Startseite Airlift bioreactors for bioremediation of water contaminated with hydrocarbons in agricultural regions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Airlift bioreactors for bioremediation of water contaminated with hydrocarbons in agricultural regions

  • Elber José Sandoval-Herazo ORCID logo , Israel Rodríguez-Torres ORCID logo , Guillermo Espinosa-Reyes ORCID logo und Manuel Alejandro Lizardi-Jiménez ORCID logo EMAIL logo
Veröffentlicht/Copyright: 21. Mai 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The superficial gas velocity (Ug) values of 1.0, 1.5 and 2.0 cm s−1 showed a diesel consumption of 59.70, 58.20 and 65.20 %, respectively. The productivity of the airlift bioreactors (ALBs) was 0.030, 0.026 and 0.034 g L−1 d−1, respectively. During 10 days of operation, the emulsification index (E 24 %) values for Ug 1.0, 2.0 and 2.0 cm s−1 were 15.79, 15.07 and 12.85 %, respectively. Likewise, an increase in the degradation and suspended solids was observed when increasing the Ug from 1.0 to 2.0 cm s−1 of the ALBs, whereas a decrease in emulsification index E 24 % was observed for an Ug of 2.0 cm s−1. According to the results, the Ug of 2.0 cm s−1 was the most effective for increasing the degradation of diesel and growth of the consortium among the Ug evaluated. Furthermore, the reduction of E 24 % in this Ug suggests that the consortium uses a mixed form of hydrocarbon consumption, both by direct contact and in emulsified form.


Corresponding author: Manuel Alejandro Lizardi-Jiménez, CONAHCyT-Universidad Autónoma de San Luis Potosí, Sierra Leona 550, 2da. Sección, C. P. 78210, San Luis Potosí, México, E-mail:

Acknowledgments

Thanks to CONAHCyT (México) for the doctoral scholarship, No. 856534.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Conceptualization was performed by Elber José Sandoval-Herazo and Manuel Alejandro Lizardi-Jiménez. Writing – original draft was by Elber José Sandoval-Herazo. Writing – review, and editing were performed by Elber José Sandoval-Herazo, Israel Rodríguez-Torres, Guillermo Espinosa-Reyes, and Manuel Alejandro Lizardi-Jiménez. The visualization was performed by Elber José Sandoval-Herazo and Manuel Alejandro Lizardi-Jiménez. The supervision was carried out by Manuel Alejandro Lizardi-Jiménez. All authors read and approved the final manuscript.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

[1] S. Marzooghi and D. M. Di Toro, “A critical review of polycyclic aromatic hydrocarbon phototoxicity models,” Environ. Toxicol. Chem., vol. 36, no. 5, pp. 1138–1148, 2017. https://doi.org/10.1002/etc.3722.Suche in Google Scholar PubMed

[2] B. Ambade, S. S. Sethi, A. Kumar, T. K. Sankar, and S. Kurwadkar, “Health risk assessment, composition, and distribution of polycyclic aromatic hydrocarbons (PAHs) in drinking water of Southern Jharkhand, East India,” Arch. Environ. Contam. Toxicol., vol. 80, no. 1, pp. 120–133, 2021. https://doi.org/10.1007/s00244-020-00779-y.Suche in Google Scholar PubMed

[3] A. Syafiuddin and R. Boopathy, “A review of polycyclic aromatic hydrocarbons and their substitutions in full-scale wastewater treatment plants,” Environ. Qual. Manag., vol. 31, no. 1, pp. 21–37, 2021. https://doi.org/10.1002/tqem.21694.Suche in Google Scholar

[4] J. Masih, S. Dyavarchetty, A. Nair, A. Taneja, and R. Singhvi, “Concentration and sources of fine particulate associated polycyclic aromatic hydrocarbons at two locations in the western coast of India,” Environ. Technol. Innov., vol. 13, pp. 179–188, 2019. https://doi.org/10.1016/j.eti.2018.10.012.Suche in Google Scholar PubMed PubMed Central

[5] D. E. Flores-Jiménez, et al.., “Influence of sugarcane burning on soil carbon and nitrogen release under drought and evapotranspiration conditions in a Mexican sugarcane supply zone,” Rev. Int. Contam. Ambient., vol. 32, no. 2, pp. 177–189, 2016. https://doi.org/10.20937/RICA.2016.32.02.04.Suche in Google Scholar

[6] M. del R. Pensado-Leglise, S. Luna-Vargas, and H. A. Bustamante-Ramírez, “Conservation of biocultural diversity in the Huasteca Potosina Region, Mexico,” Diversity, vol. 14, no. 10, p. 841, 2022. https://doi.org/10.3390/d14100841.Suche in Google Scholar

