Effect of Carbon Partitioning on Abnormal Martensite Hardening in a Conventional Quench and Temper Medium Silicon Low Alloy Steel under Ferrite-Martensite Dual-Phase Microstructure
Abstract
The purpose of this research work was to investigate the effect of carbon partitioning within ferrite and prior austenite (martensite) during progress of ferrite formation and consequently its relation to the associated martensite hardening in a medium silicon low alloy conventional quench and temper steel. For this aim, several ferrite-martensite dual-phase (DP) samples containing various volume fractions of ferrite and martensite microphases were developed. The X-ray diffraction and electron microscopy with spot and line-scan X-ray energy-dispersive spectroscopy (EDS) for carbon analysis were used in conjunction with light microscopy and hardness test to follow the variation of carbon partitioning within ferrite and prior austenite (martensite) regions and consequently the associated martensite hardening in the DP samples.
Kurzfassung
Ziel dieser Forschungsarbeit war es, die Auswirkung der Kohlenstoffverteilung innerhalb des Ferrits und des vorhergehenden Austenits (Martensit) während der Ferritbildung und folglich ihre Auswirkung auf das damit verbundene Martensithärten für einen konventionellen niedrig legierten Vergütungsstahl mit mittlerem Siliziumgehalt zu untersuchen. Zu diesem Zweck wurden mehrere Ferrit-Martensit-Zweiphasenproben (DP) mit verschiedenen Volumenanteilen an Ferrit- und Martensit-Mikrophasen generiert. Die Röntgenbeugung und die Elektronenmikroskopie mit Spot- und Line-Scan-Röntgen-Energiedispersionsspektroskopie (EDS) zur Kohlenstoffanalyse wurden in Verbindung mit der Lichtmikroskopie und der Härteprüfung eingesetzt, um die Variation der Kohlenstoffverteilung innerhalb der Ferrit- und früheren Austenit-(Martensit-)Regionen und folglich das damit verbundene Martensithärten in den DP-Proben zu messen.
References
1 Baudin, T.; Quesne, C.; Jura, J.; Penelle, R.: Microstructural characterization in a hotrolled, two-phase steel. Mater. Charact. 47 (2001) 5, pp. 365–373, DOI:10.1016/ S1044-5803(02)00183-310.1016/S1044-5803(02)00183-3Suche in Google Scholar
2 Ahmad, E.; Manzoor, T.; Ali, K. L.; Akhter, J.: Effect of microvoid formation on the tensile properties of dual-phase steel. J. Mater. Eng. Perform. 9 (2000) 3, pp. 306– 310, DOI:10.1361/10599490077034596210.1361/105994900770345962Suche in Google Scholar
3 Ahmad, E.; Priestner, R.: Effect of rolling in the intercritical region on the tensile properties of dual-phase steel. J. Mater. Eng. Perform. 7 (1998) 6, pp. 772–776, DOI:10.1361/10599499877034734110.1361/105994998770347341Suche in Google Scholar
4 Ghorabaei, A. S.; Banadkouki, S. G.: Abnormal mechanical behavior of a mediumcarbon steel under strong ferrite-pearlite-martensite triple-phase microstructures. Mat. Sci. Eng. A. 700 (2017), pp. 562–573, DOI:10.1016/j.msea.2017.06.03510.1016/j.msea.2017.06.035Suche in Google Scholar
5 Fereiduni, E.; Banadkouki, S. G.: Improvement of mechanical properties in a dualphase ferrite–martensite AISI4140 steel under tough-strong ferrite formation. Mater. Design 56 (2014), pp. 232–240, DOI:10.1016/j.matdes.2013.11.00510.1016/j.matdes.2013.11.005Suche in Google Scholar
6 Abedini, O.; Behroozi, M.; Marashi, P.; Ranjbarnodeh, E.; Pouranvari, M.: Intercritical Heat Treatment Temperature Dependence of Mechanical Properties and Corrosion Resistance of Dual Phase Steel. Mater. Res. 22 (2019) 1, DOI:10.1590/1980-5373-MR-2017-096910.1590/1980-5373-MR-2017-0969Suche in Google Scholar
