Startseite On a Rational Performance Evaluation for the Development of Inorganic Membrane Technology in Gas Separation and Membrane Reactors
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On a Rational Performance Evaluation for the Development of Inorganic Membrane Technology in Gas Separation and Membrane Reactors

  • Adolfo M. Avila EMAIL logo und Eleuterio L. Arancibia
Veröffentlicht/Copyright: 16. Februar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Inorganic membranes can be made of different materials. However, there have been only few reports on membrane evaluation to convert lab-scale membranes into a prototype for industrial applications. In order to fill this significant gap, new approaches for the development and optimization of membrane products are required. This work focuses on the different aspects related to the performance assessment of membranes used for gas separation and membrane reactors. This approach can be visualized as an algorithm consisting of three specific loops involving different aspects of the overall membrane evaluation. Several factors that have an impact on membrane performance are discussed. These factors are divided into two categories: directly affecting the measurements (setup leakage, concentration polarization, repeatability, pressure gradient) and related to the intrinsic characteristics of permeation flux across the membrane (single and mixture permeation, transport modeling, defect flux, microstructure flexibility). This evaluation protocol includes a literature review with the most recent breakthroughs in this research area.

Acknowledgements

The authors thank Prof. Eduardo Lombardo from University of Litoral, Argentina, and Prof. Steven Kuznicki from University of Alberta, Canada, for valuable discussions and generous assistance with manuscript edition. The financial support from The National Scientific and Technical Research Council – CONICET, Argentina is acknowledged.

References

1. An, W., Swenson, P., Wu, L., Waller, T., Ku, A., Kuznicki, S.M., 2011. Selective Separation of Hydrogen from C1/C2 Hydrocarbons and CO2 through Dense Natural Zeolite Membranes. J. Membr. Sci. 1–2, 414–419.10.1016/j.memsci.2010.12.025Suche in Google Scholar

2. Avila, A.M., Yu, Z., Fazli, S., Sawada, J.A., Kuznicki, S.M., 2014. Hydrogen-Selective Natural Mordenite in a Membrane Reactor for Ethane Dehydrogenation. Micropor. Mesopor. Mater. 190, 301–308.10.1016/j.micromeso.2014.02.024Suche in Google Scholar

3. Avila, A.M., Zhang, Y., Funke, H., Falconer, J.L., Noble, R.D., 2009. Concentration Polarization in SAPO-34 Membranes at High Pressures. J. Membr. Sci. 335, 32–36.10.1016/j.memsci.2009.02.028Suche in Google Scholar

4. Baker, W.B., 2010. Research Needs in the Membrane Separation Industry: Looking Back, Looking Forward. J. Membr. Sci. 362, 134–136.10.1016/j.memsci.2010.06.028Suche in Google Scholar

5. Bhattacharya, S., Hwang, S.T., 1997. Concentration Polarization, Separation Factor, and Peclet Number in Membrane Processes. J. Membr. Sci. 132, 73–90.10.1016/S0376-7388(97)00047-1Suche in Google Scholar

6. Brun, M., Lallemand, A., Quinson, J.F., Eyraud, C., 1977. A New Method for the Simultaneous Determination of the Size and the Shape of Pores: The Thermoporometry. Thermochim. Acta 21, 59–88.10.1016/0040-6031(77)85122-8Suche in Google Scholar

7. Bux, H., Liang, F., Li, Y., Cravillon, J., Wiebcke, M., Caro, J., 2009. Zeolitic Imidazolate Framework Membrane with Molecular Sieving Properties by Microwave-Assisted Solvothermal Synthesis. J. Am. Chem. Soc. 131, 16000–16001.10.1021/ja907359tSuche in Google Scholar

8. Cao, G.Z., Meijerink, J., Brinkman, H.W., Burggraaf, A.J., 1993. Permporometry Study on the Size Distribution of Active Pores in Porous Ceramic Membranes. J. Membr. Sci. 83, 221–235.10.1016/0376-7388(93)85269-3Suche in Google Scholar

9. Caro, J., 2011. Are MOF Membranes Better in Gas Separation than those Made of Zeolites?. Curr. Opin. Chem. Eng. 1, 77–83.10.1016/j.coche.2011.08.007Suche in Google Scholar

10. Caro, J., Noack, M., 2008. Zeolite Membranes—Recent Developments and Progress. Micropor. Mesopor. Mater. 115, 215–233.10.1016/j.micromeso.2008.03.008Suche in Google Scholar