[7] E. González Soriano, F. Noguera, and L. Oñate Ocaña, “A biodiversity hotspot for odonates in mexico: The huasteca potosina, san luis potosí,” Odonatologica, vol. 40, no. 3, pp. 179–190, 2011.Suche in Google Scholar

[8] E. J. Sandoval-Herazo, et al., “Bioreactors for remediation of hydrocarbons in rivers and lagoons of San Luis Potosí,” Rev. Mex. Ing. Quim., vol. 19, no. s1, pp. 101–110, 2020. https://doi.org/10.24275/rmiq/Bio1470.Suche in Google Scholar

[9] R. Flores-Ramírez, et al.., “Assessment of exposure to mixture pollutants in Mexican indigenous children,” Environ. Sci. Pollut. Res., vol. 23, no. 9, pp. 8577–8588, 2016. https://doi.org/10.1007/s11356-016-6101-y.Suche in Google Scholar PubMed

[10] R. I. Martínez-Salinas, et al.., “Exposure of children to polycyclic aromatic hydrocarbons in Mexico: Assessment of multiple sources,” Int. Arch. Occup. Environ. Health, vol. 83, no. 6, pp. 617–623, 2010. https://doi.org/10.1007/s00420-009-0482-x.Suche in Google Scholar PubMed

[11] A. Palacios-Ramírez, et al., “Evaluación de la exposición a hidrocarburos aromáticos policíclicos y partículas en suspensión (PM2,5) por quema de biomasa en una zona indígena del Estado de San Luis Potosí, México,” Rev. Salud Ambient, vol. 18, no. 1, pp. 29–36, 2018. Available at: https://ojs.diffundit.com/index.php/rsa/article/view/903.Suche in Google Scholar

[12] I. N. Perez-Maldonado, A. C. Ochoa-Martinez, S. T. Orta-Garcia, T. Ruiz-Vera, and J. A. Varela-Silva, “Concentrations of environmental chemicals in urine and blood samples of children from San Luis Potosí, Mexico,” Bull. Environ. Contam. Toxicol., vol. 99, no. 2, pp. 258–263, 2017. https://doi.org/10.1007/s00128-017-2130-6.Suche in Google Scholar PubMed

[13] D. Yalaoui-Guellal, S. Fella-Temzi, S. Djafri-Dib, F. Brahmi, I. M. Banat, and K. Madani, “Biodegradation potential of crude petroleum by hydrocarbonoclastic bacteria isolated from Soummam wadi sediment and chemical-biological proprieties of their biosurfactants,” J. Pet. Sci. Eng., vol. 184, 2019, Art. no. 106554. https://doi.org/10.1016/j.petrol.2019.106554.Suche in Google Scholar

[14] N. U. García-Cruz, et al.., “Diesel uptake by an indigenous microbial consortium isolated from sediments of the Southern Gulf of Mexico: Emulsion characterisation,” Environ. Pollut., vol. 250, pp. 849–855, 2019. https://doi.org/10.1016/j.envpol.2019.04.109.Suche in Google Scholar PubMed

[15] O. Tzintzun-Camacho, M. Gutiérrez-Rojas, D. Torres-Martínez, and M. A. Lizardi-Jiménez, “Gas hold up in the cultivation of a petroleum-degrading bacterial consortium,” Environ. Eng. Manag. J., vol. 17, no. 5, pp. 1209–1216, 2018. https://doi.org/10.30638/eemj.2018.120.Suche in Google Scholar

[16] Y. Chisti and U. J. Jauregui-Haza, “Oxygen transfer and mixing in mechanically agitated airlift bioreactors,” Biochem. Eng. J., vol. 10, no. 2, pp. 143–153, 2002. https://doi.org/10.1016/S1369-703X(01)00174-7.Suche in Google Scholar

[17] M. A. Lizardi-Jiménez, R. M. Leal-Bautista, A. Ordaz, and R. Reyna-Velarde, “Airlift bioreactors for hydrocarbon water pollution remediation in a tourism development pole,” Desalin. Water Treat., vol. 54, no. 1, pp. 44–49, 2015. https://doi.org/10.1080/19443994.2013.876670.Suche in Google Scholar

[18] M. A. Salehi and N. Hakimghiasi, “Hydrodynamics and mass transfer investigation in three-phase airlift reactors for sewage and water treatment process by using activated carbon and sludge,” Adv. Environ. Technol., vol. 2, no. 4, pp. 179–184, 2016. https://doi.org/10.22104/AET.2017.454.Suche in Google Scholar

