Abstract
The BCL11A transcription factor has previously been shown to interact with and stimulate the enzymatic activities of the NTHL1 DNA glycosylase and Pol β polymerase. Here we show that BCL11A and a smaller peptide encompassing amino acids 160 to 520 can interact with the 8-oxoguanine DNA glycosylase, OGG1, increase the binding of OGG1 to DNA that contains an 8-oxoguanine base and stimulate the glycosylase activity of OGG1. Following BCL11A knockdown, we observed an increase in oxidized purines in the genome using comet assays, while immunoassays reveal an increase in 8-oxoG bases. Structure-function analysis indicates that the stimulation of OGG1 by BCL11A requires the zinc fingers 1, 2 and 3 as well as the proline-rich region between the first and second zing finger, but a glutamate-rich region downstream of zinc finger 3 is dispensable. Ectopic expression of a small peptide that contains the three zinc fingers can rescue the increase in 8-oxoguanine caused by BCL11A knockdown. These findings, together with previous results showing that BCL11A stimulates the enzymatic activities of NTHL1 and the Pol β polymerase, suggest that high expression of BCL11A is important to protect cancer cells against oxidative DNA damage.
Funding source: Canadian Institutes of Health Research
Award Identifier / Grant number: CIHR, MOP-391532
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Tetiana Petrachkova: investigation, methodology, validation, formal analysis, visualization, writing-reviewing and editing. Olga Soldatkina: resources. Lam Leduy: investigation, methodology, supervision. Alain Nepveu: conceptualization, methodology, writing – original draft, writing – review and editing, supervision, project administration, funding acquisition.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: This work was supported by the Canadian Institutes of Health Research (CIHR, MOP- 391532) to A.N. T.P. and O.S. were supported by Fonds de recherche du Québec-Santé (FRQS).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
Amen, A.M., Loughran, R.M., Huang, C.H., Lew, R.J., Ravi, A., Guan, Y., Schatoff, E.M., Dow, L.E., Emerling, B.M., and Fellmann, C. (2022). Endogenous spacing enables co-processing of microRNAs and efficient combinatorial RNAi. Cell Rep. Methods 2: 100239, https://doi.org/10.1016/j.crmeth.2022.100239.Suche in Google Scholar PubMed PubMed Central
Avram, D., Fields, A., Pretty On Top, K., Nevrivy, D.J., Ishmael, J.E., and Leid, M. (2000). Isolation of a novel family of C(2)H(2) zinc finger proteins implicated in transcriptional repression mediated by chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan nuclear receptors. J. Biol. Chem. 275: 10315–10322, https://doi.org/10.1074/jbc.275.14.10315.Suche in Google Scholar PubMed PubMed Central
Basu, T.N., Gutmann, D.H., Fletcher, J.A., Glover, T.W., Collins, F.S., and Downward, J. (1992). Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature 356: 713–715, https://doi.org/10.1038/356713a0.Suche in Google Scholar PubMed
Cadieux, C., Kedinger, V., Yao, L., Vadnais, C., Drossos, M., Paquet, M., and Nepveu, A. (2009). Mouse mammary tumor virus p75 and p110 CUX1 transgenic mice develop mammary tumors of various histologic types. Cancer Res. 69: 7188–7197, https://doi.org/10.1158/0008-5472.can-08-4899.Suche in Google Scholar
Chakraborty, A., Tapryal, N., Islam, A., Mitra, S., and Hazra, T. (2021). Transcription coupled base excision repair in mammalian cells: so little is known and so much to uncover. DNA Repair 107: 103204, https://doi.org/10.1016/j.dnarep.2021.103204.Suche in Google Scholar PubMed
Cheadle, J.P. and Sampson, J.R. (2007). MUTYH-associated polyposis--from defect in base excision repair to clinical genetic testing. DNA Repair 6: 274–279, https://doi.org/10.1016/j.dnarep.2006.11.001.Suche in Google Scholar PubMed
Chemistry, J.o.B., Allinson, S.L., Dianova, II, and Dianov, G.L. (2001). DNA polymerase beta is the major dRP lyase involved in repair of oxidative base lesions in DNA by mammalian cell extracts. EMBO J. 20: 6919–6926, https://doi.org/10.1093/emboj/20.23.6919.Suche in Google Scholar PubMed PubMed Central
