Influence of an Alkaline Zeolite on the Carbon Flow in Anaerobiosis of Three Strains of Saccharomyces cerevisiae
-
Gabriela Hernández-Villa
, Hugo Velasco-Bedrán, Margarita González-Brambila
and Eneida Campos-Guzmán
Abstract
Nowadays ethanol is considered an alternative to liquid fossil fuels, as a product of fermentation of sugars by Saccharomyces cerevisiae and other microorganisms. It is very important in the food, pharmaceutical and chemical industries. Prior studies show that the addition of certain amount of zeolite induces an increase in the ethanol/glucose yield. In this work, the effect of zeolite on the carbon flux of S. cerevisiae in different culture conditions is reported. An explanation for the effect of the zeolite on the yeast metabolism is offered. Results show a 20 % increase in yield, thus lowering production costs and improving the use of raw materials, which would increase the possibilities of using alcohol as biofuel.
Acknowledgment
We acknowledge the Center for Genomics and Biotechnology (IPN) for providing the yeast strains tested and the Process Control Laboratory (UAM-A) for Laboratory facilities to assay process samples. Hugo Velasco-Bedrán held an exclusivity scholarship from COFAA IPN.
References
1. Alvarez, R.R., 2002. Zeolitas. Alternativa de Eficiencia y Ecología, GMTerra Itda. Ecoterra Inc., México.Search in Google Scholar
2. Atkinson, D.E., 1968. Energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7 (11), 4030–4034.10.1021/bi00851a033Search in Google Scholar
3. Berg, C., Licht, F., 2004. World Fuel Ethanol. Analysis and Outlook. http://www.meti.go.jp/report/downloadfiles/g30819b40j.pdf10.1016/B978-1-85573-457-9.50012-3Search in Google Scholar
4. Bomchil, N., Watnick, P., Kolter R., 2003. Identification and characterization of a Vibrio cholerae Gene, mbaA, involved in maintenance of biofilm architecture. Journal of Bacteriology 185 (4), 1384–1390.10.1128/JB.185.4.1384-1390.2003Search in Google Scholar
5. Castellar, M.R., Aires-Barros, M.R., Cabral, J.M., Iborra, J. L., 1998. Effect of zeolite addition on ethanol production from glucose by Saccharomyces bayanus. Journal of Chemical Technology and Biotechnology 73, 377–384.10.1002/(SICI)1097-4660(199812)73:4<377::AID-JCTB973>3.0.CO;2-ISearch in Google Scholar
6. Charoenbhakdi, S., Dokpikul, T., Burphan, T., Techo, T., Auesukaree, C., 2016. Vacuolar H-ATPase protects Saccharomyces cerevisiae cells against ethanol-induced oxidative and cell wall stresses. Applied and Environmental Microbiology 82 (10), 3121–3130.10.1128/AEM.00376-16Search in Google Scholar
7. Dechant, R., Binda, M., Lee, S.S., Pelet, S., Winderickx, J., Peter, M., 2010. Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. The EMBO Journal 29, 2515–2526.10.1038/emboj.2010.138Search in Google Scholar
8. Halma, M., Hornbækb, T., Arneborgb, N., Sefa-Dedehc, S., Jespersen, L., 2004. Lactic acid tolerance determined by measurement of intracellular pH of single cells of Candida krusei and Saccharomyces cerevisiae isolated from fermented maize dough. International Journal of Food Microbiology 94 (1), 97–103.10.1016/j.ijfoodmicro.2003.12.019Search in Google Scholar
9. Hou, J., Lages, N.F., Oldiges, M., Vemuri, G.N., 2009. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Metabolic Engineering 11, 253–261.10.1016/j.ymben.2009.05.001Search in Google Scholar
10. Inei-Shizukawa, G., 2009. Evaluación del efecto de la zeolita en el metabolismo anaerobio de diversas levaduras, ENCB-IPN, Ph D Thesis, México.Search in Google Scholar
11. Karagiannis, J., Young, P.G., 2001. Intracellular pH homeostasis during cell-cycle progression and growth state transition in Schizosaccharomyces pombe. Journal of Cell Science 114, 2929–2941.10.1242/jcs.114.16.2929Search in Google Scholar
12. Lehninger, A.L., 1981. Bioquímica. Las Bases Moleculares de la Estructura y Función Celular, Ediciones Omega, S.A., Barcelona.Search in Google Scholar
