Startseite Mathematik Bayesian covariance regression in functional data analysis with applications to functional brain imaging
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Bayesian covariance regression in functional data analysis with applications to functional brain imaging

  • John Shamshoian , Nicholas Marco , Damla Şentürk , Shafali Jeste und Donatello Telesca EMAIL logo
Veröffentlicht/Copyright: 5. Februar 2025

Abstract

Function on scalar regression models relate functional outcomes to scalar predictors through the conditional mean function. With few and limited exceptions, many functional regression frameworks operate under the assumption that covariate information does not affect patterns of covariation. In this manuscript, we address this disparity by developing a Bayesian functional regression model, providing joint inference for both the conditional mean and covariance functions. Our work hinges on basis expansions of both the functional evaluation domain and covariate space, to define flexible non-parametric forms of dependence. To aid interpretation, we develop novel low-dimensional summaries, which indicate the degree of covariate-dependent heteroskedasticity. The proposed modeling framework is motivated and applied to a case study in functional brain imaging through electroencephalography, aiming to elucidate potential differentiation in the neural development of children with autism spectrum disorder.


Corresponding author: Donatello Telesca, Department of Biostatistics, University of California, Los Angeles, CA, USA, E-mail: 

Award Identifier / Grant number: R01 MH122428-01

  1. Research ethics: Data was analyzed under UCLA IRB#20-000029 [Senturk PI] – granted 2/14/2022.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: All other authors state no conflict of interest.

  6. Research funding: Our research was supported by the National Institute of Mental Health grant- NIMH: R01 MH122428-01.

  7. Data availability: Data is available upon request from Shafali Jeste [sjeste@chla.usc.edu].

References

1. Wang, J-L, Chiou, J-M, Müller, H-G. Functional data analysis. Annu Rev Stat Appl 2016;3:257–95. https://doi.org/10.1146/annurev-statistics-041715-033624.Suche in Google Scholar

2. Goldsmith, J, Zipunnikov, V, Schrack, J. Generalized multilevel function-on-scalar regression and principal component analysis. Biometrics 2015;71:344–53. https://doi.org/10.1111/biom.12278.Suche in Google Scholar PubMed PubMed Central

3. Greven, S, Scheipl, F. A general framework for functional regression modelling. Stat Model Int J 2017;17:1–35. https://doi.org/10.1177/1471082x16681317.Suche in Google Scholar

4. Baladandayuthapani, V, Mallick, BK, Young Hong, M, Lupton, JR, Turner, ND, Carroll, RJ. Bayesian hierarchical spatially correlated functional data analysis with application to colon carcinogenesis. Biometrics 2008;64:64–73. https://doi.org/10.1111/j.1541-0420.2007.00846.x.Suche in Google Scholar PubMed PubMed Central

5. Staicu, A-M, Crainiceanu, CM, Carroll, RJ. Fast methods for spatially correlated multilevel functional data. Biostatistics 2010;11:177–94. https://doi.org/10.1093/biostatistics/kxp058.Suche in Google Scholar PubMed PubMed Central

6. Greven, S, Crainiceanu, C, Caffo, B, Reich, D. Longitudinal functional principal component analysis. In: Recent advances in functional data analysis and related topics. Springer; 2011:149–54 pp.10.1007/978-3-7908-2736-1_23Suche in Google Scholar

7. Park, SY, Staicu, A-M. Longitudinal functional data analysis. Stat 2015;4:212–26. https://doi.org/10.1002/sta4.89.Suche in Google Scholar PubMed PubMed Central

8. Scheffler, A, Telesca, D, Li, Q, Sugar, CA, Distefano, C, Jeste, S, et al.. Hybrid principal components analysis for region-referenced longitudinal functional eeg data. Biostatistics 2020;21:139–57. https://doi.org/10.1093/biostatistics/kxy034.Suche in Google Scholar PubMed PubMed Central

9. Cardot, H. Conditional functional principal components analysis. Scand J Stat 2007;34:317–35. https://doi.org/10.1111/j.1467-9469.2006.00521.x.Suche in Google Scholar

