Startseite Investigation of α-Amylase Production with Bacillus amyloliquefaciens in a Cocurrent Downflow Contacting Reactor
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of α-Amylase Production with Bacillus amyloliquefaciens in a Cocurrent Downflow Contacting Reactor

  • Ramazan Orhan EMAIL logo und Gülbeyi Dursun
Veröffentlicht/Copyright: 4. Mai 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The cocurrent downflow contacting reactor (CDCR) has a high oxygen transfer rate by providing the effective the gas-liquid contact. This property is an advantage for enzyme production. In this study, the CDCR was used for the production of α-amylase by Bacillus amyloliquefaciens for different starch concentrations in the range of 7.5–17.5 g l–1 at constant air and liquid flow rates. The values of the volumetric oxygen transfer coefficient (kLa) and specific oxygen uptake rate (qO2) were determined during enzyme production. It has been found that the starch concentration has great effect on the enzyme activity. Maximum enzyme activity (1,000 IU ml–1) was obtained in the fermentation broth containing of 15 g l–1 starch concentration at 37 °C and pH 7 for 28 h. The kLa and qO2 values were determined to be 175.83 h–1 and 47.5 mg O2 g–1cell h–1, respectively.

Funding statement: This study was supported by the Research Foundation of Fırat University under Project No. FÜBAP-1313, Turkey.

Nomenclature

IU

International Unit (IU.ml–1)

C*

equilibrium dissolved oxygen concentration (mg l–1)

CL

dissolved oxygen concentration in the liquid phase (mg l–1)

Cx

biomass concentration (g dry cell l–1)

kLa

volumetric oxygen mass transfer coefficient (h−1)

OTR

oxygen transfer rate

OUR

oxygen uptake rate

qO2

specific oxygen uptake rate (mg O2 g–1cell h–1)

References

1. Akcan, N., 2011. High Level Production of Extracellular α-Amylase from Bacillus licheniformis ATCC 12759 in Submerged Fermentation. Rom. Biotechnol. Lett. 16 (6), 6833–6840.Suche in Google Scholar

2. Chahal, D.S., 1983. Foundations of Biochemical Engineering Kinetics and Thermodynamics in Biological Systems. In Blanch, H.W, Papontsakis, E.T., Stephanopoulas, G. (Eds.), ACS Symposium Series, 207, American Chemical Society, Washington, p. 42.Suche in Google Scholar

3. Deb, P., Talukdar, S.A., Mohsina, K., Sarker, P.K., Sayem, S.A., 2013. Production and Partial Characterization of Extracellular Amylase Enzyme from Bacillus amyloliquefaciens P-001. SpringerPlus 2 (154), 1–12.10.1186/2193-1801-2-154Suche in Google Scholar

4. Deront, M., Samb, F. M., Adler, N., Péringer, P., 1998. Volumetric Oxygen Mass Transfer Coefficient in an Upflow Cocurrent Packed-Bed Bioreactor. Chem. Eng. Sci. 53 (7), 1321–1330.10.1016/S0009-2509(98)00003-7Suche in Google Scholar

5. Fujie, K., Takaine, M., Kubota, H., 1980. Flow and Oxygen Transfer in Co-current Gas-liquid Downflow. J. Chem. Eng. Jpn. 13 (3), 188–193.10.1252/jcej.13.188Suche in Google Scholar

6. Galaction, A.I., Cascaval, D., Oniscu, C., Turnea, M., 2004. Prediction of Oxygen Transfer Coefficients in Stirred Bioreactors For Bacteria, Yeasts and Fungus Broths. Biochem. Eng. J. 20, 85–94.10.1016/j.bej.2004.02.005Suche in Google Scholar

7. Gupta, R., Gigras, P., Mohapatra, H., Goswami, V.K., Chauhan, B., 2003. Microbial α-amylases: A Biotechnological Prospective. Process Biochem. 38, 1599–1616.10.1016/S0032-9592(03)00053-0Suche in Google Scholar

8. Haq, I., Ali, S., Javed, M.M., Hameed, U., Saleem, A., Adnan, F., Qadeer, M.A., 2010. Production of Alpha Amylase from A Randomly Induced Mutant Strain of Bacillus amyloliquefaciens and Its Application as a Desizer in Textile Industry. Pak. J. Bot. 42 (1) 473–484.Suche in Google Scholar

