Startseite CFD Simulations of Copper-Ceria Based Microreactor for COPROX
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

CFD Simulations of Copper-Ceria Based Microreactor for COPROX

  • Paola Sabrina Barbato , Gianluca Landi , Luciana Lisi und Almerinda Di Benedetto EMAIL logo
Veröffentlicht/Copyright: 19. März 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A CFD model of a copper-ceria based micro-reactor for the CO preferential oxidation reaction is developed. Simulations are performed by changing the thermal conductivity of the support and the oxygen inlet concentration. It is found that the value of the wall thermal conductivity has a significant role on the temperature profiles, hot-spot and selectivity. On increasing the O2 content, the CO selectivity decreases. An increase of the oxygen content anticipates the activation of the H2 oxidation, thus competing with CO oxidation. Conversely, at low values of the O2 content, the H2 oxidation is activated only after an almost complete CO oxidation is obtained. From the results it appears that the temperature control and management in the reactor is a key for increasing the CO selectivity at high CO conversion.

Acknowledgements

This work was financially supported by Italian MIUR (FIRB2010 “Futuro in Ricerca”, project n° RBFR10S4OW).

Nomenclature

cp[kJ kg–1K–1]specific heat at constant pressure
d[μm]channel diameter
dw[μm]wall thickness
E[J mol–1]activation energy
hc[W m–2K–1]exterior convective heat transfer coefficient
h[kJ kg–1]specific enthalpy
Hi0[kJ kg–1]standard enthalpy of formation
Jz,i[kg m–2 s–1]Diffusive mass fluxes of the i-th specie
L[m]channel length
Ns[-]Number of species
p[Pa]pressure
r[μm]channel radial variable
R[J K–1 mol–1]universal gas constant
Sc[-]Schmidt number
Sco[-]CO selectivity
T[K]temperature
T[K]external temperature
u,v[m s–1]axial and radial velocity components
y[-]mole fraction
z[μm]channel axial variable

Greek letters

α, β,γ[-]apparent reaction order
λ[W m–1K–1]thermal conductivity
μ[Pa s]dynamic viscosity
ρ[kg·m–3]gas density
τ[Pa]shear stress
ωy,I[mol·h–1·g–1]reaction rate
ωh[kJ·m–3·h–1]heat surface production rate

Subscripts and superscripts

bbulk
ininlet
wwall
maxmaximum

References

1. Akbari, M. H., Vahabi, M., 2010. Two-dimensional modeling of selective CO oxidation in a hydrogen-rich stream. Int. J. Hydrogen Energy 35, 9504–9509.10.1016/j.ijhydene.2010.04.084Suche in Google Scholar

2. Arzamendi, G., Uriz, I., Dieguez, P.M., Laguna, O.H., Hernandez, W.Y., Alvarez, A., Centeno, M.A., Odriozola, J. A., Montes, M., Gandía, L.M., 2011. Selective CO removal over Au/CeFe and CeCu catalysts in microreactors studied through kinetic analysis and CFD simulations. Chem. Eng. J. 167, 588–596.10.1016/j.cej.2010.08.083Suche in Google Scholar

3. Avgouropoulos, G., Ioannides, T., Matralis, H., Batista, J., Hocevar, S., 2001. CuO–CeO2 mixed oxide catalysts for the selective oxidation of carbon monoxide in excess hydrogen. Catal. Lett. 73, 33–40.10.1023/A:1009013029842Suche in Google Scholar

4. Avgouropoulos, G., Ioannides, T., 2006. Effect of synthesis parameters on catalytic properties of CuO-CeO2. Appl. Catal. B: Environ., 67, 1–11.10.1016/j.apcatb.2006.04.005Suche in Google Scholar

5. Barbato, P.S., Di Benedetto, A., Landi, G., Lisi, L., 2015a. CuO/CeO2 based monoliths for CO preferential oxidation in H2-rich streams. Chem. Eng. J., 279, 983–993.10.1016/j.cej.2015.05.079Suche in Google Scholar

6. Barbato, P. S., Colussi, S., Di Benedetto, A., Landi, G., Lisi, L., Llorca, J., Trovarelli, A., 2015b. CO preferential oxidation under H2-rich streams on copper oxide supported on Fe promoted CeO2. Appl. Catal. A Gen. 506, 268–277.10.1016/j.apcata.2015.09.018Suche in Google Scholar