10. Jiang, C-R, Wang, J-L. Covariate adjusted functional principal components analysis for longitudinal data. Ann Stat 2010;38:1194–226. https://doi.org/10.1214/09-aos742.Suche in Google Scholar

11. Zhang, C, Lin, H, Liu, L, Liu, J, Li, Y. Functional data analysis with covariate-dependent mean and covariance structures. Biometrics 2023;79:2232–45. https://doi.org/10.1111/biom.13744.Suche in Google Scholar PubMed

12. Xiao, L, Huang, L, Schrack, JA, Ferrucci, L, Zipunnikov, V, Crainiceanu, CM. Quantifying the lifetime circadian rhythm of physical activity: a covariate-dependent functional approach. Biostatistics 2015;16:352–67. https://doi.org/10.1093/biostatistics/kxu045.Suche in Google Scholar PubMed PubMed Central

13. Scheffler, AW, Dickinson, A, DiStefano, C, Jeste, S, Şentürk, D. Covariate-adjusted hybrid principal components analysis. In: International conference on information processing and management of uncertainty in knowledge-based systems. Springer; 2020:391–404 pp.10.1007/978-3-030-50153-2_30Suche in Google Scholar

14. Nolan, TH, Goldsmith, J, Ruppert, D. Bayesian functional principal components analysis via variational message passing with multilevel extensions. Bayesian Anal 2023;1:1–27.Suche in Google Scholar

15. Whaba, G. Bayesian confidence intervals for the cross-validate smoothing spline. J Roy Stat Soc B 1983;45:133–50.10.1111/j.2517-6161.1983.tb01239.xSuche in Google Scholar

16. Hoff, PD, Niu, X. A covariance regression model. Stat Sin 2012:729–53. https://doi.org/10.5705/ss.2010.051.Suche in Google Scholar

17. Fox, EB, Dunson, DB. Bayesian nonparametric covariance regression. J Mach Learn Res 2015;16:2501–42.Suche in Google Scholar

18. Flury, BN. Common principal components in k groups. J Am Stat Assoc 1984;79:892–8. https://doi.org/10.2307/2288721.Suche in Google Scholar

19. Franks, AM, Hoff, P. Shared subspace models for multi-group covariance estimation. J Mach Learn Res 2019;20:1–37.Suche in Google Scholar

20. Dickinson, A, DiStefano, C, Senturk, D, Jeste, SS. Peak alpha frequency is a neural marker of cognitive function across the autism spectrum. Eur J Neurosci 2018;47:643–51. https://doi.org/10.1111/ejn.13645.Suche in Google Scholar PubMed PubMed Central

21. Bonnefond, M, Kastner, S, Jensen, O. Communication between brain areas based on nested oscillations. eNeuro 2017;4. https://doi.org/10.1523/eneuro.0153-16.2017.Suche in Google Scholar PubMed PubMed Central

22. Rodríguez-Martínez, EI, Ruiz-Martínez, FJ, Paulino, CIB, Gómez, CM. Frequency shift in topography of spontaneous brain rhythms from childhood to adulthood. Cogn Neurodyn 2017;11:23–33. https://doi.org/10.1007/s11571-016-9402-4.Suche in Google Scholar PubMed PubMed Central

23. Marco, N, Şentürk, D, Jeste, S, DiStefano, C, Dickinson, A, Telesca, D. Functional mixed membership models. arXiv preprint arXiv:2206.12084 2022.Suche in Google Scholar

24. Scheipl, F, Staicu, A-M, Greven, S. Functional additive mixed models. J Comput Graph Stat 2015;24:477–501. https://doi.org/10.1080/10618600.2014.901914.Suche in Google Scholar PubMed PubMed Central

25. Ruppert, D. Selecting the number of knots for penalized splines. J Comput Graph Stat 2002;11:735–57. https://doi.org/10.1198/106186002853.Suche in Google Scholar

26. Lang, S, Brezger, A. Bayesian p-splines. J Comput Graph Stat 2004;13:183–212. https://doi.org/10.1198/1061860043010.Suche in Google Scholar

