/j.ijepes.2016.03.041Suche in Google Scholar

[6] Koohi-Kamal S, Rahim NA, Mokhlis H, Tyagi VV. Photovoltaic electricity generator dynamic modeling methods for smart grid applications: a review. Renewable and Sustainable Energy Rev. 2016;57:131–72.10.1016/j.rser.2015.12.137Suche in Google Scholar

[7] Ramli MA, Twaha S, Ishaque K, Al-Turki YA. A review on maximum power point tracking for photovoltaic systems with and without shading conditions. Renewable and Sustainable Energy Rev. 2017;67:144–59.10.1016/j.rser.2016.09.013Suche in Google Scholar

[8] Ram JP, Babu TS, Rajasekar N. A comprehensive review on solar PV maximum power point tracking techniques. Renewable and Sustainable Energy Rev. 2017;67:826–47.10.1016/j.rser.2016.09.076Suche in Google Scholar

[9] Peng BR, Ho KC, Liu YH. A novel and fast MPPT method suitable for both fast changing and partially shaded conditions. IEEE Trans Ind Electron. 2018;65:3240–51.10.1109/TIE.2017.2736484Suche in Google Scholar

[10] Aslam M, Ahmad Z, Tariq A. A novel solar PV MPPT scheme utilizing the difference between panel and atmospheric temperature. Renewable Energy Focus. 2017;19–20:11–22.10.1016/j.ref.2017.03.009Suche in Google Scholar

[11] Bayod-Rújula A, Cebollero-Abián JA. A novel MPPT method for PV systems with irradiance measurement. Solar Energy. 2014;109:95–104.10.1016/j.solener.2014.08.017Suche in Google Scholar

[12] Reddy KJ, Sudhakar N, Saravanan S, Babu BC. High step-up boost converter with neural network based MPPT controller for a PEMFC power source used in vehicular applications. Int J Emerg Electr Power Syst. 2018;19:1–13.10.1515/ijeeps-2018-0015Suche in Google Scholar

[13] Hossain MK, Ali MH. Overview on maximum power point tracking (MPPT) techniques for photovoltaic power systems. Int Rev Electr Eng. 2013;8:1363–78.Suche in Google Scholar

[14] El mentaly L, Amghar A, Sahsah H. The prediction of the maximum power of PV modules associated with a static converter under different environmental conditions. Materials Today: Proceedings, Elsevier Ltd, 2019.10.1016/j.matpr.2019.07.704Suche in Google Scholar

[15] Panda KP, Anand A, Bana PR, Panda G. Novel PWM control with modified PSO-MPPT algorithm for reduced switch MLI based standalone PV system. Int J Emerg Electr Power Syst. 2018:1–17.10.1515/ijeeps-2018-0023Suche in Google Scholar

[16] Saravanan S, Ramesh Babu N. Maximum power point tracking algorithms for photovoltaic system – a review. Renewable and Sustainable Energy Rev. 2016;57:192–204.10.1016/j.rser.2015.12.105Suche in Google Scholar

[17] Telbany ME El, Youssef A, Zekry AA. Intelligent techniques for MPPT control in photovoltaic systems: a comprehensive review. International Artificial Intelligence Conference, 2015:17–22.Suche in Google Scholar

[18] Ali ANA, Saied MH, Mostafa MZ, Abdel- Moneim TM. A survey of maximum mppt techniques of pv systems. 2012 IEEE Energytech, 2012:1–17.Suche in Google Scholar

[19] Ishaque K, Salam Z. A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition. Renewable and Sustainable Energy Rev. 2013;19:475–88.10.1016/j.rser.2012.11.032Suche in Google Scholar

[20] Bendib B, Belmili H, Krim F. A survey of the most used MPPT methods: conventional and advanced algorithms applied for photovoltaic systems. Renewable and Sustainable Energy Rev. 2015;45:637–48.10.1016/j.rser.2015.02.009Suche in Google Scholar

[21] Karami N, Moubayed N, Outbib R. General review and classification of different MPPT Techniques. Renewable and Sustainable Energy Rev. 2017;68:1–18.10.1016/j.rser.2016.09.132Suche in Google Scholar

[22] Esram T, Chapman PL. Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans Energy Convers. 2007;22:439–49.10.1109/TEC.2006.874230Suche in Google Scholar

[23] Lyden S, Haque ME. Maximum power point tracking techniques for photovoltaic systems: a comprehensive review and comparative analysis. Renewable and Sustainable Energy Rev. 2015;52:1504–18.10.1016/j.rser.2015.07.172Suche in Google Scholar

[24] Reza Reisi A, Hassan Moradi M, Jamasb S. Classification and comparison of maximum power point tracking techniques for photovoltaic system: a review. Renewable and Sustainable Energy Rev. 2013;19:433–43.10.1016/j.rser.2012.11.052Suche in Google Scholar

[25] Mohapatra A, Nayak B, Das P, Mohanty KB. A review on MPPT techniques of PV system under partial shading condition. Renewable and Sustainable Energy Rev. 2017;80:854–67.10.1016/j.rser.2017.05.083Suche in Google Scholar