7 Alipour, M.; Torabi, M. A.; Sareban, M.; Lashini, H.; Sadeghi, E.; Fazaeli, A.: Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels. Mech. Based. Des. Struc. (2019) pp. 1–17, DOI:10.1080/15397734.2019.163334310.1080/15397734.2019.1633343Suche in Google Scholar
8 Khajesarvi, A.; Ghasemi Banadkouki, S. S.; Sajjadi, S. A.: Effect of tempering heat treatment on mechanical properties of a medium silicon low alloy ferrite–martensite DP steel. International Journal of Iron &; Steel Society of Iran 19 (2022) 1, 20–29, DOI:10.22034/IJISSI.2022.559274.124610.22034/IJISSI.2022.559274.1246Suche in Google Scholar
9 Sakai, S.; Morito, S.; Ohba, T.; Yoshida, H.; Takagi, S.: Connectivity of slip systems between different phases in ferrite-martensite dual-phase steels. J. Alloys. Compd. 577 (2013), pp. 597–600, DOI:10.1016/j.jallcom.2012.02.02710.1016/j.jallcom.2012.02.027Suche in Google Scholar
10 Kang, J. Y.; Park, S. J.; Suh, D. W.; Han, H. N.: Estimation of phase fraction in dual phase steel using microscopic characterizations and dilatometric analysis. Mater. Charact. 84 (2013), pp. 205–215, DOI:10.1016/j.matchar.2013.08.00210.1016/j.matchar.2013.08.002Suche in Google Scholar
11 Majidi, O.; Barlat, F.; Korkolis, Y. P.; Fu, J.; Lee, M.-G.: Thermal effects on the enhanced ductility in non-monotonic uniaxial tension of DP780 steel sheet. Met. Mater. Int. 22 (2016) 6, pp. 968–973, DOI:10.1007/s12540-016-6210-710.1007/s12540-016-6210-7Suche in Google Scholar
12 Fernandes, F.; Oliveira, D.; Pereira, A.: Optimal parameters for laser welding of advanced high-strength steels used in the automotive industry. Proc. Manu. 13 (2017), pp. 219–226, DOI:10.1016/j.promfg.2017.09.05210.1016/j.promfg.2017.09.052Suche in Google Scholar
13 Lesch, C.; Kwiaton, N.; Klose, F. B.: Advanced high strength steels (AHSS) for automotive applications− tailored properties by smart microstructural adjustments. steel. res. int. 88 (2017) 10, 1700210, DOI:doi.org/10.1002/srin.201700210doi.org/10.1002/srin.201700210Suche in Google Scholar
14 Tasan, C. C.; Diehl, M.; Yan, D.; Bechtold, M.; Roters, F.; Schemmann, L.: An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design. Ann. Rev. Mater. Res. 45 (2015), pp. 391–431, DOI:10.1146/annurev-matsci-070214-02110310.1146/annurev-matsci-070214-021103Suche in Google Scholar
15 Maresca, F.; Kouznetsova, V.; Geers, M.: Subgrain lath martensite mechanics: A numerical-experimental analysis. J. Mech. Phys. Solids 73 (2014), pp. 69–83, DOI:10.1016/j.jmps.2014.09.00210.1016/j.jmps.2014.09.002Suche in Google Scholar
16 Chakraborti, P.; Mitra, M.: Microstructure and tensile properties of high strength duplex ferrite–martensite (DFM) steels. Mater. Sci. Eng: A 466 (2007) 1–2, pp. 123–133, DOI:10.1016/j.msea.2007.02.04210.1016/j.msea.2007.02.042Suche in Google Scholar
17 Mazinani, M.; Poole, W.: Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel. Metall. Mater. Trans. A 38 (2007) 2, pp. 328– 339, DOI:10.1007/s11661-006-9023-310.1007/s11661-006-9023-3Suche in Google Scholar
18 Kadkhodapour, J.; Schmauder, S.; Raabe, D.; Ziaei-Rad, S.; Weber, U.; Calcagnotto, M.: Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels. Acta. Mater. 59 (2011) 11, pp. 4387–4394, DOI:10.1016/j.actamat.2011.03.06210.1016/j.actamat.2011.03.062Suche in Google Scholar
19 Rosenberg, G.; Sinaiová, I.; Juhar, Ľ.: Effect of microstructure on mechanical properties of dual phase steels in the presence of stress concentrators. Mater. Sci. Eng: A 582 (2013), pp. 347–358, DOI:10.1016/j.msea.2013.06.03510.1016/j.msea.2013.06.035Suche in Google Scholar
20 Zarchi, H. R. K.; Khajesarvi, A.; Banadkouki, S. S. G.; Somani, M. C.: Microstructural evolution and carbon partitioning in interstitial free weld simulated api 5l x60 steel. Rev. Adv. Mater. Sci. 58 (2019) 1, pp. 206–217, DOI:10.1515/rams-2019-001610.1515/rams-2019-0016Suche in Google Scholar
