Startseite Asynchronous Method for Frequency Regulation by Dispersed Plug-in Electric Vehicles
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Asynchronous Method for Frequency Regulation by Dispersed Plug-in Electric Vehicles

  • Yonghong Kuang EMAIL logo , Canbing Li EMAIL logo , Bin Zhou , Yijia Cao , Hanyu Yang und Long Zeng
Veröffentlicht/Copyright: 17. April 2018

Abstract:

Plug-in electrical vehicles (PEVs) can participate in frequency regulation (FR) in electric power systems under the framework of vehicle-to-grid (V2G) technology. With a growing number of electrical vehicles (EVs), a greater number of distributed electrical vehicle (EV) chargers may change charge or discharge power simultaneously to participate in FR, resulting in over response. In this paper, considering the over-response and equality issues, an asynchronous method for dispersed PEVs participation in FR is proposed. PEVs participate in FR with the same set of parameters. Over-response can be avoided during the process of FR. Equality enables the dispersed PEVs to participate in FR with the same probability. The presented method empowers PEVs to actively participate in FR without a control centre or a communication network. Simulation results demonstrate the validity of the presented method in different operational scenarios.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51722701).

References

[1] Sorknæs P, Lund H, Andersen AN. Future power market and sustainable energy solutions – the treatment of uncertainties in the daily operation of combined heat and power plants. Appl Energy. 2015;144:129–38.10.1016/j.apenergy.2015.02.041Suche in Google Scholar

[2] Shigenobu R, Noorzad AS, Muarapaz C, Yona A, Senjyu T. Optimal operation and management for smart grid subsumed high penetration of renewable energy, electric vehicle, and battery energy storage system. Int J Emerging Electr Power Syst. 2016;17(2):173–89.10.1515/ijeeps-2016-0013Suche in Google Scholar

[3] Olivieri V, Delfanti M, Lo Schiavo L. The Italian regulatory framework for developing smart distribution grids. Int J Emerging Electr Power Syst. 2012;13:1–25.10.1515/1553-779X.2889Suche in Google Scholar

[4] Khalkhali, K., Abapour, S., Moghaddas-Tafreshi, S.M., et al. Application of data envelopment analysis theorem in plug-in hybrid electric vehicle charging station planning. IET Gener Transm Distrib. 2015;9(7):666–76.10.1049/iet-gtd.2014.0554Suche in Google Scholar

[5] Molina-García, A., Muñoz-Benavente, I., Hansen, A.D., et al. Demand-side contribution to primary frequency control with wind farm auxiliary control. IEEE Trans Power Syst. 2014;29(5):2391–99.10.1109/TPWRS.2014.2300182Suche in Google Scholar

[6] Delavari A, Kamwa I. Demand-side contribution to power system frequency regulation:-a critical review on decentralized strategies. Int J Emerging Electr Power Syst. 2017;18(3).10.1515/ijeeps-2016-0237Suche in Google Scholar

[7] Mazidi, M., Zakariazadeh, A., Jadid, S., et al. Integrated scheduling of renewable generation and demand response programs in a microgrid. Energy Convers Manage. 2014;86:453–75.10.1016/j.enconman.2014.06.078Suche in Google Scholar

[8] Li C, Cao Y, Kuang Y. Influences of electric vehicles on power system and key technologies of vehicle-to-grid simulation of vehicle-to-grid (V2G) on power system frequency control. Berlin: Springer, 2016.10.1007/978-3-662-49364-9Suche in Google Scholar

[9] Pham, T., Trinh, H., Hien, L., et al. Integration of electric vehicles for load frequency output feedback H control of smart grids. IET Gener Transm Distrib. 2016;10(13):3341–52.10.1049/iet-gtd.2016.0375Suche in Google Scholar

[10] Zhong, J., He, L., Li, C, et al. Coordinated control for large-scale EV charging facilities and energy storage devices participating in frequency regulation. Appl Energy. 2014;123:253–62.10.1016/j.apenergy.2014.02.074Suche in Google Scholar

[11] Mu, Y., Wu, J., Ekanayake, J., et al. Primary frequency response from electric vehicles in the great Britain power system. IEEE Trans Smart Grid. 2013;4(2):1142–50.10.1109/TSG.2012.2220867Suche in Google Scholar

[12] Fan, H., Jiang, L., Zhang, C.K., et al. Frequency regulation of multi-area power systems with plug-in electric vehicles considering communication delays. IET Gener Transm Distrib. 2016;10(14):3481–91.10.1049/iet-gtd.2016.0108Suche in Google Scholar

[13] Liu, H., Hu, Z., Song, Y., et al. Vehicle-to-grid control for supplementary frequency regulation considering charging demands. IEEE Trans Smart Grid. 2015;30(6):3110–18.10.1109/TPWRS.2014.2382979Suche in Google Scholar