11. Chiu, W.V., Park, I.S., Shqau, K., White, J.C., Schillo, M.C., Ho, W.S.W., Dutta, P.K., Verweij, H., 2011. Post-Synthesis Defect Abatement of Inorganic Membranes for Gas Separation. J. Membr. Sci. 377, 182–190.10.1016/j.memsci.2011.04.047Suche in Google Scholar

12. Driscoll, D.. 2008. NETL Test Protocol – Testing of Hydrogen Separation Membranes, DOE/NETL – 2008/1335 October 2008.Suche in Google Scholar

13. Fairen-Jimenez, D., Moggach, S.A., Wharmby, M.T., Wright, P.A., Parsons, S., Deuren, T., 2011. Opening the Gate: Framework Flexibility in ZIF-8 Explored by Experiments and Simulations. J. Am. Chem. Soc. 133, 8900–8902.10.1021/ja202154jSuche in Google Scholar PubMed

14. Fang, Y.L., Liang, Y., Bux, H., Yang, W., Caro, J., 2010. Zeolitic Imidazolate Framework ZIF-7 Based Molecular Sieve Membrane for Hydrogen Separation. J. Memb. Sci. 354, 48–54.10.1016/j.memsci.2010.02.074Suche in Google Scholar

15. Funke, H.H., Chen, M.Z., Prakash, A.N., Falconer, J.L., Noble, R.D., 2014. Separating Molecules by Size in SAPO-34 Membranes. J. Membr. Sci. 456, 185–191.10.1016/j.memsci.2014.01.032Suche in Google Scholar

16. Funke, H.H., Tokay, B., Zhou, R., Ping, E.W., Zhang, Y., Falconer, J.L., Noble, R.D., 2012. Spatially–Resolved Gas Permeation Through SAPO–34 Membranes. J. Membr. Sci. 409–410, 212–221.10.1016/j.memsci.2012.03.058Suche in Google Scholar

17. Guo, H., Zhu, G., Hewitt, I.J., Qiu, S., 2009. “Twin Copper Source” Growth of Metal − Organic Framework Membrane: Cu3(BTC)2 with High Permeability and Selectivity for Recycling H2. J. Am. Chem. Soc. 131, 1646–1647.10.1021/ja8074874Suche in Google Scholar PubMed

18. Hanebuth, M., Dittmeyer, R., Mabande, G.T.P., Schwieger, W., 2005. On the Combination of Different Transport Mechanisms for the Simulation of Steady-State Mass Transfer Through Composite Systems Using H2/SF6 Permeation Through Stainless Steel Supported Silicalite-1 Membranes as a Model System. Catalysis Today 104, 352–359.10.1016/j.cattod.2005.03.057Suche in Google Scholar

19. Hedlund, J., Korelskiy, D., Sandström, L., Lindmark, J., 2009. Permporometry Analysis of Zeolite Membranes. J. Membr. Sci. 345, 276–287.10.1016/j.memsci.2009.09.012Suche in Google Scholar

20. Hejazi, S.A.H., Avila, A.M., Kuznicki, T.M., Weizhu, A., Kuznicki, S.M., 2011. Characterization of Natural Zeolite Membranes for H2/CO2 Separations by Single Gas Permeation. Ind. Eng. Chem. Res. 50, 12717–12726.10.1021/ie200529nSuche in Google Scholar

21. Huang, A., Caro, J., 2011. Covalent Post-Functionalization of Zeolitic Imidazolate Framework ZIF-90 Membrane for Enhanced Hydrogen Selectivity. Angew. Chem. Int. Ed. 50, 4979–4982.10.1002/anie.201007861Suche in Google Scholar PubMed

22. Kanezashi, M., O’Brien-Abraham, J., Lin, Y.S., Suzuki, K., 2008. Gas Permeation Through DDR-Type Zeolite Membranes at High Temperatures. AIChE J. 54, 1478–1486.10.1002/aic.11457Suche in Google Scholar

23. Kapteijn, F., Moulijn, J.A., Krishna, R., 2000. The Generalized Maxwell-Stefan Model for Diffusion in Zeolites: Sorbate Molecules with Different Saturation Loadings. Chem. Eng. Sci. 55, 2923–2930.10.1016/S0009-2509(99)00564-3Suche in Google Scholar

