Startseite A Nonlinear Excitation Controller Design Method for Terminal Voltage Regulation and Transient Stability Enhancement
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Nonlinear Excitation Controller Design Method for Terminal Voltage Regulation and Transient Stability Enhancement

  • Chongxin Huang , Kaifeng Zhang EMAIL logo , Xianzhong Dai und Qiang Zang
Veröffentlicht/Copyright: 29. April 2014

Abstract

This paper proposes a cascade control method to design a nonlinear excitation controller to guarantee the terminal voltage regulation and the transient stability. Firstly, a nonlinear automatic voltage regulator (NAVR) in the inner loop is designed to control the terminal voltage exactly. Secondly, the generator model including the NAVR is transformed to be a reduced one. Subsequently, based on the reduced generator model, the nonlinear power system stabilizer in the external loop is designed to enhance the transient stability of the power systems. Furthermore, a coordination strategy is presented to improve the performances of the terminal voltage regulation in the steady state and the stability in the transient state. Finally, the proposed method is verified by numerous simulation results.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 60974036 and No. 51177019), the National High Technology Research and Development Program of China (863 Program, No. 2011AA05A105), the State Grid Corporation of China, Major Projects on Planning and Operation Control of Large Scale Grid (SGCC-MPLG022-2012), and the Natural Science Foundation of Jiangsu Province of China (BK2011826).

Appendix

The parameters of the generators based on 900 MVA (20 kV):

xd=1.8pu,xq=1.7pu,xl=0.2pu,xd=0.3pu,xq=0.55pu,xd=0.25pu,xq=0.25pu,Ra=0.0025pu,Td0=8.0s,Tq0=0.4s,Td0=0.03s,Tq0=0.005s,H1=6.5s,H2=6.5s,H3=6.175sH4=6.175s.

The parameters of the transformers based on 900 MVA (20/230 kV):

RT=0.0pu,xT=0.15pu,Ratio=1.0pu.

The parameters of the transmission lines based on 100 MVA:

RL=0.0001pu/km,xL=0.001pu/km,bL=0.00175pu/km.

The parameters of the loads:

P7=967MW,Q7=100MVar,P9=1,767MW,Q9=250MVar.

The initial operating point:

Pm10=0.779pu,Vt10=1.03pu,θVt10=27.0,δ10=70.2,Pm20=0.779pu,Vt20=1.01pu,θVt20=17.1δ20=59.7,Pm30=0.808pu,Vt30=1.03pu,θVt30=0.0,δ30=44.5,Pm40=0.779pu,Vt40=1.01pu,θVt40=10.2,δ40=33.8.

The parameters of the controllers:

Constants: K=50.0,k1=25.25,k2=10.0,α=10

Limitations: 0.6Vtiref1.4,5.0Efi5.0

Nomenclature

δi

rotor angle (rad).

ωi

rotor angular frequency (rad/s).

ω0

synchronous angular frequency (rad/s).

Hi

inertia time constant of generator (s).

Efi

equivalent electromotive force (EMF) in the excitation coil (pu).

Pmi0

initial mechanical power of generator (pu).

Vti

terminal voltage amplitude of the generator (pu).

Vtiref

reference value of the terminal voltage (pu).

Vtiset

set value of the terminal voltage (pu).

Vtinpss

output of the NPSS (pu).

Vqi

q axis component of the terminal voltage (pu).

Vdi

d axis component of the terminal voltage (pu).

Eqi

q axis transient EMF of the generator (pu).

Edi

d axis transient EMF of the generator (pu).

Iti

stator current amplitude of the generator (pu).

Iqi

q axis component of the stator current (pu).

Idi

d axis component of the stator current (pu).

xqi

q axis reactance (pu).

xdi

d axis reactance (pu).

xqi

q axis transient reactance (pu).

xdi

d axis transient reactance (pu).

Tq0i

q axis transient time constant (s).

Td0i

d axis transient time constant (s).

Vxi

x axis component of the voltage (pu).

Vyi

y axis component of the voltage (pu).

Ixi

x axis component of the current (pu).

Iyi

y axis component of the current (pu).

θVti

phase angle of the terminal voltage (rad).

θIti

phase angle of the stator current (rad).

