Startseite Synthesis and Optimization of Methyl Laurate Using Sulfonated Pyrrolidonium Ionic Liquid as a Catalyst
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis and Optimization of Methyl Laurate Using Sulfonated Pyrrolidonium Ionic Liquid as a Catalyst

  • Benyong Han ORCID logo , Fang Yin EMAIL logo , Shiqing Liu , Xingling Zhao , Jing Liu , Changmei Wang , Hong Yang und Wudi Zhang EMAIL logo
Veröffentlicht/Copyright: 23. November 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Methyl laurate was synthesized from lauric acid and methanol using Brønsted acid ionic liquids as catalysts, by an esterification reaction. The efficiencies of four different catalysts, 1-methylimidazolium hydrogen sulfate ([Hmim]HSO4), 2-pyrrolidonium hydrogen sulfate ([Hnhp]HSO4), 1-(3-sulfonic acid) propyl-2-pyrrolidonium hydrogen sulfate ([C3SO3Hnhp]HSO4) and H2SO4 were compared. The effect of the methanol/lauric acid molar ratio, reaction temperature, reaction time, and catalyst dosage on the lauric acid conversion was investigated by single-factor experiments. On the basis of single-factor experiments, the esterification of lauric acid and methanol was optimized using response surface methodology (RSM) based on central composite design (CCD). The results showed that the most effective catalyst was the ionic liquid [C3SO3Hnhp]HSO4. The optimal conditions were as follows: [C3SO3Hnhp]HSO4 dosage of 10 % (based on the mass of lauric acid), methanol/lauric acid molar ratio of 9:1, reaction time of 1 h and reaction temperature of 70 °C. Under these conditions, the lauric acid conversion reached 95.33 %. The catalytic activity of [C3SO3Hnhp]HSO4 still remained high after 5 cycles.

Acknowledgements

This study was supported by the National Natural Science Foundation of China (51366015), the Yunnan Provincial Sciences and Technology Platform Promotion Plan (2013DH041), the Specialized Research Fund for Doctoral Program of Universities (20135303110001), Yunnan Province Key Fund of Applied Basic Research (2014FA030), and Open Fund from Yunnan Key Laboratory of Rural Energy Engineering (2017KF03).

References

Aghabarari, B., M. Ghiaci, S. G. Amini, E. Rahimi, and M. V. Martinez-Huerta. 2014. “Esterification of Fatty Acids by New Ionic Liquids as Acid Catalysts.” Journal of the Taiwan Institute of Chemical Engineers 45 (2): 431–35.10.1016/j.jtice.2013.08.003Suche in Google Scholar

Alegría, A., and J. Cuellar. 2015. “Esterification of Oleic Acid for Biodiesel Production Catalyzed by 4-Dodecylbenzenesulfonic Acid.” Applied Catalysis B-Environmental 179: 530–41.10.1016/j.apcatb.2015.05.057Suche in Google Scholar

American Oil Chemists' Society. 2005. Official methods and recommended practices of the American Oil Chemists' Society,Urbana.Suche in Google Scholar

Boey, P. L., G. P. Maniam, and S. A. Hamid. 2011. “Performance of Calcium Oxide as a Heterogeneous Catalyst in Biodiesel Production: A Review.” Chemical Engineering Jouranl 168 (1): 15–22.10.1016/j.cej.2011.01.009Suche in Google Scholar

Cao, Z. J., X. Zhao, F. Q. He, Y. Zhou, K. Huang, A. M. Zheng, and D. J. Tao. 2018. “Highly Efficient Indirect Hydration of Olefins to Alcohols Using Superacidic Polyoxometalate-Based Ionic Hybrids Catalysts.” Industrial & Engineering Chemistry Research 57 (19): 6654–63.10.1021/acs.iecr.8b00535Suche in Google Scholar

Carmo, A. C., L. K. de Souza, C. E. Da Costa, E. Longo, J. R. Zamian, and G. N. Da Rocha Filho. 2009. “Production of Biodiesel by Esterification of Palmitic Acid over Mesoporous Aluminosilicate Al-MCM-41.” Fuel 88 (3): 461–68.10.1016/j.fuel.2008.10.007Suche in Google Scholar

Che, R., L. Huang, and X. Yu. 2015. “Enhanced Biomass Production, Lipid Yield and Sedimentation Efficiency by Iron Ion.” Bioresource Technology 192: 795–98.10.1016/j.biortech.2015.05.009Suche in Google Scholar PubMed