9. Nusrat, A., Rahman, S.R., 2007. Comparative Studies on the Production of Extracellular α-Amylase by Three Mesophilic Bacillus isolates. Bangladesh J. Microbiol. 24 (2), 129–132.10.3329/bjm.v24i2.1257Suche in Google Scholar

10. Ozbek, B., Gayik, S., 2001. The Studies on the Oxygen Mass Transfer Coefficient in a Bioreactor. Process Biochem. 36, 729–741.10.1016/S0032-9592(00)00272-7Suche in Google Scholar

11. Ozer, A., Dursun, G., Ozer, D., Elibol, M., 2000. Yeast Fermentation in a Cocurrent Downflow Contacting Reactor (CDCR). J. Chem. Technol. Biotechnol. 75, 1061–1065.10.1002/1097-4660(200011)75:11<1061::AID-JCTB318>3.0.CO;2-KSuche in Google Scholar

12. Pfueller, S.L., Eliot, W.H., 1969. The Extraceluler α-Amylase of Bacillus stearotermophillus. J. Biol. Chem. 244, 48–54.10.1016/S0021-9258(19)78189-7Suche in Google Scholar

13. Potumarthi, R., Subhakar, C., Jetty, A., 2007. Alkaline Protease Production by Submerged Fermentation in Stirred Tank Reactor using Bacillus licheniformis NCIM-2042: Effect of Aeration and Agitation Regimes. Biochem. Eng. J. 34 (2), 185–192.10.1016/j.bej.2006.12.003Suche in Google Scholar

14. Sarıkaya, E., 1995. Optimization of production conditions and enzyme property, growth parameters of some Bacillus strains producing of α-amylase. PhD Thesis, Ankara University, Ankara.Suche in Google Scholar

15. Sarikaya, E., Cırakoğlu, C., 1989. Investigation of α-Amylase Production from Bacillus subtilis in Different Media. Commun. Fac. Sci. Univ. Ank Series C, 7, 31–37.10.1501/Commuc_0000000114Suche in Google Scholar

16. Sidhu, G.S., Sharma, P., Chakrabart, T., 1997. Strain Improvement for the Production of a Thermostable α-Amylase. Enzyme Microb. Technol. 21, 525–530.10.1016/S0141-0229(97)00055-0Suche in Google Scholar

17. Siegel, M.H., Merchuk, J.C., 1987. Mass Transfer in a Rectangular Airlift Reactor: Effects of Geometry and Gas Circulation. Biotechnol. Bioeng. 32, 1128–1137.10.1002/bit.260320906Suche in Google Scholar

18. Singh, R.K., Mishra, S.K., Kumar, N., 2010. Optimization of α-Amylase Production on Agriculture Byproduct by Bacillus cereus MTCC 1305 using Solid State Fermentation. Res. J. Pharm. Biol. Chem. Sci. 1 (4), 867–876.Suche in Google Scholar

19. Sivaramakrishnan, S., Gangadharan, D., Nampoothiri, K.M., Soccol, C.R., Pandey, A., 2006. α-Amylases from Microbial Sources – An Overview on Recent Developments. Food Technol. Biotechnol. 44, 173–184.Suche in Google Scholar

20. Sonenshein, A.L., Hoch, J.A., Losick, R., 1993. Bacillus subtilis and other Gram-positive Bacteria: Biochemistry, Physiology and Molecular Genetics, ASM, New York.10.1128/9781555818388Suche in Google Scholar

21. Srivastava, R.A.K., Baruah, J.N., 1986. Culture Conditions for Production of Thermostable Amylase by Bacillus stearothermophilus. Appl. Environ. Microbiol. 52 (1), 179–184.10.1128/aem.52.1.179-184.1986Suche in Google Scholar

22. Tanyildizi, M.S., Özer, D., Elibol, M., 2005. Optimization of a-Amylase Production by Bacillus sp. using Response Surface Methodology. Process Biochem. 40, 2291–2296.10.1016/j.procbio.2004.06.018Suche in Google Scholar