[26] Lyden S, Haque ME. Maximum power point tracking techniques for photovoltaic systems: a comprehensive review and comparative analysis. Renewable and Sustainable Energy Rev. 2015;52:1504–18.10.1016/j.rser.2015.07.172Suche in Google Scholar

[27] Salam Z, Ahmed J, Merugu BS. The application of soft computing methods for MPPT of PV system: a technological and status review. Appl Energy. 2013;107:135–48.10.1016/j.apenergy.2013.02.008Suche in Google Scholar

[28] El-Khozondar HJ, El-Khozondar RJ, Matter K, Suntio T. A review study of photovoltaic array maximum power tracking algorithms. Renewables: Wind, Water, and Solar 2016;3:1–8.10.1186/s40807-016-0022-8Suche in Google Scholar

[29] El mentaly L, Amghar A, Sahsah H. Comparison between seven MPPT techniques implemented in a buck converter. Recent Adv Electr Electron Eng. 2018;11:1–11.Suche in Google Scholar

[30] Park M, Yu I-K. A study on the optimal voltage for MPPT obtained by surface temperature of solar cell. 30th Annual Conference of IEEE Industrial Electronics Society, 2004 IECON 2004;3:2040–5.10.1109/IECON.2004.1432110Suche in Google Scholar

[31] Bikaneria J, Joshi AR, Joshi SP. Modeling and simulation of PV cell using one-diode model. Int J Sci Res Publ. 2013;3:4.Suche in Google Scholar

[32] Taheri H, Salam Z, Ishaque K, Syafaruddin. A novel maximum power point tracking control of photovoltaic system under partial and rapidly fluctuating shadow conditions using differential evolution. ISIEA 2010-2010 IEEE Symposium on Industrial Electronics and Applications, 2010:82–7.10.1109/ISIEA.2010.5679492Suche in Google Scholar

[33] Sarvi M, Soltani I, Avanaki IN.. A Water Cycle Algorithm Maximum Power Point Tracker for Photovoltaic Energy Conversion System Under Partial Shading. Applied mathematics in Engineering, Management and Technology Applied. 2014;2:103–16.Suche in Google Scholar

[34] The HELP of PSIM software.Suche in Google Scholar

[35] Park J, Kim H, Cho Y, Shin C. Simple modeling and simulation of photovoltaic panels using matlab / Simulink. Modeling of Photovoltaic Module 2014;73:147–55.10.14257/astl.2014.73.22Suche in Google Scholar

[36] Haque A. Maximum power point tracking (MPPT) scheme for solar photovoltaic system. Energy Technol Policy. 2014;1:115–22.10.1080/23317000.2014.979379Suche in Google Scholar

[37] Nguyen TT, Kim HW, Lee GH, Choi W. Design and implementation of the low cost and fast solar charger with the roof top PV array of the vehicle. Solar Energy. 2013;96:83–95.10.1016/j.solener.2013.07.006Suche in Google Scholar

[38] Bag A, Subudhi B, Ray PK.. Comparative analysis of sliding mode controller and hysteresis controller for active power filtering in a grid connected PV system. Int J Emerg Electr Power Syst 2018;19:1–13.10.1515/ijeeps-2017-0044Suche in Google Scholar

[39] Xiao W, Dunford WG. A modified adaptive hill climbing MPPT method for photovoltaic power systems. PESC Record - IEEE Annu Power Electron Specialists Conf. 2004;3:1957–63.Suche in Google Scholar

[40] Rezk H, Eltamaly AM. A comprehensive comparison of different MPPT techniques for photovoltaic systems. Solar Energy. 2015;112:1–11.10.1016/j.solener.2014.11.010Suche in Google Scholar

[41] Liu F, Kang Y, Yu Z, Duan S. Comparison of P&O and hill climbing MPPT methods for grid-connected PV converter. 2008 3rd IEEE Conference on Industrial Electronics and Applications, ICIEA 2008, 2008:804–7.Suche in Google Scholar

[42] Ishaque K, Salam Z, Amjad M, Mekhilef S. An improved particle swarm optimization (PSO)-based MPPT for PV with reduced steady-state oscillation. IEEE Transactions on Power Electronics, 2012;27:3627–38.10.1109/TPEL.2012.2185713Suche in Google Scholar

[43] MSX 60 Datasheet. Available at: www.solarelectricsupply.com. Accessed: 13 Jan 2018.Suche in Google Scholar

[44] FS-265 Datasheet. Available at: www.solar-bazaar.com. Accessed: 13 Jan 2018.Suche in Google Scholar

[45] E19-320 Datasheet. Available at: www.solardesigntool.com. Accessed: 13 Jan 2018.Suche in Google Scholar

[46] KD215GX Datasheet. Available at: www.solardesigntool.com. Accessed: 13 Jan 2018.Suche in Google Scholar

Received: 2018-11-13
Revised: 2019-09-23
Accepted: 2019-09-26
Published Online: 2019-10-22

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijeeps-2018-0311/html
Button zum nach oben scrollen