Startseite A quantile regression estimator for interval-censored data
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A quantile regression estimator for interval-censored data

  • Paolo Frumento EMAIL logo
Veröffentlicht/Copyright: 3. Juni 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We describe an estimating equation that can be used to fit quantile regression models to interval-censored data. The proposed estimator presents important advantages over the existing methods, and can be applied when the data are a mixture of interval-censored, left-censored, and right-censored observations. We describe estimation and inference, report simulation results, and apply the proposed method to analyze the Signal Tandmobiel® data. The necessary R code has been incorporated in the existing R package c t q r .


Corresponding author: Paolo Frumento, University of Pisa, Pisa, Italy, E-mail:

Acknowledgments

I would like to thank Professor Emmanuel Lesaffre (Biostatistical Centre Katholieke Universiteit Leuven) for his permission to use the Signal Tandmobiel® data, and for his kind answers to my requests of clarification about the variables in the dataset.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix A: The first-step estimator

In this appendix, we briefly describe the implementation of the first-step estimator F ̂ in the ctqr R package. The choice of using a flexible parametric model, instead of a fully nonparametric estimator, is motivated by convenience as suggested in Section 4. The decision of using a piecewise-constant hazards model, however, does not have any particular theoretical explanation, and is only dictated by simplicity and flexibility.

The proposed first-step estimator is implemented in the pchreg function from the pch R package [62], which is a dependency of ctqr. The calculation of F ̂ proceeds as follows. The range of the response is divided into k sub-intervals with breaks {t 0, t 1, …, t k }. The user can either supply the number of intervals, or the exact position of the breaks. By default, k = max(5, min(10, ⌈n 1/(5q)⌉)), where n 1 is the sample size excluding left- and right-censored observations, q is the dimension of x , and ⌈a⌉ denotes the ceiling operator. The default breaks are placed at the empirical quantiles of the response, calculated excluding left- and right-censored observations and replacing interval-censored observations by their middle point. Within each interval, the hazard function is held constant over time but is allowed to depend on covariates, i.e., proportionality of hazards is assumed to hold locally. The log-hazard in the jth interval is parametrized as log  λ j = x T θ j where θ j is a vector of parameters, j = 1, …, k. The total number of parameters is k × q. To fit the model, pchreg applies standard Newton-Raphson algorithm to maximize the log-likelihood function.

Appendix B: Sensitivity to first-step misspecification

The flexibility of the first-step model depends on the number of intervals, k. If k = 1, the model reduces to an Exponential distribution with parameter log(λ) = x T θ . As k increases, the model becomes more flexible and behaves like a nonparametric estimator. There is no obvious way to select an optimal value of k. A possible option is to fit a variety of first-step models, and choose the “best” one based on some information criterion, such as AIC or BIC. In the simulations presented in Section 5 we used the default value, that corresponds to k = 10. An important question is how the final estimators of β p behave if the first-step model is misspecified. To perform a robustness check, we repeated the simulation by selecting values of k that are too small to provide a good approximation of the true distribution function. Tables 6 and 7 report the average estimates and the empirical standard errors of β p ̂ obtained with k = 2, 6, and 10. Results show that misspecification of the first-step model does not impact the final estimators of β p in a significant way. The observed robustness can be explained by the fact that, in practice, F ̂ only contributes to the estimating equation when T L i x i T β p ̂ T R i , i.e., it is only relevant when the predicted quantile regression function lies in the interval ( T L i , T R i ) . For all other observations (those with x i T β p ̂ > T R i or x i T β p ̂ < T L i ), the indicator I T x i T β p ̂ is known and the value of F ̂ is irrelevant.

Table 6:

Sensitivity to the first-step model (simulation 1).

