Startseite Naturwissenschaften In-Flight Analysis of Particles in Plasma Spraying
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

In-Flight Analysis of Particles in Plasma Spraying

Dieser Artikel wurde zurückgezogen. Rücknahme-Notiz.
  • Yong Zhang EMAIL logo , Zhi-jiu Ai und Yan Wu
Veröffentlicht/Copyright: 15. September 2015

Abstract

In-flight behavior of particles is a key factor that affects the quality of coating. There are some problems such as jet instability and poor coating quality in practical application process. This study focused on internal and external flow characteristics of supersonic plasma spray gun based on the analysis of plasma spraying multi-physical fields. Drag, thermophoretic, and pressure-gradient forces were considered. Flow field calculation and particle analysis were separated. The flow field calculation results were used as the initial conditions of particle computation. Heating and acceleration behavior of particles in the flow field were analyzed. In-flight particles were monitored by Spray Watch and compared with calculated values. Results show that particle velocity and temperature reach the maximum at 80–100 mm away from the nozzle exit. Particles in supersonic plasma spraying are more likely to refine near the nozzle exit, which conforms to experimental observations. The velocity calculation of particles with small diameter is consistent with the measurements.

PACS® (2010).: 52.65.-y

References

[1] M.I. Boulos, P. Fauchais and E. Pfender, Thermal Plasmas Fundamentals and Applications, Vol. 1, Plenum, New York (1994).10.1007/978-1-4899-1337-1_1Suche in Google Scholar

[2] A.B. Murphy, Plasma Chem. Plasma Process., 20 (2006) 279–282.10.1023/A:1007099926249Suche in Google Scholar

[3] K. Singh, G. Singh and R. Sharma, Phys. Plasmas., 17 (2010) 309–311.10.1119/1.3393061Suche in Google Scholar

[4] L. An, Y. Gao and T. Zhang, J. Therm. Spray Technol., 16 (2007) 967–973.10.1007/s11666-007-9113-9Suche in Google Scholar

[5] S. Datta, D.K. Pratihar and P.P. Bandyopadhyay, Appl. Soft Comput., 12 (2012) 3356–3368.10.1016/j.asoc.2012.07.015Suche in Google Scholar

[6] K. Ramachandran, N. Kikukawa and H. Nishiyama, Thin Solid Films, 435 (2003) 298–306.10.1016/S0040-6090(03)00335-3Suche in Google Scholar

[7] B. Selvan, K. Ramachandran, B.C. Pillai and D. Subhakar, J. Therm. Spray Technol., 23 (2011) 534–548.10.1007/s11666-010-9587-8Suche in Google Scholar

[8] Q.B. Fan, F.C. Wang and L. Wang, J. Mater. Eng. Perform., 17 (2008) 621–626.10.1007/s11665-007-9187-zSuche in Google Scholar

[9] L.J. Feng and K.B. Cao, J. Therm. Process., 35 (2007) 46–51.Suche in Google Scholar

[10] Q.G. Yang and P.F. Julie, J. Hefei Univ. Technol. Nat. Sci., 29 (2006) 1120–1123.Suche in Google Scholar

[11] H.G. Wang, X.J. Yuan and G.L. Hou, J. Therm. Sci., 27 (2013) 310–314.Suche in Google Scholar

[12] K. Ramchandran and H. Nishiyama, J. Phys. D Appl. Phys., 35 (2012) 307–317.10.1088/0022-3727/35/4/306Suche in Google Scholar

[13] P. Fauchais, J. Phys. D Appl. Phys., 37 (2004) 86–108.10.1088/0022-3727/37/1/014Suche in Google Scholar

[14] T. Bennett and D. Poulikakos, Phys. Plasmas., 23 (2012) 206–215.Suche in Google Scholar

[15] S. Kentaro and X. Bian, J. Appl. Phys., 24 (2012) 279–293.Suche in Google Scholar

[16] A.J. Markworth and J.H. Saunders, Surf. Coat. Tech., 19 (2008) 127–139.Suche in Google Scholar

[17] C. Mundo and M. Sommerfeld, J. Therm. Spray Technol., 26 (2013) 315–327.Suche in Google Scholar

[18] J.F. Lou, T. Hong and J.S. Zhu, J. Comput. Mech., 28 (2011) 210–213.Suche in Google Scholar

[19] B. Cai, L. Li and Z. Li, J. Energ. Therm. Phys., 24 (2003) 613–616.Suche in Google Scholar

[20] C. Tan, Z.Y. Wei and P. Wei, J Xi’an Jiaotong Univ., 48 (2014) 91–97.10.1002/9781118899250.ch5Suche in Google Scholar

Received: 2015-3-7
Accepted: 2015-7-4
Published Online: 2015-9-15

©2015 by De Gruyter

Heruntergeladen am 12.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/htmp-2015-0053/pdf?lang=de
Button zum nach oben scrollen