Startseite Experimental Study and Mathematical Modeling of Propane-SCR-NOx Using Group Method of Data Handling and Artificial Neural Network
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Experimental Study and Mathematical Modeling of Propane-SCR-NOx Using Group Method of Data Handling and Artificial Neural Network

  • N. Ghasemian EMAIL logo und H. Nourmoradi
Veröffentlicht/Copyright: 16. Februar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, the catalytic behavior of protonated clinoptilolite in propane-SCR-NOx was investigated. The experiments were carried out in the temperature range of 200–500 °C as a function of zeolite mesh size 20, 35 and 70 at different weights of zeolite (0.45–1 g) and flow rates (300–600 ml/min) and consequently at various gas hourly space velocities (GHSV). Group method of data handling (GMDH) and artificial neural network (ANN) system were applied for mathematical modeling of NOx conversion to N2 in propane-SCR-NOx. The operating temperature (T), volumetric flow rate (F) and the weight of clinoptilolite zeolite (W) and the conversion of NOx to N2 (X) were considered as the inputs and output, respectively. In order to evaluate the models performance, conversions of NOx obtained from the GMDH and ANN systems were compared with those obtained from the experimental method. It is concluded that the ANN could successively estimate the conversion and the results were in a good agreement with the experimental data.

Acknowledgements

The authors express their gratitude to the Iran National Science Foundation for the complete funding of the present work under the grant Nr. 89000540.

References

1. Bogdan, S., Gosak, D., Vasic-Racki, D., 1995. Mathematical Modeling of Liquid-Liquid Equilibria in Aqueous Polymer Solution Containing Neutral Proteinase and Oxytetracycline Using Artificial Neural Network Comput. J. Chem. Eng. 19, 791–796.10.1016/0098-1354(95)87131-4Suche in Google Scholar

2. Capek, L., Dedecek, J., Wichterlova, B., 2004. Co-Beta Zeolite Highly Active in Propane –SCR-NOx in the Presence of Water Vapor: Effect of Zeolite Preparation and Al Distribution in the Framework. J. Catal. 227, 352–366.10.1016/j.jcat.2004.08.001Suche in Google Scholar

3. Feeley, J.S., Deeba, M., Farrauto, R.J., Beri, G., Haynes, A., 1995. Lean NOx Reduction with Hydrocarbons Over Ga/S-ZrOx and S-GaZr/zeolite Catalysts. Appl. Catal. B Environ. 6, 79–96.10.1016/0926-3373(95)00004-6Suche in Google Scholar

4. Ganguly, S., 2003. Prediction of VLE Data Using Radial Basis Function Network. J. Comput. Chem. Eng. 27, 1445–1454.10.1016/S0098-1354(03)00068-1Suche in Google Scholar

5. Ghanadzadeh, H., Ganji, M., Fallahi, S., 2012. Mathematical Model of Liquid–Liquid Equilibrium for a Ternary System Using the GMDH-Type Neural Network and Genetic Algorithm. Appl. Math. Model. 36, 4096–4105.10.1016/j.apm.2011.11.039Suche in Google Scholar

6. Ghasemian, N., Falamaki, C., Kalbasi, M., 2014. Clinoptilolite Zeolite as a Potential Catalyst for Propane-SCR-NOx: Performance Investigation and Kinetic Analysis. Chem. Eng. J. 236, 464–470.10.1016/j.cej.2013.10.061Suche in Google Scholar

7. Ghasemian, N., Kalbasi, M., Pazuki, G.R., 2013. Experimental Study and Mathematical Modeling of Solubility of CO2 in Water: Application of Artificial Neural Network and Genetic Algorithm. J. Disper. Sci. Technol. 34, 347–355.10.1080/01932691.2012.667293Suche in Google Scholar

8. Huang, K., Chen, F.Q., Lu, D.W., 2001. Artificial Neural Network Aided Design of a Multi-Component Catalyst for Methane Oxidative Coupling. Appl. Catal. A Gen. 219, 61–68.10.1016/S0926-860X(01)00659-7Suche in Google Scholar