21 Pinard, P. T.; Schwedt, A.; Ramazani, A.; Prahl, U.; Richter, S.: Characterization of dual-phase steel microstructure by combined submicrometer EBSD and EPMA carbon measurements. Microsc. microanal. 19 (2013) 4, pp. 996–1006, DOI:10.1017/ S143192761300155410.1017/S1431927613001554Suche in Google Scholar PubMed
22 Zhang, J.; Di, H.; Deng, Y.; Misra, R.: Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite–ferrite dual phase steel. Mater. Sci. Eng: A 627 (2015), pp. 230–240, DOI:10.1016/j.msea.2015.01.00610.1016/j.msea.2015.01.006Suche in Google Scholar
23 Lee, S. J.; Park, J. S.; Lee, Y. K.: Effect of austenite grain size on the transformation kinetics of upper and lower bainite in a low-alloy steel. Scripta. Mater. 59 (2008) 1, pp. 87–90, DOI:10.1016/j.scriptamat.2008.02.03610.1016/j.scriptamat.2008.02.036Suche in Google Scholar
24 Graham, L.; Axon, H.: The Effect of Austenitising Treatments on Formation of Lower Bainite in a Plain Carbon Steel. The Journal of the Iron and Steel Institute 191 (1959), pp. 361–365Suche in Google Scholar
25 Chandan, A.; Bansal, G.; Kundu, J.; Chakraborty, J.; Chowdhury, S. G.: Effect of prior austenite grain size on the evolution of microstructure and mechanical properties of an intercritically annealed medium manganese steel. Mater. Sci. Eng: A 768 (2019), p. 138458, DOI:10.1016/j.msea.2019.13845810.1016/j.msea.2019.138458Suche in Google Scholar
26 Białobrzeska, B.; Konat, Ł.; Jasiński, R.: The influence of austenite grain size on the mechanical properties of low-alloy steel with boron. Metals 7 (2017) 1, p. 26, DOI:10.3390/met701002610.3390/met7010026Suche in Google Scholar
27 Jena, A.; Chaturvedi, M.: On the effect of the volume fraction on martensite on the tensile strength of dual-phase steel. Mater. Sci Eng. 100 (1988), pp. 1–6, DOI:10.1016/0025-5416(88)90232-710.1016/0025-5416(88)90232-7Suche in Google Scholar
28 Ebrahimian, A.; Banadkouki, S. G.: Mutual mechanical effects of ferrite and martensite in a low alloy ferrite-martensite dual phase steel. J. Alloys. Compd. 708 (2017), pp. 43–54, DOI:10.1016/j.jallcom.2017.02.28710.1016/j.jallcom.2017.02.287Suche in Google Scholar
29 Concepción, V. L.; Lorusso, H. N.; Svoboda, H. G.: Effect of carbon content on microstructure and mechanical properties of dual phase steels. Proc. Mater. Sci. 8 (2015), pp. 1047–1056, DOI:10.1016/j.mspro.2015.04.16710.1016/j.mspro.2015.04.167Suche in Google Scholar
30 Barbier, D.; Germain, L.; Hazotte, A.; Gouné, M.; Chbihi, A.: Microstructures resulting from the interaction between ferrite recrystallization and austenite formation in dual-phase steels. J. Mater. Sci. 50 (2015) 1, pp. 374–381, DOI:10.1007/s10853-014-8596-210.1007/s10853-014-8596-2Suche in Google Scholar
31 Morsdorf, L.; Tasan, C. C.; Ponge, D.; Raabe, D.: 3D structural and atomic-scale analysis of lath martensite: effect of the transformation sequence. Acta. Mater. 95 (2015), pp. 366–377, DOI:10.1016/j.actamat.2015.05.02310.1016/j.actamat.2015.05.023Suche in Google Scholar
32 Fonda, R. W.; Spanos, G.: Effects of cooling rate on transformations in a Fe-9 pct Ni steel. Metall. Mater. Trans. A. 45 (2014) 13, pp. 5982–5989, DOI:10.1007/s11661-014-2588-310.1007/s11661-014-2588-3Suche in Google Scholar
33 Chang, L.; Bhadeshia, H.: Microstructure of lower bainite formed at large undercoolings below bainite start temperature. Mater. Sci. Tech. 12 (1996) 3, pp. 233– 236, DOI:10.1179/mst.1996.12.3.23310.1179/mst.1996.12.3.233Suche in Google Scholar
34 Vander Voort, G. F.: Metallography and microstructures. vol. 9: ASM International, Materials Park, OH, 2004. – ISBN 978-1-62708-177-1Suche in Google Scholar