23. Terasaka, K., Shibata, H., 2003. Oxygen Transfer in Viscous Non-Newtonian Liquids having Yield Stress in Bubble Columns. Chem. Eng. 58 (23–24), 5331–5337.10.1016/j.ces.2003.09.011Suche in Google Scholar

24. Van’t Riet, K., 1983. Mass Transfer in Fermentation. Trends in Biotechnol. 1, 113–119.10.1016/0167-7799(83)90034-3Suche in Google Scholar

25. Van’t Riet, K., Tramper, J., 1991. Basic Bioreactor Design, M. Dekker Inc., New York, p. 236.10.1201/9781482293333Suche in Google Scholar

26. Vogelaar, J.C.T., Klapwjik, A., Van Lier, J.B., Rulkens, W.H., 2000. Temperature Effects on the Oxygen Transfer rate Between 20 and 50°C. Wat. Res. 34 (3), 1037–1041.10.1016/S0043-1354(99)00217-1Suche in Google Scholar

27. Wolfgang, A., 2004. Enzyme in Industry: Production and Applications. Wiley-VCH, Weinheim, p. 5.Suche in Google Scholar

28. Xiao-Ming, Y., Zhuo-Xiong, M., Shou-Zhi, Y., Wei-Ying, M., 1988. An Improved Method for Determination of the Volumetric Oxygen Transfer Coefficient In Fermentation Processes. Biotechnol. Bioeng. 31, 1006–1009.10.1002/bit.260310913Suche in Google Scholar PubMed

29. Yildiz, E., Keskinler, B., Pekdemir, T., Akay, G., Nuhoglu, A. 2005. High Strength Wastewater Treatment in a Jet Loop Membrane Bioreactor: Kinetics and Performance Evaluation. Chem. Eng. Sci. 60 (4), 1103–1116.10.1016/j.ces.2004.09.071Suche in Google Scholar

Published Online: 2016-5-4
Published in Print: 2016-10-1

©2016 by De Gruyter

Artikel in diesem Heft

  1. Frontmatter
  2. Catalytic Activity of Bimetallic Cu-Ag/MgO-SiO2 Toward the Conversion of Ethanol to 1,3-Butadiene
  3. Heat Transfer Studies in Ejector-induced Downflow Bubble Column
  4. Experimental Study on Atomizing and Reaction Performance of Pressure Swirl Nozzles in Ethoxylation Reactor
  5. Study of the Hydrodynamics and Mass Transfer Coefficient in a 2D Mimicked FT Slurry Bubble Columns for Alternative Clean Energy and Chemical Production
  6. Simultaneous Removal of Organic and Inorganic Pollutants From Landfill Leachate Using Sea Mango Derived Activated Carbon via Microwave Induced Activation
  7. Computational Fluid Dynamics Simulations of Lean Premixed Methane-Air Flame in a Micro-Channel Reactor Using Different Chemical Kinetics
  8. Membrane Aerated Biofilm Reactors for Thermomechanical Pulping Pressate Treatment
  9. Mixing of Shear Thinning Fluids in Cylindrical Tanks: Effect of the Impeller Blade Design and Operating Conditions
  10. Influence of Support Structural Characteristics on Long-term Performance of Pd-Ag/α-Al2O3 Catalyst for Tail-end Acetylene Selective Hydrogenation
  11. Investigation of Key Factors and Their Interactions in MTO Reaction by Statistical Design of Experiments
  12. Hydrogen Production via Glycerol Reforming over Pt/SiO2 Nanocatalyst in a Spiral-Shaped Microchannel Reactor
  13. Experimental Design-Assisted Investigation of Light Olefins Production Over Ceria-Altered HZSM-5 Catalysts by Naphtha Catalytic Steam Cracking
  14. Investigation of α-Amylase Production with Bacillus amyloliquefaciens in a Cocurrent Downflow Contacting Reactor
  15. Gaseous Hydrocarbon Synfuels from Renewable Electricity via H2/CO2-Flexibility of Fixed-Bed Catalytic Reactors
  16. Natural Convective Flow Analysis For Nanofluids With Reynold,s Model of Viscosity
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2016-0005/html
Button zum nach oben scrollen