24. Karimi, S., Korelskiy, D., Yu, L., Mouzon, J., Khodadadi, A.A., Mortazavi, Y., Hedlund, J., 2015. A Simple Method for Blocking Defects in Zeolite Membranes. J. Membr. Sci. 489, 270–274.10.1016/j.memsci.2015.04.038Suche in Google Scholar

25. Kosinov, J., Gascon, F., Kapteijn, E., Hensen, J.M., 2016. Recent Developments in Zeolite Membranes for Gas Separation. J. Membr. Sci. 499, 65–79.10.1016/j.memsci.2015.10.049Suche in Google Scholar

26. Krantz, W.B., Greenberg, A.R., Kujumdzic, E., Yeo, A., Hosseini, S.S., 2013. Evapoporometry: A Novel Technique for Determining the Pore Size Distribution of Membranes. J. Membr Sci. 438, 153–166.10.1016/j.memsci.2013.03.045Suche in Google Scholar

27. Krishna, R., 2009. Describing the Diffusion of Guest Molecules Inside Porous Structures. J. Phys. Chem. C. 46, 19756–19781.10.1021/jp906879dSuche in Google Scholar

28. Krishna, R., Baur, R., 2003. Modelling Issues in Zeolite Based Separation Processes. Separ. Purif. Technol. 33, 213–254.10.1016/S1383-5866(03)00008-XSuche in Google Scholar

29. Kumakiri, I., Stange, M., Peters, T.A., Klette, H., Kita, H., Bredesen, R., 2008. Membrane Characterization by a Novel Defect Detection Technique. Micropor. Mesopor. Mater. 115, 33–39.10.1016/j.micromeso.2007.12.037Suche in Google Scholar

30. Landry, M.R., 2005. Thermoporometry by Differential Scanning Calorimetry: Experimental Considerations and Applications. Thermochim. Acta 433, 27–50.10.1016/j.tca.2005.02.015Suche in Google Scholar

31. Lin, Y.S., Duke, M.C., 2013. Recent Progress in Polycrystalline Zeolite Membrane Research. Curr. Opin. Chem. Eng. 2, 209–216.10.1016/j.coche.2013.03.002Suche in Google Scholar

32. Lito, P.F., Zhou, C.F., Santiago, A.S., Rodrigues, A.E., Rocha, J., Lin, Z., Silva, C.M., 2010. Modelling Gas Permeation Through New Microporous Titanosilicate AM-3 Membranes. Chem. Eng. J. 165, 395–404.10.1016/j.cej.2010.07.036Suche in Google Scholar

33. Mi, L., Hwang, S.T., 1999. Correlation of Concentration Polarization and Hydrodynamic Parameters in Hollow Fiber Modules. J. Membr. Sci. 159, 143–165.10.1016/S0376-7388(99)00046-0Suche in Google Scholar

34. Miachon, S., Ciavarella, P., van Dyk, L., Kumakiri, I., Fiaty, K., Schuurman, Y., Dalmon, J.A., 2007. Nanocomposite MFI-Alumina Membranes via Pore-Plugging Synthesis: Specific Transport and Separation Properties. J. Membr. Sci. 298, 71–79.10.1016/j.memsci.2007.04.008Suche in Google Scholar

35. Murali, R.S., Kumar, K.P., Ismail, A.F., Sridhar, S., 2014. Nanosilica and H-mordenite Incorporated Poly(Ether-Block-Amide)-1657 Membranes for Gaseous Separations. Micropor. Mesopor. Mater. 197, 291–298.10.1016/j.micromeso.2014.07.001Suche in Google Scholar

36. Nagy, E., Nagy, R., Dudas, J., 2013. Separate Expression of Polarization Modulus and Enrichment by Mass Transport Parameters for Membrane Gas Separation. Ind. Eng. Chem. Res. 52, 10441–10449.10.1021/ie302264jSuche in Google Scholar

37. Noble, R.D., Agrawal, R., 2005. Separation Research Needs for the 21st Century. Ind. Eng. Chem. Res. 44, 2887–2892.10.1021/ie0501475Suche in Google Scholar

38. O’Brien-Abraham, J., Kanezashi, M., Lin, Y.S., 2008. Effects of Adsorption-Induced Microstructural Changes on Separation of Xylenes Isomers Through MFI-Type Zeolite Membranes. J. Membr. Sci. 320, 505–513.10.1016/j.memsci.2008.04.023Suche in Google Scholar