27. Wood, SN. Generalized additive models: an introduction with R. Boca Raton, FL: CRC Press; 2017.Suche in Google Scholar

28. Kowal, DR, Bourgeois, DC. Bayesian function-on-scalars regression for high-dimensional data. J Comput Graph Stat 2020:1–10. https://doi.org/10.1080/10618600.2019.1710837.Suche in Google Scholar

29. Bhattacharya, A, Dunson, DB. Sparse bayesian infinite factor models. Biometrika 2011:291–306. https://doi.org/10.1093/biomet/asr013.Suche in Google Scholar PubMed PubMed Central

30. Montagna, S, Tokdar, ST, Neelon, B, Dunson, DB. Bayesian latent factor regression for functional and longitudinal data. Biometrics 2012;68:1064–73. https://doi.org/10.1111/j.1541-0420.2012.01788.x.Suche in Google Scholar PubMed PubMed Central

31. Li, Q, Shamshoian, J, Şentürk, D, Sugar, C, Jeste, S, DiStefano, C, et al.. Region-referenced spectral power dynamics of eeg signals: a hierarchical modeling approach. Ann Appl Stat 2020;14:2053. https://doi.org/10.1214/20-aoas1374.Suche in Google Scholar PubMed PubMed Central

32. Suarez, AJ, Ghosal, S. Bayesian estimation of principal components for functional data. Bayesian Anal 2017;12:311–33. https://doi.org/10.1214/16-ba1003.Suche in Google Scholar

33. Aguilera, AM, Aguilera-Morillo, MC. Penalized pca approaches for b-spline expansions of smooth functional data. Appl Math Comput 2013;219:7805–19. https://doi.org/10.1016/j.amc.2013.02.009.Suche in Google Scholar

34. Krivobokova, T, Kneib, T, Claeskens, G. Simultaneous confidence bands for penalized spline estimators. J Am Stat Assoc 2010;105:852–63. https://doi.org/10.1198/jasa.2010.tm09165.Suche in Google Scholar

35. Fifth Edition. Diagnostic and statistical manual of mental disorders. Am Psychiatr Assoc 2013;21:591–643.Suche in Google Scholar

36. Kumar, JS, Bhuvaneswari, P. Analysis of electroencephalography (EEG) signals and its categorization – a study. Procedia Eng 2012;38:2525–36. https://doi.org/10.1016/j.proeng.2012.06.298.Suche in Google Scholar

37. Jeste, SS, Kirkham, N, Senturk, D, Hasenstab, K, Sugar, C, Kupelian, C, et al.. Electrophysiological evidence of heterogeneity in visual statistical learning in young children with asd. Dev Sci 2015;18:90–105. https://doi.org/10.1111/desc.12188.Suche in Google Scholar PubMed PubMed Central

38. Scheffler, AW, Telesca, D, Sugar, CA, Jeste, S, Dickinson, A, DiStefano, C, et al.. Covariate-adjusted region-referenced generalized functional linear model for eeg data. Stat Med 2019;38:5587–602. https://doi.org/10.1002/sim.8384.Suche in Google Scholar PubMed PubMed Central

39. Segalowitz, SJ, Santesso, DL, Jetha, MK. Electrophysiological changes during adolescence: a review. Brain Cognit 2010;72:86–100. https://doi.org/10.1016/j.bandc.2009.10.003.Suche in Google Scholar PubMed

40. Marco, N, Şentürk, D, Jeste, S, DiStefano, C, Dickinson, A, Telesca, D. Flexible regularized estimation in high-dimensional mixed membership models. arXiv preprint arXiv:2212.06906 2022.Suche in Google Scholar

41. Shamshoian, J, Şentürk, D, Jeste, S, Telesca, D. Bayesian analysis of longitudinal and multidimensional functional data. Biostatistics 2022;23:558–73. https://doi.org/10.1093/biostatistics/kxaa041.Suche in Google Scholar PubMed PubMed Central


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ijb-2023-0029).


Received: 2023-02-16
Accepted: 2025-01-07
Published Online: 2025-02-05

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijb-2023-0029/pdf
Button zum nach oben scrollen