n = 250 n = 500
k = 10 k = 6 k = 2 k = 10 k = 6 k = 2
p True est. s.e. est. s.e. est. s.e. est. s.e. est. s.e. est. s.e.
Intercept 0.10 0.11 0.11 0.16 0.10 0.16 0.10 0.14 0.10 0.10 0.11 0.10 0.11 0.09
0.25 0.29 0.29 0.27 0.30 0.26 0.28 0.25 0.29 0.18 0.30 0.18 0.29 0.16
0.75 1.39 1.39 0.55 1.42 0.53 1.42 0.53 1.41 0.39 1.40 0.39 1.39 0.39
0.90 2.30 2.34 0.69 2.39 0.68 2.37 0.67 2.38 0.49 2.34 0.50 2.32 0.50
x 1 0.10 0.30 0.30 0.29 0.31 0.27 0.31 0.26 0.30 0.20 0.29 0.19 0.29 0.17
0.25 0.75 0.73 0.46 0.74 0.45 0.76 0.45 0.74 0.33 0.74 0.32 0.75 0.32
0.75 2.25 2.26 0.87 2.23 0.87 2.23 0.86 2.25 0.62 2.26 0.62 2.26 0.61
0.90 2.70 2.70 1.06 2.67 1.03 2.68 1.03 2.65 0.74 2.70 0.74 2.71 0.74
x 2 0.10 0.03 0.06 0.11 0.06 0.11 0.07 0.11 0.05 0.07 0.05 0.07 0.06 0.07
0.25 0.19 0.22 0.20 0.22 0.21 0.23 0.20 0.20 0.14 0.20 0.14 0.21 0.14
0.75 1.69 1.67 0.44 1.67 0.43 1.67 0.43 1.66 0.31 1.67 0.31 1.67 0.31
0.90 2.43 2.34 0.47 2.35 0.46 2.35 0.46 2.36 0.33 2.38 0.33 2.38 0.33
x 3 0.10 0.95 0.95 0.24 0.96 0.22 0.88 0.21 0.95 0.16 0.96 0.15 0.89 0.14
0.25 1.50 1.49 0.31 1.48 0.30 1.50 0.30 1.50 0.22 1.49 0.22 1.51 0.22
0.75 2.60 2.58 0.50 2.56 0.49 2.55 0.49 2.57 0.36 2.58 0.36 2.57 0.36
0.90 2.85 2.84 0.59 2.79 0.61 2.80 0.61 2.82 0.43 2.83 0.44 2.85 0.43
  1. Simulation 1: average estimates of β p and empirical standard errors for different values of k, the number of intervals used to fit the first-step piecewise-constant hazards model. The value k = 10 is the same used in Section 5. If k is small, the first-step model can be severely misspecified.

Table 7:

Sensitivity to the first-step model (simulation 2).

n = 250 n = 500
k = 10 k = 6 k = 2 k = 10 k = 6 k = 2
p True est. s.e. est. s.e. est. s.e. est. s.e. est. s.e. est. s.e.
Intercept 0.10 0.11 0.13 0.18 0.12 0.17 0.10 0.13 0.11 0.12 0.11 0.12 0.10 0.09
0.25 0.29 0.33 0.29 0.32 0.27 0.29 0.24 0.30 0.20 0.30 0.18 0.27 0.17
0.75 1.39 1.42 0.56 1.48 0.57 1.48 0.56 1.42 0.39 1.45 0.40 1.43 0.40
0.90 2.30 2.39 0.74 2.44 0.72 2.41 0.70 2.39 0.49 2.39 0.49 2.35 0.48
x 1 0.10 0.30 0.27 0.31 0.28 0.29 0.30 0.25 0.28 0.22 0.29 0.21 0.29 0.18
0.25 0.75 0.70 0.49 0.71 0.46 0.75 0.45 0.73 0.36 0.73 0.33 0.76 0.33
0.75 2.25 2.23 0.85 2.15 0.87 2.15 0.85 2.24 0.62 2.20 0.61 2.19 0.60
0.90 2.70 2.65 1.06 2.58 1.06 2.60 1.07 2.64 0.74 2.63 0.74 2.66 0.74
x 2 0.10 0.03 0.06 0.11 0.06 0.11 0.08 0.10 0.05 0.08 0.06 0.07 0.06 0.08
0.25 0.19 0.20 0.20 0.22 0.20 0.25 0.20 0.20 0.14 0.22 0.14 0.22 0.14
0.75 1.69 1.66 0.44 1.61 0.45 1.61 0.44 1.66 0.30 1.65 0.30 1.65 0.30
0.90 2.43 2.33 0.46 2.31 0.46 2.32 0.46 2.35 0.33 2.37 0.33 2.37 0.33
x 3 0.10 0.95 0.95 0.28 0.98 0.27 0.82 0.22 0.95 0.20 0.99 0.18 0.89 0.18
0.25 1.50 1.48 0.34 1.49 0.33 1.55 0.35 1.49 0.26 1.48 0.24 1.52 0.21
0.75 2.60 2.59 0.53 2.60 0.53 2.56 0.51 2.57 0.38 2.55 0.37 2.53 0.36
0.90 2.85 2.82 0.64 2.80 0.63 2.85 0.62 2.80 0.44 2.77 0.44 2.78 0.44
  1. Simulation 2: average estimates of β p and empirical standard errors for different values of k.