7. Bhatia, D., Harold, M., Balakotaiah, V., 2009. Kinetic and bifurcation analysis of the cooxidation of CO and H2 in catalytic monolith reactors. Chem. Eng. Sci. 64, 1544–1558.10.1016/j.ces.2008.12.012Suche in Google Scholar

8. Caputo, T., Lisi, L., Pirone, R., Russo, G., 2007. Kinetics of the Preferential Oxidation of CO over CuO/CeO2 Catalysts in H2-Rich Gases. Ind. Eng. Chem. Res. 46, 6793–6800.10.1021/ie0616951Suche in Google Scholar

9. Caputo, T., Lisi, L., Pirone, R., Russo, G. 2008. On the role of redox properties of CuO/CeO2 catalysts in the preferential oxidation of CO in H2-rich gases. Appl. Catal. A Gen. 348, 42–53.10.1016/j.apcata.2008.06.025Suche in Google Scholar

10. Cipiti, F., Recupero, V., 2009. Design of a CO preferential oxidation reactor for PEFC systems: A modelling approach. Chem. Eng. J. 146, 128–135.10.1016/j.cej.2008.09.004Suche in Google Scholar

11. Delsman, E.R., de Croon, M.H.J.M., Kramer, G.J., Cobden, P.D., Hofmann, Ch., Cominos, V., Schouten, J.C., 2004. Experiments and modelling of an integrated preferential oxidation–heat exchanger microdevice. Chem. Eng. J. 101, 123–131.10.1016/j.cej.2004.01.005Suche in Google Scholar

12. Di Benedetto, A., Cimino, S., Pirone, R., Russo, G., 2003. Temperature excursions during the transient behaviour of high temperature catalytic combustion monoliths. Catal. Today 83, 171–182.10.1016/S0920-5861(03)00227-XSuche in Google Scholar

13. Dudfield, C.D., Chen, R., Adcock, P.L., 2001. A carbon monoxide PROX reactor for PEM fuel cell automotive application. Int. J. Hydrogen Energy 26, 763–775.10.1016/S0360-3199(00)00131-2Suche in Google Scholar

14. E.G. & G. Technical Services, Inc., Fuel Cell Handbook, seventh edition, 2004, http://www.netl.doe.gov/technologies/coalpower/fuelcells/seca/pubs/FCHandbook7.pdfSuche in Google Scholar

15. Giroux, T., Hwang, S., Liu, Y., Ruettinger, W., Shore, L., 2005. Monolithic structures as alternatives to particulate catalysts for the reforming of hydrocarbons for hydrogen generation. Appl. Catal. B: Environ., 56, 95–110.10.1016/j.apcatb.2004.07.013Suche in Google Scholar

16. Giunta, P., Moreno, M., Mariño, F., Amadeo, N., Laborde, M., 2012. COPROX Fixed Bed Reactor – Temperature Control Schemes. Chem. Eng. Technol. 35, 1055–1063.10.1002/ceat.201100644Suche in Google Scholar

17. Iragashi, H.,Uchida, H., Suzuki, M., Sasaki, Y., Watambe, M., 1997. Appl. Catal. A 159, Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite. 159–169.10.1016/S0926-860X(97)00075-6Suche in Google Scholar

18. Kim, K.-Y, Han, J., Nam, S.W, Lim, T.-H, Lee, H.-I., 2008. Preferential oxidation of CO over CuO/CeO2 and Pt-Co/Al2O3 catalysts in micro-channel reactors. Catal. Today 131, 431–436.10.1016/j.cattod.2007.10.076Suche in Google Scholar

19. Kolb, G., Baier, T., Schürer, J., Tiemann, D., Ziogas, A., Specchia, S., Galletti, C., Germani, G., Schuurman, Y., 2008. A micro-structured 5 kW complete fuel processor for iso-octane as hydrogen supply system for mobile auxiliary power units: Part II–Development of water–gas shift and preferential oxidation catalysts reactors and assembly of the fuel processor. Chem. Eng. J. 138, 474–489.10.1016/j.cej.2007.06.037Suche in Google Scholar

20. Korotkikh, O., Farrauto, R., 2000. Selective catalytic oxidation of CO in H2 for fuel cell applications. Catal. Today 62, 249–254.10.1016/S0920-5861(00)00426-0Suche in Google Scholar

21. Laguna, O.H., Centeno, M.A., Arzamendi, G., Gandía, L.M., Romero-Sarria, F., Odriozola, J. A., 2010. Iron-modified ceria and Au/ceria catalysts for Total and Preferential Oxidation of CO (TOX and PROX). Catal. Today 157, 155–159.10.1016/j.cattod.2010.04.011Suche in Google Scholar