[14] Lin J, Leung KC,, Li VOK. Optimal scheduling with vehicle-to-grid regulation service. IEEE Trans Power Syst. 2014;1(6):556–69.10.1109/JIOT.2014.2361911Suche in Google Scholar

[15] Xu S, Yan Z, Zhao X, et al. Decentralized charging of plug-in electric vehicles using lagrange relaxation method at the residential transformer level. Int J Emerging Electr Power Syst. 2016;17(3):267–76.10.1515/ijeeps-2015-0148Suche in Google Scholar

[16] Ahn CS, Li C, Peng H. Optimal decentralized charging control algorithm for electrified vehicles connected to smart grid. J Power Sources. 2011;196(23):10369–79.10.1016/j.jpowsour.2011.06.093Suche in Google Scholar

[17] Garcia-Villalobos, J., Zamora, I., SanMartín, J.I., et al. Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches. Renew Sustain Energy Rev. 2014;38:717–31.10.1016/j.rser.2014.07.040Suche in Google Scholar

[18] Gan L, Topcu U, Low SH. Optimal decentralized protocol for electric vehicle charging. IEEE Trans Power Syst. 2013;28(2):940–51.10.1109/TPWRS.2012.2210288Suche in Google Scholar

[19] Guille C, Gross G. A conceptual framework for the vehicle-to-grid (V2G) implementation. Energy Policy. 2009;37(11):4379–90.10.1016/j.enpol.2009.05.053Suche in Google Scholar

[20] Han S, Han S, Sezaki K. Development of an optimal vehicle-to grid aggregator for frequency regulation. IEEE Trans Smart Grid. 2010;1(1):65–72.10.1109/TSG.2010.2045163Suche in Google Scholar

[21] Li R, Wu Q, Oren SS. Distribution locational marginal pricing for optimal electric vehicle charging management. IEEE Trans Power Syst. 2014;29(1):203–11.10.1109/TPWRS.2013.2278952Suche in Google Scholar

[22] Liu, H., Hu, Z., Song, Y., et al. Decentralized vehicle-to-grid control for primary frequency regulation considering charging demands. IEEE Trans Power Syst. 2013;28(3):3480–90.10.1109/TPWRS.2013.2252029Suche in Google Scholar

[23] Ota, Y., Taniguchi, H., Nakajima, T., et al. Autonomous distributed V2G (Vehicle-to-Grid) satisfying scheduled charging. IEEE Trans Smart Grid. 2012;3(1):559–64.10.1109/TSG.2011.2167993Suche in Google Scholar

[24] Shafiee S, Fotuhi-Firuzabad M, Rastegar M. Investigating the impacts of plug-in hybrid electric vehicles on power distribution systems. IEEE Trans Smart Grid. 2013;4(3):1351–60.10.1109/TSG.2013.2251483Suche in Google Scholar

[25] Molina-Garciá A, Bouffard F, Kirschen DS. Decentralized demand-side contribution to primary frequency control. IEEE Trans Power Syst. 2011;26(1):411–19.10.1109/TPWRS.2010.2048223Suche in Google Scholar

[26] Xu Z, Østergaard J, Togeby M. Demand as frequency controlled reserve. IEEE Trans Power Syst. 2011;26(3):1062–71.10.1109/TPWRS.2010.2080293Suche in Google Scholar

[27] Dong J, Li W. Small-signal stability analysis of autonomous hybrid renewable energy power generation/energy storage system Part I: time-domain simulations. IEEE Trans Energy Convers. 2012;23(1):311–20.Suche in Google Scholar

[28] Manoj D, Tomonobu S. Fuzzy control of distributed PV inverters/energy storage systems/electric vehicles for frequency regulation in a large power system. IEEE Trans Smart Grid. 2013;4(1):479–88.10.1109/TSG.2012.2237044Suche in Google Scholar

[29] Masuta T, Yokoyama A. Supplementary load frequency control by use of a number of both electric vehicles and heat pump water heaters. IEEE Trans Smart Grid. 2013;3(3):1253–62.10.1109/TSG.2012.2194746Suche in Google Scholar

[30] Kodsi SKM, Cañizares CA Modeling and simulation of IEEE 14 bus system with FACTS controllers (2003 Report) [Online]. Available at:https://ece.uwaterloo.ca/~ccanizar/papers/IEEEBenchmarkTFreport.pdf.Suche in Google Scholar

[31] Iyambo PK, Tzoneva R Transient stability analysis of the IEEE 14-bus electric power system [C]//AFRICON 2007. IEEE, 2007: 1–9.10.1109/AFRCON.2007.4401510Suche in Google Scholar

[32] Qian, K., Zhou, C., Allan, M., et al. Modeling of load demand due to EV battery charging in distribution systems. IEEE Trans Power Syst. 2011;26(2):802–10.10.1109/TPWRS.2010.2057456Suche in Google Scholar

Received: 2017-8-5
Revised: 2018-2-17
Accepted: 2018-2-22
Published Online: 2018-4-17

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijeeps-2017-0158/html
Button zum nach oben scrollen