Appendix C: Simulations with left- and right-censored data

In this appendix we present additional simulations in which some of the data are either left- or right-censored. The data-generating process is the same as in Section 5: the quantile function is Q ( p x ) = log ( 1 p ) + ( 3 p ) x 1 + ( 3 p 2 ) x 2 + ( 3 p ) x 3 , with x 1U(0, 1), x 2 ∼ Exp(1), and x 3 ∼ Ber(0.5), and examinations times t j are simulated by cumulating random draws from an Exp(λ) distribution. However, there is no examination at time t 0 = 0, which generates left censoring whenever T < t 1, and there is a maximum follow-up time M = 10, which generates right censoring when T > max j {t j : t j < 10}. As in Section 5, we consider two different values of λ: in scenario 1, where λ = 2, the average proportion of left-censored data is about 0.10, and the average proportion of right-censored data is around 0.06; in scenario 2, where λ = 1, the average proportion of left-censored data is about 0.18, and the average proportion of right-censored data is around 0.07.

The presence of left and right censoring prevents estimating some of the extreme quantiles. For example, if more than 50% of the data are right-censored, the sample median is not identifiable. In our simulation, we estimated the quartiles, that correspond to p = {0.25, 0.50, 0.75}. Results are summarized in Tables 8 and 9, where we report the average estimates and the standard errors of our method and compare them with ynh’s estimator. Note that zfd’s estimator is not applicable in this context, as some of the intervals (T L , T R ) have infinite width.

Table 8:

Results of simulation 1 with left- and right-censored data.

n = 250 n = 500
c t q r ynh c t q r ynh
p True est. s.e. est. s.e. est. s.e. est. s.e.
Intercept 0.25 0.29 0.29 0.25 0.29 0.29 0.30 0.18 0.30 0.20
0.50 0.69 0.73 0.40 0.72 0.42 0.72 0.29 0.72 0.31
0.75 1.39 1.27 0.64 1.39 0.56 1.33 0.47 1.41 0.41
x 1 0.25 0.75 0.75 0.45 0.75 0.51 0.74 0.32 0.75 0.35
0.50 1.50 1.47 0.67 1.48 0.70 1.47 0.48 1.48 0.52
0.75 2.25 2.28 0.87 2.27 0.89 2.23 0.60 2.22 0.63
x 2 0.25 0.19 0.22 0.20 0.22 0.21 0.19 0.14 0.19 0.15
0.50 0.75 0.76 0.35 0.76 0.36 0.74 0.24 0.74 0.26
0.75 1.69 1.92 0.82 1.68 0.46 1.82 0.52 1.67 0.33
x 3 0.25 1.50 1.48 0.30 1.48 0.32 1.49 0.24 1.50 0.25
0.50 2.12 2.09 0.43 2.09 0.45 2.11 0.30 2.11 0.32
0.75 2.60 2.62 0.53 2.59 0.53 2.61 0.38 2.59 0.39
  1. Average estimates of β p and empirical standard errors (simulation 1). In the table, c t q r refers to our proposal, and ynh refers to Yang, Narisetty, and He’s estimator computed using the DArq R package. In this simulation, the average proportion of left-censored data is about 0.10, and the average proportion of right-censored data is around 0.06.