[19] O. Angeles, S. A. Medina-Moreno, A. Jiménez-González, A. Coreño-Alonso, and M. A. Lizardi-Jiménez, “Predominant mode of diesel uptake: Direct interfacial versus emulsification in multiphase bioreactor,” Chem. Eng. Sci., vol. 165, pp. 108–112, 2017. https://doi.org/10.1016/j.ces.2017.02.046.Suche in Google Scholar

[20] M. Tiwari, S. K. Sahu, and G. G. Pandit, “Distribution of PAHs in different compartment of creek ecosystem : Ecotoxicological concern and human health risk,” Environ. Toxicol. Pharmacol., vol. 50, pp. 58–66, 2017. https://doi.org/10.1016/j.etap.2017.01.008.Suche in Google Scholar PubMed

[21] M. A. Lizardi-Jiménez, G. Saucedo-Castañeda, F. Thalasso, and M. Gutiérrez-Rojas, “Simultaneous hexadecane and oxygen transfer rate on the production of an oil-degrading consortium in a three-phase airlift bioreactor,” Chem. Eng. J., vol. 187, pp. 160–165, 2012. https://doi.org/10.1016/j.cej.2012.01.114.Suche in Google Scholar

[22] O. Tzintzun-Camacho, O. Loera, H. C. Ramírez-Saad, and M. Gutiérrez-Rojas, “Comparison of mechanisms of hexadecane uptake among pure and mixed cultures derived from a bacterial consortium,” Int. Biodeterior. Biodegrad., vol. 70, pp. 1–7, 2012. https://doi.org/10.1016/j.ibiod.2012.01.009.Suche in Google Scholar

[23] I. J. Díaz-Ramírez, H. Ramírez-Saad, M. Gutiérrez-Rojas, and E. Favela-Torres, “Biodegradation of Maya crude oil fractions by bacterial strains and a defined mixed culture isolated from Cyperus laxus rhizosphere soil in a contaminated site,” Can. J. Microbiol., vol. 49, no. 12, pp. 755–761, 2003. https://doi.org/10.1139/w03-098.Suche in Google Scholar PubMed

[24] E. J. Sandoval-Herazo, V. Saucedo-Rivalcoba, B. Gutiérrez-Rivera, R. Hernández-Martínez, and M. A. Lizardi-Jiménez, “Diagnostic hydrocarbon pollution in Veracruz beaches and airlift bioreactor as suggestion of remediation,” Rev. Mex. Ing. Quim., vol. 19, no. 3, pp. 1227–1241, 2020. https://doi.org/10.24275/rmiq/Bio851.Suche in Google Scholar

[25] G. Morales-Guzmán, et al.., “Diesel degradation by emulsifying bacteria isolated from soils polluted with weathered petroleum hydrocarbons,” Appl. Soil Ecol., vol. 121, pp. 127–134, 2017. https://doi.org/10.1016/j.apsoil.2017.10.003.Suche in Google Scholar

[26] G. G. Shimamoto and M. Tubino, “Alternative methods to quantify biodiesel in standard diesel-biodiesel blends and samples adulterated with vegetable oil through UV–Visible spectroscopy,” Fuel, vol. 186, pp. 199–203, 2016. https://doi.org/10.1016/j.fuel.2016.08.076.Suche in Google Scholar

[27] Y. Liu, et al.., “Study on the changes in immobilized petroleum–degrading bacteria beads in a continuous bioreactor related to physicochemical performance, degradation ability, and microbial community,” Int. J. Environ. Res. Public Health, vol. 19, no. 18, p. 11348, 2022. https://doi.org/10.3390/ijerph191811348.Suche in Google Scholar PubMed PubMed Central

[28] M. Koutinas, et al.., “Enhanced biodegradation and valorization of drilling wastewater via simultaneous production of biosurfactants and polyhydroxyalkanoates by Pseudomonas citronellolis SJTE-3,” Bioresour. Technol., vol. 340, 2021, Art no. 125679. https://doi.org/10.1016/j.biortech.2021.125679.Suche in Google Scholar PubMed

[29] M. A. Lizardi-Jiménez and R. Hernández-Martínez, “Oxygen and hydrocarbon volumetric transfer coefficients in the production of an oil-degrading bacterial consortium: emulsifying activity and surface tension in a bioreactor,” 3 Biotech., vol. 13, no. 5, pp. 146. 2023. https://doi.org/10.1007/s13205-023-03587-y.Suche in Google Scholar PubMed PubMed Central


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ijcre-2024-0009).


Received: 2024-01-16
Accepted: 2024-05-04
Published Online: 2024-05-21

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2024-0009/pdf
Button zum nach oben scrollen