35 Rietveld, H. M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2 (1969) 2, pp. 65–71, DOI:10.1107/S002188986900655810.1107/S0021889869006558Suche in Google Scholar
36 Behera, A. K.; Olson, G.: Prediction of carbon partitioning and austenite stability via non-equilibrium thermodynamics in Quench and Partition (Q&;P) steel. Jom. 71 (2019) 4, pp. 1375–1385, DOI:10.1007/s11837-019-03369-z10.1007/s11837-019-03369-zSuche in Google Scholar
37 Zhirafar, S.; Rezaeian, A.; Pugh, M.: Effect of cryogenic treatment on the mechanical properties of 4340 steel. J. Mater. Process. Tech. 186 (2007) 1–3, pp. 298–303, DOI:10.1016/j.jmatprotec.2006.12.04610.1016/j.jmatprotec.2006.12.046Suche in Google Scholar
38 Krauss, G.: Steels. Processing, Structure and Performance, ASM International, Materials Park, Ohio, 2015, DOI:10.31399/asm.tb.spsp2.978162708265510.31399/asm.tb.spsp2.9781627082655Suche in Google Scholar
39 Bhadeshia, H.; Edmonds, D.: Analysis of mechanical properties and microstructure of high-silicon dual-phase steel. Met. Sci. 14 (1980) 2, pp. 41–49, DOI:10.1179/03063458079042632810.1179/030634580790426328Suche in Google Scholar
40 Bhadeshia, H.; Edmonds, D.: The bainite transformation in a silicon steel. Metall. Trans. A 10 (1979), pp. 895–907, DOI:10.1007/BF0265830910.1007/BF02658309Suche in Google Scholar
41 Banadkouki, S. G.; Fereiduni, E.: Effect of prior austenite carbon partitioning on martensite hardening variation in a low alloy ferrite–martensite dual phase steel. Mater. Sci. Eng: A 619 (2014), pp. 129–136, DOI:10.1016/j.msea.2014.09.04110.1016/j.msea.2014.09.041Suche in Google Scholar
42 Wang, C.; Shi, J.; Cao, W.; Dong, H.: Characterization of microstructure obtained by quenching and partitioning process in low alloy martensitic steel. Mater. Sci. Eng: A 527 (2010) 15, pp. 3442–3449, DOI:10.1016/j.msea.2010.02.02010.1016/j.msea.2010.02.020Suche in Google Scholar
43 Ebrahimian, A.; Banadkouki, S. G.: Effect of alloying element partitioning on ferrite hardening in a low alloy ferrite-martensite dual phase steel. Mater. Sci. Eng: A 677 (2016), pp. 281–289, DOI:10.1016/j.msea.2016.09.07310.1016/j.msea.2016.09.073Suche in Google Scholar
44 Matsuoka, Y.; Iwasaki, T.; Nakada, N.; Tsuchiyama, T.; Takaki, S.: Effect of grain size on thermal and mechanical stability of austenite in metastable austenitic stainless steel. ISIJ. int. 53 (2013) 7, pp. 1224–1230, DOI:10.2355/isijinternational.53.122410.2355/isijinternational.53.1224Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston, Germany
Artikel in diesem Heft
- Contents / Inhalt
- Quenching with Aqueous Polymer Solutions
- Effect of Carbon Partitioning on Abnormal Martensite Hardening in a Conventional Quench and Temper Medium Silicon Low Alloy Steel under Ferrite-Martensite Dual-Phase Microstructure
- Effect of Heat Treatment on the Microstructure and Properties of an Electron Beam Cladded Layer of Inconel 718
- Potentials of Ultrasonically Atomized Cored Wires for Powder Metallurgy and Additive Manufacturing
- Imprint / Impressum
- Imprint / Impressum
- From and for Practice / Praxis-Informationen
- AWT-Info / HTM 03-2023
- HTM Praxis
Artikel in diesem Heft
- Contents / Inhalt
- Quenching with Aqueous Polymer Solutions
- Effect of Carbon Partitioning on Abnormal Martensite Hardening in a Conventional Quench and Temper Medium Silicon Low Alloy Steel under Ferrite-Martensite Dual-Phase Microstructure
- Effect of Heat Treatment on the Microstructure and Properties of an Electron Beam Cladded Layer of Inconel 718
- Potentials of Ultrasonically Atomized Cored Wires for Powder Metallurgy and Additive Manufacturing
- Imprint / Impressum
- Imprint / Impressum
- From and for Practice / Praxis-Informationen
- AWT-Info / HTM 03-2023
- HTM Praxis