Chowdhury, S., R. S. Mohan, and J. L Scott. 2007. “Reactivity of Ionic Liquids.” Tetrahedron 63 (11): 2363–89.10.1016/j.tet.2006.11.001Suche in Google Scholar

Costa, A. A., P. R. Braga, J. L. de Macedo, J. A. Dias, and S. C. Dias. 2012. “Structural Effects of WO3 Incorporation on USY Zeolite and Application to Free Fatty Acids Esterification.” Microporous and Mesoporous Materials 147 (1): 142–48.10.1016/j.micromeso.2011.06.008Suche in Google Scholar

Fan, P., S. Xing, J. Wang, J. Fu, L. Yang, G. Yang, and P. Lv. 2017. “Sulfonated Imidazolium Ionic Liquid-Catalyzed Transesterification for Biodiesel Synthesis.” Fuel 188: 483–88.10.1016/j.fuel.2016.10.068Suche in Google Scholar

Fan, X., F. Chen, and X. Wang. 2010. “Ultrasound-Assisted Synthesis of Biodiesel from Crude Cottonseed Oil Using Response Surface Methodology.” Journal of Oleo Science 59 (5): 235–41.10.5650/jos.59.235Suche in Google Scholar PubMed

Fang, D., J. Yang, and C. Jiao. 2011. “Dicationic Ionic Liquids as Environmentally Benign Catalysts for Biodiesel Synthesis.” Acs Catalysis 1 (1): 42–47.10.1021/cs100026qSuche in Google Scholar

Fauzi, A. H. M., and N. A. S. Amin. 2013. “Optimization of Oleic Acid Esterification Catalyzed by Ionic Liquid for Green Biodiesel Synthesis.” Energy Conversion and Management 76: 818–27.10.1016/j.enconman.2013.08.029Suche in Google Scholar

Fauzi, A. H. M., N. A. S. Amin, and R. Mat. 2014. “Esterification of Oleic Acid to Biodiesel Using Magnetic Ionic Liquid: Multi-Objective Optimization and Kinetic Study.” Apply Energy 114: 809–18.10.1016/j.apenergy.2013.10.011Suche in Google Scholar

Han, B., W. Zhang, Y. Chen, F. Yin, S. Liu, X. Zhao, and H. Yang. 2014. “Synthesis of Methyl Laurate Catalyzed by Brønsted Acid Ionic Liquids.” Journal of Chemical and Pharmaceutical Research 6: 435–40.Suche in Google Scholar

Han, M., W. Yi, Q. Wu, Y. Liu, Y. Hong, and D. Wang. 2009. “Preparation of Biodiesel from Waste Oils Catalyzed by a Brønsted Acidic Ionic Liquid.” Bioresource Technology 100 (7): 2308–10.10.1016/j.biortech.2008.10.046Suche in Google Scholar

Han, X., K. Chen, H. Du, X. J. Tang, C. T. Hung, K. C. Lin, and S. B. Liu. 2016. “Novel Keggin-Type H4PVMo11O40-based Ionic Liquid Catalysts for N-Caprylic Acid Esterification.” Journal of the Taiwan Institute of Chemical Engineers 58: 203–09.10.1016/j.jtice.2015.07.005Suche in Google Scholar

Han, X. X., Y. F. He, C. T. Hung, L. L. Liu, S. J. Huang, and S. B. Liu. 2013. “Efficient and Reusable Polyoxometalate-Based Sulfonated Ionic Liquid Catalysts for Palmitic Acid Esterification to Biodiesel.” Chemical Engineering Science 104: 64–72.10.1016/j.ces.2013.08.059Suche in Google Scholar

He, Q., Y. Xu, Y. Teng, and D. Wang. 2008. “Biodiesel Production Catalyzed by Whole-Cell Lipase from Rhizopus Chinensis.” Chinese Journal of Catalysis 29 (1): 41–46.10.1016/S1872-2067(08)60015-7Suche in Google Scholar

Huang, B., Y. Wang, K. Zhang, Y. Fang, and B. Zhou. 2007. “Synthesis of Pyrrolidonium Acidic Ionic Liquids and Their Catalytic Activity for Esterification of Acetic Acid and Butanol.” Chinese Journal of Catalysis 28 (8): 743–48.Suche in Google Scholar