13. Martínez-Muñoz, G.A., Kane, P., 2008. Vacuolar and Plasma Membrane Proton Pumps Collaborate to Achieve Cytosolic pH Homeostasis in Yeast. The Journal of Biological Chemistry 283 (29), 20309–20319.10.1074/jbc.M710470200Search in Google Scholar
14. Moat, A.G., Foster, J.W., Spector, M.P., 2002. Microbial Physiology. Wiley-Liss, N.Y. pp. 350–365.10.1002/0471223867.ch8Search in Google Scholar
15. Mübeccer, E., Mutlu, S., Özlem, G., 1997. Improved Ethanol Production by Saccharomyces cerevisiae with EDTA, Ferrocyanide and Zeolite X Addition to sugar Beet Molasses. J. Chem. Tech. Biotechnol. 68, 147–50.10.1002/(SICI)1097-4660(199702)68:2<147::AID-JCTB606>3.0.CO;2-3Search in Google Scholar
16. Nielsen, J., Villadsen, J., Lidén, G., 2003. Bioreaction Engineering Principles. Kluwer Academic/Plenum Press, N. Y. pp. 142–144.10.1007/978-1-4615-0767-3Search in Google Scholar
17. Nissen, T., Hamman C.W., Kielland-Brandt, M.C., Nielsen, J., Villadsen, J., 2000. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis. Yeast 16, 463–474.10.1002/(SICI)1097-0061(20000330)16:5<463::AID-YEA535>3.0.CO;2-3Search in Google Scholar
18. Oliva-Hernández, A., Taillandier, P., Reséndiz-Pérez, D., Narváez-Zapata, J.A., Larralde-Corona, C.P., 2013. The effect of hexose ratios on metabolite production in Saccharomyces strains obtained from the spontaneous fermentation of mezcal. Antoine van Leeuwenh 103 (4), 833–843.10.1007/s10482-012-9865-1Search in Google Scholar
19. Orij, R., Postmus, J., Beek, A.T., Brul, S., Smits, G.J., 2009. In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology 155, 268–278.10.1099/mic.0.022038-0Search in Google Scholar
20. Pagliardini, J., Hubmann, G., Bideaux, C., Alfenore, S., Nevoigt, E., Guillouet, S.E., 2010. Quantitative evaluation of yeast’s requirement for glycerol formation in very high ethanol performance fed-batch process. Microbial Cell Factories 9, 36.10.1186/1475-2859-9-36Search in Google Scholar
21. Prabhune, A.A., Baliga, S.A., Chandwadkar, A., SivaRaman, H., 1996. Acceleration of ethanolic fermentation by zeolite. Biotechnology Techniques 10 (8), 589–594.10.1007/BF00157367Search in Google Scholar
22. Ramón, B.E., 1998. Identificación y caracterización de la zeolita natural tipo clinoptilolita. Master in Sciences Thesis, Universidad Autónoma de Nuevo León, México.Search in Google Scholar
23. Rintala, E., Wiebe, M.G., Tamminen, A., Ruohonen L., Penttilä, M., 2008. Transcription of hexose transporters of Saccharomyces cerevisiae is affected by change in oxygen provision. BMC Microbiology 8, 53.10.1186/1471-2180-8-53Search in Google Scholar
24. Roels, J. A., 1983. Energetics and Kinetics in Biotechnology. Elsevier Medical, Netherlands pp. 7–20.Search in Google Scholar
25. Roque-Malherbe, R., Delgado, R., Contreras, O., Lago, A., 1987. Behavior of Yeast Fermentation in the presence of zeolite. Biotechnology Letters 9 (9), 640–642.10.1007/BF01033202Search in Google Scholar
26. Schulze, U., 1995. The anaerobic physiology of Saccharomyces cerevisiae, Ph D Thesis, Technical University of Denmark.Search in Google Scholar
27. Sánchez, O.J., Cardona, C.A., 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology 99, 5270–5295.10.1016/j.biortech.2007.11.013Search in Google Scholar PubMed
28. Verduyn, C., Postma, E., Scheffers, A., van Dijken, J., 1990. Energetics of Saccharomyces cerevisiae in anaerobic, glucose-limited chemostat cultures. Microbiology 136 (3), 405–412.10.1099/00221287-136-3-405Search in Google Scholar PubMed
29. Villadsen, J., Nielsen, J., Lidén, G., 2011. Bioreaction Engineering Principles. Springer, NY, pp. 153–157.10.1007/978-1-4419-9688-6Search in Google Scholar
30. Voit, E., Torres, N., 2002. Pathway Analysis and Optimization in Metabolic Engineering, Cambridge University Press, Cambridge.10.1017/CBO9780511546334Search in Google Scholar