Table 9:

Results of simulation 2 with left- and right-censored data.

n = 250 n = 500
c t q r ynh c t q r ynh
p True est. s.e. est. s.e. est. s.e. est. s.e.
Intercept 0.25 0.29 0.31 0.28 0.30 0.33 0.29 0.20 0.30 0.23
0.50 0.69 0.73 0.44 0.72 0.47 0.72 0.31 0.70 0.33
0.75 1.39 1.35 0.70 1.43 0.59 1.33 0.49 1.37 0.44
x 1 0.25 0.75 0.71 0.48 0.74 0.56 0.73 0.34 0.73 0.40
0.50 1.50 1.45 0.73 1.48 0.79 1.48 0.50 1.49 0.54
0.75 2.25 2.15 0.92 2.19 0.93 2.24 0.65 2.27 0.69
x 2 0.25 0.19 0.22 0.20 0.22 0.23 0.21 0.14 0.20 0.16
0.50 0.75 0.76 0.35 0.76 0.37 0.74 0.26 0.75 0.27
0.75 1.69 1.88 0.85 1.66 0.46 1.82 0.62 1.68 0.34
x 3 0.25 1.50 1.50 0.34 1.49 0.36 1.50 0.25 1.50 0.26
0.50 2.12 2.11 0.44 2.11 0.46 2.13 0.32 2.13 0.35
0.75 2.60 2.60 0.53 2.59 0.54 2.61 0.38 2.60 0.40
  1. Average estimates of β p and empirical standard errors (simulation 2). In this simulation, the average proportion of left-censored data is about 0.18, and the average proportion of right-censored data is around 0.07.

Based on our simulation, c t q r estimators are generally reliable, although some bias is found for β 2 at quantile 0.75. This may be due to misspecification of the first-step estimator F ̂ , that contributes to the estimating equation for all observations that are right-censored before the quantile T L i x i T β p or left-censored after the quantile x i T β p T R i . In our simulation, the default definition of F ̂ might fail to capture some important features of the conditional distribution. Possible improvements can be achieved by increasing the number k of intervals, choosing a better positioning of the knots, or incorporating nonlinear/interaction terms in the first-step model. ynh’s estimator also performed well, and was usually less efficient than c t q r at quantiles 0.25 and 0.50, and more efficient at the third quartile.

References

1. Koenker, R. Quantile regression. In: Econometric Society Monograph Series. Cambridge: Cambridge University Press; 2005.10.1017/CBO9780511754098Suche in Google Scholar

2. Koenker, R, Bassett, GJr. Regression quantiles. Econometrica 1978;46:33–50. https://doi.org/10.2307/1913643.Suche in Google Scholar

3. Benoit, F, Van den Poel, D. Benefits of quantile regression for the analysis of customer lifetime value in a contractual setting: an application in financial services. Expert Syst Appl 2009;36:10475–84. https://doi.org/10.1016/j.eswa.2009.01.031.Suche in Google Scholar

4. Fitzenberger, B, Wilke, RA. Using quantile regression for duration analysis. In: Hübler, O, Frohn, J, editors Modern Econometric Analysis. Berlin, Heidelberg: Springer; 2006. https://doi.org/10.1007/s10182-006-0224-2.Suche in Google Scholar

5. Koenker, R, Geling, O. Reappraising medfly longevity. J Am Stat Assoc 2001;96:458–68 https://doi.org/10.1198/016214501753168172.Suche in Google Scholar

6. Machado, JAF, Portugal, P. Exploring transition data through quantile regression methods: an application to U.S. unemployment duration. In: Dodge, Y, editor Statistical Data Analysis Based on the L1-Norm and Related Methods. Statistics for Industry and Technology. Basel: Birkhäuser; 2002.10.1007/978-3-0348-8201-9_7Suche in Google Scholar

7. Vanobbergen, J, Martens, L, Lesaffre, E, Declerck, D. The Signal Tandmobiel® project: a longitudinal intervention health promotion study in Flanders (Belgium): baseline and first year results. Eur J Paediatr Dent 2000;2:87–96.Suche in Google Scholar

8. Frumento, P, Bottai, M. An estimating equation for censored and truncated quantile regression. Comput Stat Data Anal 2017;113:53–63. https://doi.org/10.1016/j.csda.2016.08.015.Suche in Google Scholar

9. Leng, C, Tong, X. A quantile regression estimator for censored data. Bernoulli 2013;19:344–61. https://doi.org/10.3150/11-bej388.Suche in Google Scholar

10. Peng, L, Huang, Y. Survival analysis with quantile regression models. J Am Stat Assoc 2008;103:637–49. https://doi.org/10.1198/016214508000000355.Suche in Google Scholar

11. Portnoy, S. Censored regression quantiles. J Am Stat Assoc 2003;98:1001–12. https://doi.org/10.1198/016214503000000954.Suche in Google Scholar