References

1. FuscoG, RussoM. Nonlinear control design for excitation controller and power system stabilizer. Control Eng Pract2011;19:24351.10.1016/j.conengprac.2010.11.001Suche in Google Scholar

2. LarsenEV, SwannDA. Applying power system stabilizers part I: general concepts. IEEE Trans Power Syst1981;PAS-100:301724.10.1109/TPAS.1981.316355Suche in Google Scholar

3. LarsenEV, SwannDA. Applying power system stabilizers part II: practical considerations. IEEE Trans Power Syst1981;PAS-100:303446.10.1109/TPAS.1981.316411Suche in Google Scholar

4. GrondinR, KamwaI, SoulieresL, PotvinJ, ChampagneR. An approach to PSS design for transient stability improvement through supplementary damping of the common low-frequency. IEEE Trans Power Syst1993;8:95463.10.1109/59.260906Suche in Google Scholar

5. DudgeonGJ, LeitheadWE, DyskoA, O’ReillyJ, McDonaldJR. The effective role of AVR and PSS in power systems: frequency response analysis. IEEE Trans Power Syst2007;22:198695.10.1109/TPWRS.2007.908404Suche in Google Scholar

6. AkhrifO, OkouFA, DessaintLA, RogerG. Application of a multivariable feedback linearization scheme for rotor angle stability and voltage regulation of power systems. IEEE Trans Power Syst1999;14:6208.10.1109/59.761889Suche in Google Scholar

7. ZhuCL, ZhouRJ, WangYY. A new decentralized nonlinear voltage controller for multimachine power systems. IEEE Trans Power Syst1998;13:21116.10.1109/59.651638Suche in Google Scholar

8. KumarBK, SinghSN, SrivastavaSC. A decentralized nonlinear feedback controller with prescribed degree of stability for damping power system oscillations. Electric Power Syst Res2007;77:20411.10.1016/j.epsr.2006.02.014Suche in Google Scholar

9. Fern’andez-VargasJ, NiewierowiczT. Excitation control for multimachine power systems. Electric Power Syst Res2006;76:47684.10.1016/j.epsr.2005.09.007Suche in Google Scholar

10. Colbia-VegaA, de Leo’ n-MoralesJ, FridmanbL, Salas-PenaO, Mata-JimenezMT. Robust excitation control design using sliding-mode technique for multimachine power systems. Electric Power Syst Res2008;78:162734.10.1016/j.epsr.2008.02.011Suche in Google Scholar

11. YanR, DongZY, SahaTK, RajatM. A power system nonlinear adaptive decentralized controller design. Automatica2010;46:3306.10.1016/j.automatica.2009.10.020Suche in Google Scholar

12. DehghaniM, NikraveshSK. Decentralized nonlinear H∞ controller for large scale power systems. Int J Electrical Power Energy Syst2011;33:138998.10.1016/j.ijepes.2011.06.019Suche in Google Scholar

13. LeonAE, SolsonaJA, VallaMI. Comparison among nonlinear excitation control strategies used for damping power system oscillations. Energy Conversion Manage2012;53:5567.10.1016/j.enconman.2011.08.010Suche in Google Scholar

14. WangY, XieL, HillDJ, MiddletonRH. Robust nonlinear controller design for transient stability enhancement of power systems. In: Proceedings of IEEE 31st Conference on Decision and Control, 1992;1:111722.10.1109/CDC.1992.371542Suche in Google Scholar

15. WangY, HillDJ, MiddletonRH, GaoL. Transient stability enhancement and voltage regulation of power systems. IEEE Trans Power Syst1993;8:6207.10.1109/59.260819Suche in Google Scholar

16. GuoY, HillDJ, WangY. Global transient stability and voltage regulation for power systems. IEEE Trans Power Syst2001;16:67888.10.1109/59.962413Suche in Google Scholar

17. MachowskiJ, BialekJW, RobakS, BumbyJR. Excitation control system for use with synchronous generators. IEE Proc Generation Transm Distrib1998;145:53746.10.1049/ip-gtd:19982182Suche in Google Scholar

18. ZhangKF, DaiXZ, HuangCX, Left-inversion soft-sensor of synchronous generator. Eur Trans Electrical Power2011;21:191422. DOI:10.1002/etep.642.Suche in Google Scholar

19. LiD, JiangX, LiL, XieMQ, GuoJR. The inverse system method applied to the derivation of power system nonlinear control laws. Commun Nonlin Sci Numerical Simulation1997;2:1205.10.1016/S1007-5704(97)90052-6Suche in Google Scholar

20. ZhuHQ, ZhouY, LiTB, LiuXX. Decoupling control of 5 degrees of freedom bearingless induction motors using αth order inverse system method. Acta Automatica Sin2007;33:2738.10.1360/aas-007-0273Suche in Google Scholar

21. TripathyP, SrivastavaSC, SinghSN. A divide-by-difference-filter based algorithm for estimation of generator rotor angle utilizing synchrophasor measurements. IEEE Trans Instrum Meas2010;59:156270.10.1109/TIM.2009.2026617Suche in Google Scholar

22. KundurP. Power system stability and control. New York: McGraw-Hill, 1994.Suche in Google Scholar

Published Online: 2014-4-29
Published in Print: 2014-6-1

©2014 by Walter de Gruyter Berlin / Boston

Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijeeps-2013-0106/html
Button zum nach oben scrollen