31. Wu, L., van Dam, J., Schipper, D., Penia-Kresnowati, M.T.A., Proell, A.M., Ras, C., van Winden, W.A. van Gulik, W.M., Heijnen, J.J., 2006. Short-term Metabolic Dynamics and Carbon, Electron, and ATP balances in Chemostat-grown Saccharomyces cerevisiae CEN.PK 113-7D following a Glucose Pulse. Applied and Environmental Microbiology 72 (5), 3566–3576.10.1128/AEM.72.5.3566-3577.2006Search in Google Scholar PubMed PubMed Central
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Preface to the Special Issue dedicated to the First International Energy Conference, IEC 2015
- Derivation of an Upscaled Model for Mass Transfer and Reaction for Non-Food Starch Conversion to Bioethanol
- Elucidating Kinetic, Adsorption and Partitioning Phenomena from a Single Well Tracer Method: Laboratory and Bench Scale Studies
- Thermodynamic Analysis of Ethanol Synthesis from Glycerol by Two-Step Reactor Sequence
- Modeling the Transient VOC (toluene) Oxidation in a Packed-Bed Catalytic Reactor
- Substrate Feeding Strategy Integrated with a Biomass Bayesian Estimator for a Biotechnological Process
- Comparison Tools for Parametric Identification of Kinetic Model for Ethanol Production using Evolutionary Optimization Approach
- Hydrodeoxygenation of Phenol Over Sulfided CoMo Catalysts Supported on a Mixed Al2O3-TiO2 Oxide
- Experimental and Computational Analysis of Single Phase Flow Coiled Flow Inverter Focusing on Number of Transfer Units and Effectiveness
- Dynamic Effectiveness Factor for Catalytic Particles with Anomalous Diffusion
- Experimental and Artificial Neural Network Modeling of a Upflow Anaerobic Contactor (UAC) for Biogas Production from Vinasse
- Novel Feedback Control to Improve Biohydrogen Production by Desulfovibrio alaskensis
- Influence of an Alkaline Zeolite on the Carbon Flow in Anaerobiosis of Three Strains of Saccharomyces cerevisiae
- CCS, A Needed Technology for the Mexican Electrical Sector: Sustainability and Local Industry Participation
- Olefins and Ethanol from Polyolefins: Analysis of Potential Chemical Recycling of Poly(ethylene) Mexican Case
- CFD Simulations of Copper-Ceria Based Microreactor for COPROX
Articles in the same Issue
- Frontmatter
- Preface to the Special Issue dedicated to the First International Energy Conference, IEC 2015
- Derivation of an Upscaled Model for Mass Transfer and Reaction for Non-Food Starch Conversion to Bioethanol
- Elucidating Kinetic, Adsorption and Partitioning Phenomena from a Single Well Tracer Method: Laboratory and Bench Scale Studies
- Thermodynamic Analysis of Ethanol Synthesis from Glycerol by Two-Step Reactor Sequence
- Modeling the Transient VOC (toluene) Oxidation in a Packed-Bed Catalytic Reactor
- Substrate Feeding Strategy Integrated with a Biomass Bayesian Estimator for a Biotechnological Process
- Comparison Tools for Parametric Identification of Kinetic Model for Ethanol Production using Evolutionary Optimization Approach
- Hydrodeoxygenation of Phenol Over Sulfided CoMo Catalysts Supported on a Mixed Al2O3-TiO2 Oxide
- Experimental and Computational Analysis of Single Phase Flow Coiled Flow Inverter Focusing on Number of Transfer Units and Effectiveness
- Dynamic Effectiveness Factor for Catalytic Particles with Anomalous Diffusion
- Experimental and Artificial Neural Network Modeling of a Upflow Anaerobic Contactor (UAC) for Biogas Production from Vinasse
- Novel Feedback Control to Improve Biohydrogen Production by Desulfovibrio alaskensis
- Influence of an Alkaline Zeolite on the Carbon Flow in Anaerobiosis of Three Strains of Saccharomyces cerevisiae
- CCS, A Needed Technology for the Mexican Electrical Sector: Sustainability and Local Industry Participation
- Olefins and Ethanol from Polyolefins: Analysis of Potential Chemical Recycling of Poly(ethylene) Mexican Case
- CFD Simulations of Copper-Ceria Based Microreactor for COPROX