39. Pan, Y., Wang, B., Lai, Z., 2012. Synthesis of Ceramic Hollow Fiber Supported Zeolitic Imidazolate Framework-8 (ZIF-8) Membranes with High Hydrogen Permeability. J. Membr. Sci. 421–422, 292–298.10.1016/j.memsci.2012.07.028Suche in Google Scholar

40. Pera-Titus, M., 2014. Porous Inorganic Membranes for CO2 Capture: Present and Prospects. Chem. Rev. 114, 1413–1492.10.1021/cr400237kSuche in Google Scholar PubMed

41. Ping, E.W., Zhou, R., Funke, H.H., Falconer, J.L., Noble, R.D., 2012. Seeded-Gel Synthesis of SAPO-34 Single Channel and Monolith Membranes, for CO2/CH4 Separations. J. Membr. Sci. 415–416, 770–775.10.1016/j.memsci.2012.05.068Suche in Google Scholar

42. Rangnekar, N., Mittal, N., Elyassi, B., Caro, J., Tsapatsis, M., 2015. Zeolite Membranes – A Review and Comparison with MOFs. Chem. Soc. Rev. 44, 7128–7154.10.1039/C5CS00292CSuche in Google Scholar

43. Roy, S., Raju, R., Chuang, H.F., Cruden, B.A., Meyyappan, M., 2003. Modeling Gas Flow Through Microchannels and Nanopores. J. Appl. Phys. 93, 4870–4879.10.1063/1.1559936Suche in Google Scholar

44. Sandstrom, L., Sjoberg, E., Hedlund, J., 2011. Very High Flux MFI Membrane for CO2 Separation. J. Membr. Sci. 380, 232–240.10.1016/j.memsci.2011.07.011Suche in Google Scholar

45. Schulz, A., Steinbach, F., Caro, J., 2014. Pressed Graphite Crystals as Gas Separation Membrane for Steam Reforming of Ethanol. J. Membr. Sci. 469, 284–291.10.1016/j.memsci.2014.06.047Suche in Google Scholar

46. Sorenson, S.G., Payzant, E.A., Noble, R.D., Falconer, J.L., 2010. Influence of Crystal Expansion/Contraction on Zeolite Membrane Permeation. J. Membr. Sci. 357, 98–104.10.1016/j.memsci.2010.04.020Suche in Google Scholar

47. Tarditi, A.M., Lombardo, E.A., Avila, A.M., 2008. Xylene Permeation Transport Through Composite Ba-ZSM-5/SS Tubular Membranes: Modeling the Steady-State Permeation. Ind. Eng. Chem. Res. 7, 2377–2385.10.1021/ie071296lSuche in Google Scholar

48. Tsuru, T., Takata, Y., Kondo, H., Hirano, F., Yoshioka, T., Asaeda, M., 2003. Characterization of Sol–Gel Derived Membranes and Zeolite Membranes by Nanopermporometry. Separ. Purif. Technol. 32, 23–27.10.1016/S1383-5866(03)00036-4Suche in Google Scholar

49. Unnikrishnan, S., Jansen, H.V., Falke, F.H., Tas, N.R., Van Wolferen, H.A.G.M., De Boer, M.J., Sanders, R.G.P., Elwenspoek, M.C., 2009. Transition Flow Through an Ultra-Thin Nanosieve. Nanotechnology 20, 305304–305310.10.1088/0957-4484/20/30/305304Suche in Google Scholar PubMed

50. van den Bergh, J., Mittelmaijer-Hazeleger, M., Kapteijn, F., 2010. Modeling Permeation of CO2/CH4, N2/CH4 and CO2/Air Mixtures Across a DD3R Zeolite Membrane. J. Phys. Chem. C. 114, 9379–9389.10.1021/jp101075hSuche in Google Scholar

51. van den Bergh, J., Zhu, W., Gascon, J., Moulijn, J.A., Kapteijn, F., 2008. Separation and Permeation Characteristics of a DD3R Zeolite Membrane. J. Membr. Sci. 316, 35–45.10.1016/j.memsci.2007.12.051Suche in Google Scholar

52. van den Broeke, L.J.P., Bakker, W.J.W., Kapteijn, F., Moulijn, J.A., 1999. Binary Permeation Through a Silicalite-1 Membrane. AIChE J. 45, 976–985.10.1002/aic.690450508Suche in Google Scholar

53. Venna, S.R., Carreon, M.A., 2011. Amino-Functionalized SAPO-34 Membranes for CO2/CH4 and CO2/N2 Separation. Langmuir 27, 2888–2894.10.1021/la105037nSuche in Google Scholar