12. Powell, J. Censored regression quantiles. J Econom 1986;32:143–55. https://doi.org/10.1016/0304-4076(86)90016-3.Suche in Google Scholar

13. Wang, HJ, Wang, L. Locally weighted censored quantile regression. J Am Stat Assoc 2009;104:1117–28. https://doi.org/10.1198/jasa.2009.tm08230.Suche in Google Scholar

14. Ji, S, Peng, L, Cheng, Y, Lai, HC. Quantile regression for doubly censored data. Biometrics 2012;68:101–12. https://doi.org/10.1111/j.1541-0420.2011.01667.x.Suche in Google Scholar PubMed PubMed Central

15. Lin, G, He, X, Portnoy, S. Quantile regression with doubly censored data. Comput Stat Data Anal 2012;56:797–812. https://doi.org/10.1016/j.csda.2011.03.009.Suche in Google Scholar

16. Subramanian, S. Median regression analysis from data with left and right censored observations. Stat Methodol 2007;4:121–31. https://doi.org/10.1016/j.stamet.2006.03.001.Suche in Google Scholar

17. Volgushev, S, Dette, H. Nonparametric quantile regression for twice censored data. Bernoulli 2013;19:748–79. https://doi.org/10.3150/12-bej462.Suche in Google Scholar

18. Kim, YJ, Cho, HJ, Kim, J, Jhun, M. Median regression model with interval censored data. Biom J 2010;52:201–8. https://doi.org/10.1002/bimj.200900111.Suche in Google Scholar PubMed

19. Shen, PS. Median regression model with left truncated and interval-censored data. J Korean Surg Soc 2013;42:469–79. https://doi.org/10.1016/j.jkss.2013.02.002.Suche in Google Scholar

20. Zhou, X, Feng, Y, Du, X. Quantile regression for interval censored data. Commun Stat Theor Methods 2017;46:3848–63. https://doi.org/10.1080/03610926.2015.1073317.Suche in Google Scholar

21. Yang, X, Narisetty, NN, He, X. A new approach to censored quantile regression estimation. J Comput Graph Stat 2018;27:417–25. https://doi.org/10.1080/10618600.2017.1385469.Suche in Google Scholar

22. Ekstrand, KR, Christiansen, J, Christiansen, ME. Time and duration of eruption of first and second permanent molars: a longitudinal investigation. Community Dent Oral Epidemiol 2003;31:344–50. https://doi.org/10.1034/j.1600-0528.2003.00016.x.Suche in Google Scholar PubMed

23. Harun, N, Cai, B. Bayesian random effects selection in mixed accelerated failure time model for interval-censored data. Stat Med 2014;33:971–84. https://doi.org/10.1002/sim.6002.Suche in Google Scholar PubMed

24. Komárek, A, Lesaffre, E, Harkanen, T, Declerck, D, Virtanen, JI. A Bayesian analysis of multivariate doubly-interval-censored dental data. Biostatistics 2005;6:145–55. https://doi.org/10.1093/biostatistics/kxh023.Suche in Google Scholar PubMed

25. Komárek, A, Lesaffre, E. Bayesian accelerated failure time model for correlated interval-censored data with a normal mixture as an error distribution. Stat Sin 2007;17:549–69.Suche in Google Scholar

26. Komárek, A. A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data. Comput Stat Data Anal 2009;53:3932–47. https://doi.org/10.1016/j.csda.2009.05.006.Suche in Google Scholar

27. Lesaffre, E, Komárek, A, Declerck, D. An overview of methods for interval-censored data with an emphasis on applications in dentistry. Stat Methods Med Res 2005;14:539–52. https://doi.org/10.1191/0962280205sm417oa.Suche in Google Scholar PubMed

28. Lesaffre, E, Feine, J, Leroux, B, Declerck, D, editors Statistical and methodological aspects of oral health research. Wiley-Blackwell; 2009. ISBN 13: 9780470517925.10.1002/9780470744116Suche in Google Scholar

29. Peng, D, MacKenzie, G, Burke, K. A multiparameter regression model for interval-censored survival data. Stat Med 2020;39:1903–18. https://doi.org/10.1002/sim.8508.Suche in Google Scholar PubMed

30. Komárek, A. bayesSurv: Bayesian survival regression with flexible error and random effects distributions; 2018. R package version 3.2. Available from: https://CRAN.R-project.org/package=bayesSurv.Suche in Google Scholar