9. Ivakhnenko, A.G., 1966. Group Method of Data Handling- a Rival of the Method of Stochastic Approximation. Sov. Automatic. Control. 13, 43–71.Suche in Google Scholar

10. Ivakhnenko, A.G., 1971. Polynomial Theory of Complex Systems. IEEE Trans. Syst. Man Cybern. 1, 364–378.10.1109/TSMC.1971.4308320Suche in Google Scholar

11. Izadkhah, B., Nabavi, S., Niaei, A., Salari, D., Mahmuodi Badiki, T., Caylak, N., 2012. Design and Optimization of Bi-Metallic Ag-ZSM5 Catalysts for Catalytic Oxidation of Volatile Organic Compounds. J. Ind. Eng. Chem. 18, 2083–2091.10.1016/j.jiec.2012.06.002Suche in Google Scholar

12. Ketabchi, S., Ghanadzadeh, H., Ghanadzadeh, A., Fallahi, S., Ganji, M., 2010. Estimation of VLE of Binary Systems (Tert-Butanol + 2-Ethyl-1-Hexanol) and (n-Butanol + 2- Ethyl-1- Hexanol) Using GMDH-Type Neural Network. J. Chem. Thermodyn. 42, 1352–1355.10.1016/j.jct.2010.05.018Suche in Google Scholar

13. Kiovski, J.R., Koradia, P.B., 1980. Catalytic Reduction of Oxides of Nitrogen by Ammonia in Presence of Modified Clinoptilolite, US patent, 7944641.Suche in Google Scholar

14. Levenberg, K., 1944. A Method for the Solution of Certain Problems in Least Squares. Appl. Math. 2, 164–168.10.1090/qam/10666Suche in Google Scholar

15. Li, Z., Flytzani-Stephanopoulos, M., 1997. Selective Catalytic Reduction of Nitric Oxide by Methane over Cerium and Silver Ion-Exchanged ZSM-5 Zeolites. Appl. Catal. A Gen. 165, 15–34.10.1016/S0926-860X(97)00187-7Suche in Google Scholar

16. Marquardt, D.W., 1963. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 11, 431–441.10.1137/0111030Suche in Google Scholar

17. Mjalli, F.S., 2005. Neural Model-Based Predictive Control of Liquid-Liquid Extraction Contractors. J. Chem. Eng. Sci. 60, 239–253.10.1016/j.ces.2004.07.117Suche in Google Scholar

18. Moreno-Tost, R., Santamaria-Gonzalez, J., Rodriguez-Castellon, E., Jimenez-Lopez, A., Autie, M.A., Gonzalez, E., Carreras Glacial, M., De las Pozas, C., 2004. Selective Catalytic Reduction of Nitric Oxide by Ammonia over Cu-Exchanged Cuban Natural Zeolites. Appl. Catal. B Environ. 50, 279–288.10.1016/j.apcatb.2004.01.019Suche in Google Scholar

19. Mousavi, S.M., Niaei, A., Salari, D., Panahi, P.N., Samandari, M., 2013. Modelling and Optimization of Mn/Activate Carbon Nanocatalysts for NO Reduction: Comparison of RSM and ANN Techniques. Environ. Technol. 34, 1377–1384.10.1080/09593330.2012.750381Suche in Google Scholar

20. Nakhostin Panahi, P., Niaei, A., Tseng, H.-H., Salari, D., Mousavi, M., 2015. Modeling of Catalyst Composition–Activity Relationship of Supported Catalysts in NH3–NO-SCR Process Using Artificial Neural Network. Neural. Comput. Appl. 26, 1515–1523.10.1007/s00521-014-1781-zSuche in Google Scholar

21. Nariman-Zadeh, N., Jamali, A., 2007. Pareto Genetic Design of GMDH-Type Neural Networks for Nonlinear Systems, in: Drchal, J., Koutnik, J. (Eds.), Proceedings of the International Workshop on Inductive Modelling, Czech Technical University, Prague, Czech Republic, pp. 96–103.Suche in Google Scholar

22. Ohtsuka, H., Tabata, T., 1999. Effect of Water Vapor on the Deactivation of Pd-Zeolite Catalysts for Selective Catalytic Reduction of Nitrogen Monoxide by Methane. Appl. Catal. B Environ. 21, 133–139.10.1016/S0926-3373(99)00014-4Suche in Google Scholar