54. Verweij, H., 2012. Inorganic Membranes. Curr. Opin. Chem. Eng. 1, 156–162.10.1016/j.coche.2012.03.006Suche in Google Scholar

55. Wellington, J.M., Ku, A.Y., 2011. Opportunities for Membranes in Sustainable Energy. J. Memb. Sci. 373, 1–4.10.1016/j.memsci.2011.02.026Suche in Google Scholar

56. Xiao, J., Wei, J., 1992. Diffusion Mechanism of Hydrocarbons in Zeolites I. Theory. Chem. Eng. Sci. 47, 1123–1141.10.1016/0009-2509(92)80236-6Suche in Google Scholar

57. Yu, M., Funke, H.H., Noble, R.D., Falconer, J.L., 2011. Hydrogen Separation using Ultrathin Microporous Al2O3 Supported by SAPO-34 Membranes. J. Am. Chem. Soc. 133, 1748–1750.10.1021/ja108681nSuche in Google Scholar PubMed

58. Zhang, Y., Avila, A.M., Tokay, B., Funke, H.H., Falconer, J.L., Noble, R.D., 2010a. Blocking Defects in SAPO-34 Membranes with Cyclodextrin. J. Membr. Sci. 358, 7–12.10.1016/j.memsci.2010.04.006Suche in Google Scholar

59. Zhang, Y., Tokay, B., Funke, H.H., Falconer, J.L., Noble, R.D., 2010b. Template Removal from SAPO-34 Crystals and Membranes. J. Membr. Sci. 363, 29–35.10.1016/j.memsci.2010.06.054Suche in Google Scholar

60. Zhang, B., Wang, C., Lang, L., Cui, R., Liu, X., 2008. Selective Defect-Patching of Zeolite Membranes Using Chemical Liquid Deposition at Organic/Aqueous Interfaces. Adv. Funct. Mater. 18, 3434–3443.10.1002/adfm.200800054Suche in Google Scholar

61. Zhou, R.F., Wang, H.M., Wang, B., Chen, X.S., Li, S.G., Yu, M., 2015. Defect-Patching of Zeolite Membranes by Surface Modification Using Siloxane Polymers for CO2 Separation. Ind. Eng. Chem. Res. 54, 7516–7523.10.1021/acs.iecr.5b01034Suche in Google Scholar

Published Online: 2016-2-16
Published in Print: 2016-8-1

©2016 by De Gruyter

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. In Honour of Professor Serge Kaliaguine
  4. Research Articles
  5. Adsorptive Removal of Nitrogen and Sulfur Containing Compounds by SBA15 Supported Nickel (II) and Tungsten Phosphides and the Adsorption Mechanisms
  6. Study of Cu-Zn and Au/TiO2 Catalysts on Anodized Aluminum Monoliths for Hydrogen Generation and Purification
  7. Electrocatalytic Activity of Three Carbon Materials for the In-situ Production of Hydrogen Peroxide and Its Application to the Electro-Fenton Heterogeneous Process
  8. Graphitic Carbon Nitride-Titanium Dioxide Nanocomposite for Photocatalytic Hydrogen Production under Visible Light
  9. Simulation of the Selective Hydrogenation of C3-Cut in the Liquid Phase
  10. On a Rational Performance Evaluation for the Development of Inorganic Membrane Technology in Gas Separation and Membrane Reactors
  11. Equilibrium and Kinetics of Methane and Ethane Adsorption in Carbon Molecular Sieve
  12. Synthesis of Mesoporous Tungsten Oxide/γ-Alumina and Surfactant-Capped Tungsten Oxide Nanoparticles and Their Catalytic Activities in Oxidative Cleavage of Oleic Acid
  13. Comparative Study of Quick Lime and CaO as Catalysts of Safflower Oil Transesterification
  14. Novelty of Penicillium camembertii Lipase Supported on Glutaraldehyde Activated-SBA-15 Mesoporous Silica for Mono-Esterification of Bioglycerol in Non-Aqueous Media
  15. Kinetics of Transesterification of Safflower Oil to Obtain Biodiesel Using Heterogeneous Catalysis
  16. Whole Cell Bioconversion of (+)-valencene to (+)-nootkatone in 100 % Organic Phase using Yarrowia lipolytica 2.2ab
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2015-0219/pdf
Button zum nach oben scrollen