31. Deng, W, Tian, Y, Lv, Q. Parametric estimator of linear model with interval-censored data. Commun Stat Simulat Comput 2012;41:1794–804. https://doi.org/10.1080/03610918.2011.621571.Suche in Google Scholar

32. Lawless, JF, Babineau, D. Models for interval censoring and simulation-based inference for lifetime distributions. Biometrika 2006;93:671–86. https://doi.org/10.1093/biomet/93.3.671.Suche in Google Scholar

33. Zhang, Z, Sun, J. Interval censoring. Stat Methods Med Res 2010;19:53–70. https://doi.org/10.1177/0962280209105023.Suche in Google Scholar PubMed PubMed Central

34. Geraci, M, Bottai, M. Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 2007;8:140–54. https://doi.org/10.1093/biostatistics/kxj039.Suche in Google Scholar PubMed

35. Koenker, R, Machado, JAF. Goodness of fit and related inference processes for quantile regression. J Am Stat Assoc 1999;94:1296–310. https://doi.org/10.1080/01621459.1999.10473882.Suche in Google Scholar

36. Turnbull, BW. The empirical distribution with arbitrarily grouped censored and truncated data. J Roy Stat Soc B 1976;38:290–5. https://doi.org/10.1111/j.2517-6161.1976.tb01597.x.Suche in Google Scholar

37. Beran, R. Nonparametric regression with randomly censored survival data. In: Technical Report. Berkeley: University of California; 1981.Suche in Google Scholar

38. Dabrowska, DM. Uniform consistency of kernel conditional Kaplan-Meier estimate. Ann Stat 1989;17:1157–67. https://doi.org/10.1214/aos/1176347261.Suche in Google Scholar

39. Andersen, PK, Borgan, O, Gill, RD, Keiding, N. Statistical models based on counting processes. New York: Springer-Verlag; 1993.10.1007/978-1-4612-4348-9Suche in Google Scholar

40. Sun, J. The statistical analysis of interval-censored failure time data. New York, Heidelberg: Springer; 2006.Suche in Google Scholar

41. Geskus, R, Groeneboom, P. Asymptotically optimal estimation of smooth functionals for interval censoring, part 1. Stat Neerl 1997;50:201–19. https://doi.org/10.1111/1467-9574.00050.Suche in Google Scholar

42. Huang, J, Wellner, JA. Asymptotic normality of the NPMLE of linear functionals for interval censored data, case I. Stat Neerl 1995;49:153–63. https://doi.org/10.1111/j.1467-9574.1995.tb01462.x.Suche in Google Scholar

43. Groeneboom, P. Lectures on inverse problems. In: Lecture Notes in Mathematics, vol 1648. Berlin: Springer-Verlag; 1996.10.1007/BFb0095675Suche in Google Scholar

44. Groeneboom, P, Wellner, JA. Information bounds and nonparametric maximum likelihood estimation. In: DMV Seminar, Band 19. New York: Birkhauser; 1992.10.1007/978-3-0348-8621-5Suche in Google Scholar

45. Huang, J. Asymptotic properties of nonparametric estimation based on partly interval-censored data. Stat Sin 1999;9:501–19.Suche in Google Scholar

46. Chen, X, Linton, O, van Keilegom, I. Estimation of semiparametric models when the criterion function is not smooth. Econometrica 2003;71:1591–608. https://doi.org/10.1111/1468-0262.00461.Suche in Google Scholar

47. Ichimura, H, Lee, S. Characterization of the asymptotic distribution of semiparametric M-estimators. J Econom 2010;159:252–66. https://doi.org/10.1016/j.jeconom.2010.05.005.Suche in Google Scholar

48. Geman, S, Hwang, CR. Nonparametric maximum likelihood estimation by the method of sieves. Ann Stat 1982;10:401–14. https://doi.org/10.1214/aos/1176345782.Suche in Google Scholar

49. Grenander, U. Abstract Inference. New York: Wiley; 1981.Suche in Google Scholar

50. Stone, CJ, Hansen, MH, Kooperberg, C, Truong, YK. Polynomial splines and their tensor products in extended linear modeling. Ann Stat 1997;25:1371–425. https://doi.org/10.1214/aos/1031594728.Suche in Google Scholar