23. Onwubolu, G.C., 2009. Hybrid Self-Organizing Modeling Systems, Springer, Berlin.10.1007/978-3-642-01530-4Suche in Google Scholar

24. Park, J., Sandberg, I., 1991. Universal Approximation Using Radial-Basis-Function Networks. J. Neural. Comput. 3, 246–257.10.1162/neco.1991.3.2.246Suche in Google Scholar PubMed

25. Pazuki, G.R., Seyfi Kakhki, S., 2013. A Hybrid GMDH Neural Network to Investigate Partition Coefficients of Penicillin G Acylase in Polymer–Salt Aqueous Two-Phase Systems. J. Mol. Liq. 188, 131–135.10.1016/j.molliq.2013.10.001Suche in Google Scholar

26. Powell, M.J.D., Mason, J.C., Cox, M.G. (Eds.), 1987. Radial Basis Functions for Multivariable Interpolation: A Review in Algorithms for Approximation, Clarendon Press, Oxford, UK.Suche in Google Scholar

27. Reyhani, S.Z., Ghanadzadeh, H., Puigjaner, L., Recances, F., 2009. Estimation of Liquid–Liquid Equilibrium for a Quaternary System Using the GMDH Algorithm. J. Ind. Eng. Chem. Res. 48, 2129–2134.10.1021/ie801082sSuche in Google Scholar

28. Royaee, S.J., Falamaki, C., Sohrabi, M., Ashraf, S.S., 2008. A New Langmuir–Hinshelwood Mechanism for the Methanol to Dimethylether Dehydration Reaction over Clinoptilolite-Zeolite Catalyst. Appl. Catal. A General. 338, 114–120.10.1016/j.apcata.2008.01.011Suche in Google Scholar

29. Sheikholeslami, M., Bani Sheykholeslami, F., Khoshhal, S., Mola-Abasia, H., Ganji, D.D., Rokni, H.B., 2014. Effect of Magnetic Field on Cu–Water Nanofluid Heat Transfer Using GMDH-Type Neural Network. Neural. Comput. Appl. 25, 171–178.10.1007/s00521-013-1459-ySuche in Google Scholar

30. Tamura, T., Kumagai, M., 1991. Method for Removing Nitrogen Oxides from Exhaust Gases. US patent, 5041272.Suche in Google Scholar

31. Tasdemir, S., Saritas, I., Ciniviz, M., Allahverdi, N., 2011. Artificial Neural Network and Fuzzy Expert System Comparison for Prediction of Performance and Emission Parameters on a Gasoline Engine. Expert. Syst. Appl. 38, 13912–13923.10.1016/j.eswa.2011.04.198Suche in Google Scholar

32. Torrecilla, J.S., Deetlefs, M., Seddon, KR., Rodríguez, F., 2008. Estimation of Ternaryliquid-Liquid Equilibria for Arene/Alkane/Ionic Liquid Mixtures Using Neural Networks. Phys. Chem. Chem. Phys. 10, 5114–5120.10.1039/b719533hSuche in Google Scholar PubMed

33. William, W.H., 1985. Catalyst for Reduction of Nitrogen Oxides. US patent, 789690.Suche in Google Scholar

34. Yentys, A., Lercher, J.A., van Bekkum, H., Flanigen, E.M., Jacobs, P.A., Jansen, J.C., (Eds.), 2001. Introduction to Zeolite Science and Practice, Amsterdam: Elsevier, pp. 345.Suche in Google Scholar

35. Zhang, H., Wang, J., Wang, Y.Y., 2016. Optimal Dosing and Sizing Optimization for a Ground Vehicle Diesel Engine Two-Cell Selective Catalytic Reduction System. IEEE Trans. Veh. Technol. pp. 1–1 doi:10.1109/TVT.2015.2476760.Suche in Google Scholar

Published Online: 2016-2-16
Published in Print: 2016-4-1

©2016 by De Gruyter

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2015-0159/pdf?lang=de
Button zum nach oben scrollen