Karimi, B., and M. Vafaeezadeh. 2012. “SBA-15-functionalized Sulfonic Acid Confined Acidic Ionic Liquid: A Powerful and Water-Tolerant Catalyst for Solvent-Free Esterifications.” Chemical Communications 48 (27): 3327–29.10.1039/c2cc17702aSuche in Google Scholar

Li, Y., S. Hu, J. Cheng, and W. Lou. 2014. “Acidic Ionic Liquid-Catalyzed Esterification of Oleic Acid for Biodiesel Synthesis.” Chinese Journal of Catalysis 35 (3): 396–406.10.1016/S1872-2067(14)60005-XSuche in Google Scholar

Liu, W., P. Yin, X. Liu, S. Zhang, and R. Qu. 2015. “Biodiesel Production from the Esterification of Fatty Acid over Organophosphonic Acid.” Journal of Industrial and Engineering Chemistry 21: 893–99.10.1016/j.jiec.2014.04.029Suche in Google Scholar

Liu, Y., Y. T. Wang, T. Liu, and D. J. Tao. 2014. “Facile Synthesis of Fructone from Ethyl Acetoacetate and Ethylene Glycol Catalyzed by SO3H-functionalized Brønsted Acidic Ionic Liquids.” RSC Advances 4 (43): 22520–25.10.1039/c4ra01708kSuche in Google Scholar

Lokman, I. M., U. Rashid, Z. Zainal, R. Yunus, and Y. H. Taufiq-Yap. 2014. “Microwave-Assisted Biodiesel Production by Esterification of Palm Fatty Acid Distillate.” Journal of Oleo Science 63 (9): 849–55.10.5650/jos.ess14068Suche in Google Scholar PubMed

Lourinho, G., and P. Brito. 2015. “Advanced Biodiesel Production Technologies: Novel Developments.” Reviews in Environmental Science and Bio/Technology 14 (2): 287–316.10.1007/s11157-014-9359-xSuche in Google Scholar

Meng, L, and Z. Tian. 2011. “Synthesis of Methyllaurate over SO42-/SnO2-SiO2 as Catalyst.” Chemical Industry Times 25: 17–19.Suche in Google Scholar

Meziant, L., Y. Benchikh, and H. Louaileche. 2014. “Deployment of Response Surface Methodology to Optimize Recovery of Dark Fresh Fig (Ficus Carica L., Var. Azenjar) Total Phenolic Compounds and Antioxidant Activity.” Food Chemistry 162: 277–82.10.1016/j.foodchem.2014.04.054Suche in Google Scholar PubMed

Muhammad, N., Y. A. Elsheikh, M. I. A. Mutalib, A. A. Bazmi, R. A. Khan, H. Khan, and Z. Man. 2015. “An Overview of the Role of Ionic Liquids in Biodiesel Reactions.” Journal of Industrial and Engineering Chemistry 21: 1–10.10.1016/j.jiec.2014.01.046Suche in Google Scholar

Olkiewicz, M., N. V. Plechkova, M. J. Earle, A. Fabregat, F. Stüber, A. Fortuny, and C. Bengoa. 2016. “Biodiesel Production from Sewage Sludge Lipids Catalysed by Brønsted Acidic Ionic Liquids.” Applied Catalysis B: Environmental 181: 738–46.10.1016/j.apcatb.2015.08.039Suche in Google Scholar

Ramachandran, K., T. Suganya, N. N. Gandhi, and S. Renganathan. 2013. “Recent Developments for Biodiesel Production by Ultrasonic Assist Transesterification Using Different Heterogeneous Catalyst: A Review.” Renewable and Sustainable Energy Reviews 22: 410–18.10.1016/j.rser.2013.01.057Suche in Google Scholar

Saravanan, K., B. Tyagi, and H. C. Bajaj. 2012. “Esterification of Caprylic Acid with Alcohol over Nano-Crystalline Sulfated Zirconia.” Journal of Sol-Gel Science and Technology 62 (1): 13–17.10.1007/s10971-011-2671-9Suche in Google Scholar

Souza, B. S., D. M. Pinho, E. C. Leopoldino, P. A. Suarez, and F. Nome. 2012. “Selective Partial Biodiesel Hydrogenation Using Highly Active Supported Palladium Nanoparticles in Imidazolium-Based Ionic Liquid.” Applied Catalysis A: General 433: 109–14.10.1016/j.apcata.2012.05.006Suche in Google Scholar