51. Friedman, JH, Silverman, BW. Flexible parsimonious smoothing and additive modeling. Technometrics 1989;31:3–21. https://doi.org/10.1080/00401706.1989.10488470.Suche in Google Scholar

52. Ackerberg, D, Chen, X, Hahn, J. A practical asymptotic variance estimator for two-step semiparametric estimators. Rev Econ Stat 2012;94:481–98. https://doi.org/10.1162/rest_a_00251.Suche in Google Scholar

53. Hardin, JW. The robust variance estimator for two-stage models. STATA J 2002;2:253–66. https://doi.org/10.1177/1536867x0200200302.Suche in Google Scholar

54. Murphy, KM, Topel, RH. Estimation and inference in two-step econometric models. J Bus Econ Stat 2002;20:88–97. https://doi.org/10.1198/073500102753410417.Suche in Google Scholar

55. Andrews, DWK. Asymptotics for semi-parametric econometric models via stochastic equicontinuity. Econometrica 1994;62:43–72. https://doi.org/10.2307/2951475.Suche in Google Scholar

56. Newey, WK. The asymptotic variance of semiparametric estimators. Econometrica 1994;62:1349–82. https://doi.org/10.2307/2951752.Suche in Google Scholar

57. Newey, WK, McFadden, D. Large sample estimation and hypothesis testing. In: Engle, RF, McFadden, DL, editors, Handbook of Econometrics. Handbooks in Econometrics, 2, vol 4. Amsterdam: North-Holland; 1994. Ch. 36, 2111–2245.10.1016/S1573-4412(05)80005-4Suche in Google Scholar

58. Newey, WK. Conditional moment restrictions in censored and truncated regression models. Econom Theor 2001;17:863–88. https://doi.org/10.1017/s0266466601175018.Suche in Google Scholar

59. Newey, WK. Efficient semiparametric estimation via moment restrictions. Econometrica 2004;72:1877–97. https://doi.org/10.1111/j.1468-0262.2004.00557.x.Suche in Google Scholar

60. Frumento, P. ctqr: Censored and truncated quantile regression; 2021. R package version 2.0. Available from: http://CRAN.R-project.org/package=ctqr.Suche in Google Scholar

61. Bogaerts, K, Komárek, A, Lesaffre, E. Survival analysis with interval-censored data: a practical approach with examples in R, SAS, and BUGS, 1st ed. Chapman and Hall/CRC; 2017. ISBN: 9781420077476.10.1201/9781315116945Suche in Google Scholar

62. Frumento, P. pch: Piecewise constant hazards models for censored and truncated data; 2021. R package version 2.0. Available from: http://CRAN.R-project.org/package=pch.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ijb-2021-0063).


Received: 2021-07-12
Revised: 2022-05-06
Accepted: 2022-05-16
Published Online: 2022-06-03

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Research Articles
  3. Two-sample t α -test for testing hypotheses in small-sample experiments
  4. Estimating risk and rate ratio in rare events meta-analysis with the Mantel–Haenszel estimator and assessing heterogeneity
  5. Estimating population-averaged hazard ratios in the presence of unmeasured confounding
  6. Commentary
  7. Comments on ‘A weighting analogue to pair matching in propensity score analysis’ by L. Li and T. Greene
  8. Research Articles
  9. Variable selection for bivariate interval-censored failure time data under linear transformation models
  10. A quantile regression estimator for interval-censored data
  11. Modeling sign concordance of quantile regression residuals with multiple outcomes
  12. Robust statistical boosting with quantile-based adaptive loss functions
  13. A varying-coefficient partially linear transformation model for length-biased data with an application to HIV vaccine studies
  14. Application of the patient-reported outcomes continual reassessment method to a phase I study of radiotherapy in endometrial cancer
  15. Borrowing historical information for non-inferiority trials on Covid-19 vaccines
  16. Multivariate small area modelling of undernutrition prevalence among under-five children in Bangladesh
  17. The optimal dynamic treatment rule superlearner: considerations, performance, and application to criminal justice interventions
  18. Estimators for the value of the optimal dynamic treatment rule with application to criminal justice interventions
  19. Efficient estimation of pathwise differentiable target parameters with the undersmoothed highly adaptive lasso
Heruntergeladen am 23.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijb-2021-0063/html?lang=de
Button zum nach oben scrollen