22. Lopez, I., Valdes-Solis, T., Marban, G., 2008. An attempt to rank copper-based catalysts used in the CO-PROX reaction. Int. J. Hydrogen Energy 33, 197–205.10.1016/j.ijhydene.2007.09.011Suche in Google Scholar

23. Martinez-Arias, A., Hungria, A.B., Munuera, G., Gamarra, D., 2006. Preferential oxidation of CO in rich H2 over CuO/CeO2: Details of selectivity and deactivation under the reactant stream. Appl. Catal. B: Environ. 65, 207–216.10.1016/j.apcatb.2006.02.003Suche in Google Scholar

24. Ouyang, X., Besser, R.S., 2005. Effect of reactor heat transfer limitations on CO preferential oxidation. J. Power Sources 141, 39–46.10.1016/j.jpowsour.2004.08.049Suche in Google Scholar

25 Pan, L., Wang, S., 2006. A compact integrated fuel-processing system for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 31, 447–454.10.1016/j.ijhydene.2005.05.004Suche in Google Scholar

26. Schubert, M.M., Hackenberg, S., van Veen, A., Muhler, M., Plzak, V., Behm, R.J., 2001a. CO Oxidation over Supported Gold Catalysts–“Inert” and “Active” Support Materials and Their Role for the Oxygen Supply during Reaction. J. Catal. 197, 113–122.10.1006/jcat.2000.3069Suche in Google Scholar

27. Schubert, M.M., Plzak, V., Garche, J., Behm, R.J., 2001b. Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the preferential CO oxidation in H2-rich gas. Catal. Lett. 76, 143–150.10.1023/A:1012365710979Suche in Google Scholar

28. Uriz, I., Arzamendi, G., Dieguez, P.M., Laguna, O.H., Centeno, M.A., Odriozola, J. A., Gandía, L.M. 2013. Preferential oxidation of CO over Au/CuOx–CeO2 catalyst in microstructured reactors studied through CFD simulations. Catal. Today, 216, 283–291.10.1016/j.cattod.2013.04.023Suche in Google Scholar

29. Zalc, J.M., Loffler, D.G., 2002. Fuel processing for PEM fuel cells: transport and kinetic issues of system design. J. Power Sources, 111, 58–64.10.1016/S0378-7753(02)00269-0Suche in Google Scholar

Published Online: 2016-3-19
Published in Print: 2016-12-1

©2016 by De Gruyter

Artikel in diesem Heft

  1. Frontmatter
  2. Preface to the Special Issue dedicated to the First International Energy Conference, IEC 2015
  3. Derivation of an Upscaled Model for Mass Transfer and Reaction for Non-Food Starch Conversion to Bioethanol
  4. Elucidating Kinetic, Adsorption and Partitioning Phenomena from a Single Well Tracer Method: Laboratory and Bench Scale Studies
  5. Thermodynamic Analysis of Ethanol Synthesis from Glycerol by Two-Step Reactor Sequence
  6. Modeling the Transient VOC (toluene) Oxidation in a Packed-Bed Catalytic Reactor
  7. Substrate Feeding Strategy Integrated with a Biomass Bayesian Estimator for a Biotechnological Process
  8. Comparison Tools for Parametric Identification of Kinetic Model for Ethanol Production using Evolutionary Optimization Approach
  9. Hydrodeoxygenation of Phenol Over Sulfided CoMo Catalysts Supported on a Mixed Al2O3-TiO2 Oxide
  10. Experimental and Computational Analysis of Single Phase Flow Coiled Flow Inverter Focusing on Number of Transfer Units and Effectiveness
  11. Dynamic Effectiveness Factor for Catalytic Particles with Anomalous Diffusion
  12. Experimental and Artificial Neural Network Modeling of a Upflow Anaerobic Contactor (UAC) for Biogas Production from Vinasse
  13. Novel Feedback Control to Improve Biohydrogen Production by Desulfovibrio alaskensis
  14. Influence of an Alkaline Zeolite on the Carbon Flow in Anaerobiosis of Three Strains of Saccharomyces cerevisiae
  15. CCS, A Needed Technology for the Mexican Electrical Sector: Sustainability and Local Industry Participation
  16. Olefins and Ethanol from Polyolefins: Analysis of Potential Chemical Recycling of Poly(ethylene) Mexican Case
  17. CFD Simulations of Copper-Ceria Based Microreactor for COPROX
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2015-0170/pdf
Button zum nach oben scrollen