Suhendra, D., E. R. Gunawan, A. D. Nurita, D. Komalasari, and T. Ardianto. 2017. “Optimization of the Enzymatic Synthesis of Biodiesel from Terminalia Cattapa L. Kernel Oil Using Response Surface Methodology.” Journal of Oleo Science 66 (3): 209–15.10.5650/jos.ess16167Suche in Google Scholar PubMed

Sun, S., and X. Li. 2016. “Functional Ionic Liquids Catalyzed the Esterification of Ricinoleic Acid with Methanol to Prepare Biodiesel: Optimization by Response Surface Methodology.” Journal of the American Oil Chemists' Society 93 (6): 757–64.10.1007/s11746-016-2826-5Suche in Google Scholar

Talebian-Kiakalaieh, A., N. A. S. Amin, A. Zarei, and I. Noshadi. 2013. “Transesterification of Waste Cooking Oil by Heteropoly Acid (HPA) Catalyst: Optimization and Kinetic Model.” Applied Energy 102: 283–92.10.1016/j.apenergy.2012.07.018Suche in Google Scholar

Tao, D. J., Y. Dong, Z. J. Cao, F. F. Chen, X. S. Chen, and K. Huang. 2016. “Tuning the Acidity of Sulfonic Functionalized Ionic Liquids for Highly Efficient and Selective Synthesis of Terpene Esters.” Journal of Industrial and Engineering Chemistry 41: 122–29.10.1016/j.jiec.2016.07.014Suche in Google Scholar

Tao, D. J., Z. M. Li, Z. Cheng, N. Hu, and X. S. Chen. 2012. “Kinetics Study of the Ketalization Reaction of Cyclohexanone with Glycol Using Brønsted Acidic Ionic Liquids as Catalysts.” Industrial & Engineering Chemistry Research 51 (50): 16263–69.10.1021/ie302089sSuche in Google Scholar

Trinh, H., S. Yusup, and Y. Uemura. 2018. “Optimization and Kinetic Study of Ultrasonic Assisted Esterification Process from Rubber Seed Oil.” Bioresource Technology 247: 51–57.10.1016/j.biortech.2017.09.075Suche in Google Scholar PubMed

Ullah, Z., M. A. Bustam, and Z. Man. 2015. “Biodiesel Production from Waste Cooking Oil by Acidic Ionic Liquid as a Catalyst.” Renewable Energy 77: 521–26.10.1016/j.renene.2014.12.040Suche in Google Scholar

Vitiello, R., C. Li, V. Russo, R. Tesser, R. Turco, and M. Di Serio. 2017. “Catalysis for Esterification Reactions: A Key Step in the Biodiesel Production from Waste Oils.” Rendiconti Lincei 28 (1): 117–23.10.1007/s12210-016-0570-2Suche in Google Scholar

Welton, T. 1999. “Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis.” Chemical Reviews 99 (8): 2071–84.10.1021/cr980032tSuche in Google Scholar PubMed

Zhang, H., F. Xu, X. Zhou, G. Zhang, and C. Wang. 2007. “A Brønsted Acidic Ionic Liquid as an Efficient and Reusable Catalyst System for Esterification.” Green Chemistry 9 (11): 1208–11.10.1039/b705480gSuche in Google Scholar

Zhang, L., M. Xian, Y. He, L. Li, J. Yang, S. Yu, and X. Xu. 2009. “A Brønsted Acidic Ionic Liquid as an Efficient and Environmentally Benign Catalyst for Biodiesel Synthesis from Free Fatty Acids and Alcohols.” Bioresource Technology 100 (19): 4368–73.10.1016/j.biortech.2009.04.012Suche in Google Scholar PubMed

Zhao, H., and G. A. Baker. 2013. “Ionic Liquids and Deep Eutectic Solvents for Biodiesel Synthesis: A Review.” Journal of Chemical Technology & Biotechnology 88 (1): 3–12.10.1002/jctb.3935Suche in Google Scholar

Zhao, Y., J. Long, F. Deng, X. Liu, Z. Li, C. Xia, and J. Peng. 2009. “Catalytic Amounts of Brønsted Acidic Ionic Liquids Promoted Esterification: Study of Acidity-Activity Relationship.” Catalysis Communications 10 (5): 732–36.10.1016/j.catcom.2008.11.030Suche in Google Scholar

Received: 2018-06-09
Revised: 2018-09-11
Accepted: 2018-10-06
Published Online: 2018-11-23

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2018-0144/pdf?lang=de
Button zum nach oben scrollen