Cintori, L., Di Guilmi, A.M., Canitrot, Y., Huet, S., and Campalans, A. (2023). Spatio-temporal dynamics of the DNA glycosylase OGG1 in finding and processing 8-oxoguanine. DNA Repair 129: 103550, https://doi.org/10.1016/j.dnarep.2023.103550.Suche in Google Scholar PubMed
Collins, A., Moller, P., Gajski, G., Vodenkova, S., Abdulwahed, A., Anderson, D., Bankoglu, E.E., Bonassi, S., Boutet-Robinet, E., Brunborg, G., et al.. (2023). Measuring DNA modifications with the comet assay: a compendium of protocols. Nat. Protoc. 18: 929–989, https://doi.org/10.1038/s41596-022-00754-y.Suche in Google Scholar PubMed PubMed Central
Das, S., Chattopadhyay, R., Bhakat, K.K., Boldogh, I., Kohno, K., Prasad, R., Wilson, S.H., and Hazra, T.K. (2007). Stimulation of NEIL2-mediated oxidized base excision repair via YB-1 interaction during oxidative stress. J. Biol. Chem. 282: 28474–28484, https://doi.org/10.1074/jbc.M704672200.Suche in Google Scholar PubMed PubMed Central
DeClue, J.E., Papageorge, A.G., Fletcher, J.A., Diehl, S.R., Ratner, N., Vass, W.C., and Lowy, D.R. (1992). Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell 69: 265–273, https://doi.org/10.1016/0092-8674(92)90407-4.Suche in Google Scholar PubMed
Demple, B. and Harrison, L. (1994). Repair of oxidative damage to DNA: enzymology and biology. Annu. Rev. Biochem. 63: 915–948, https://doi.org/10.1146/annurev.bi.63.070194.004411.Suche in Google Scholar PubMed
Demple, B. and Sung, J.S. (2005). Molecular and biological roles of Ape1 protein in mammalian base excision repair. DNA Repair 4: 1442–1449, https://doi.org/10.1016/j.dnarep.2005.09.004.Suche in Google Scholar PubMed
Dianov, G.L. and Hubscher, U. (2013). Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res. 41: 3483–3490, https://doi.org/10.1093/nar/gkt076.Suche in Google Scholar PubMed PubMed Central
Esrick, E.B., Lehmann, L.E., Biffi, A., Achebe, M., Brendel, C., Ciuculescu, M.F., Daley, H., MacKinnon, B., Morris, E., Federico, A., et al.. (2021). Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N. Engl. J. Med. 384: 205–215, https://doi.org/10.1056/NEJMoa2029392.Suche in Google Scholar PubMed PubMed Central
Guay, D., Garand, C., Reddy, S., Schmutte, C., and Lebel, M. (2008). The human endonuclease III enzyme is a relevant target to potentiate cisplatin cytotoxicity in Y-box-binding protein-1 overexpressing tumor cells. Cancer Sci. 99: 762–769, https://doi.org/10.1111/j.1349-7006.2008.00739.x.Suche in Google Scholar PubMed PubMed Central
Hatahet, Z., Kow, Y.W., Purmal, A.A., Cunningham, R.P., and Wallace, S.S. (1994). New substrates for old enzymes. 5-Hydroxy-2’-deoxycytidine and 5-hydroxy-2′-deoxyuridine are substrates for Escherichia coli endonuclease III and formamidopyrimidine DNA N-glycosylase, while 5-hydroxy-2′-deoxyuridine is a substrate for uracil DNA N-glycosylase. J. Biol. Chem. 269: 18814–18820, https://doi.org/10.1016/s0021-9258(17)32239-1.Suche in Google Scholar
Hegde, M.L., Banerjee, S., Hegde, P.M., Bellot, L.J., Hazra, T.K., Boldogh, I., and Mitra, S. (2012). Enhancement of NEIL1 protein-initiated oxidized DNA base excision repair by heterogeneous nuclear ribonucleoprotein U (hnRNP-U) via direct interaction. J. Biol. Chem. 287: 34202–34211, https://doi.org/10.1074/jbc.M112.384032.Suche in Google Scholar PubMed PubMed Central
Hegde, M.L., Hazra, T.K., and Mitra, S. (2008). Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res. 18: 27–47, https://doi.org/10.1038/cr.2008.8.Suche in Google Scholar PubMed PubMed Central
Hill, J.W. and Evans, M.K. (2006). Dimerization and opposite base-dependent catalytic impairment of polymorphic S326C OGG1 glycosylase. Nucleic Acids Res. 34: 1620–1632, https://doi.org/10.1093/nar/gkl060.Suche in Google Scholar PubMed PubMed Central
Horton, J.K., Prasad, R., Hou, E., and Wilson, S.H. (2000). Protection against methylation-induced cytotoxicity by DNA polymerase beta-dependent long patch base excision repair. J. Biol. Chem. 275: 2211–2218, https://doi.org/10.1074/jbc.275.3.2211.Suche in Google Scholar PubMed
Huang, X., Powell, J., Mooney, L.A., Li, C., and Frenkel, K. (2001). Importance of complete DNA digestion in minimizing variability of 8-oxo-dG analyses. Free Radic. Biol. Med. 31: 1341–1351, https://doi.org/10.1016/s0891-5849(01)00681-5.Suche in Google Scholar PubMed
Irani, K., Xia, Y., Zweier, J.L., Sollott, S.J., Der, C.J., Fearon, E.R., Sundaresan, M., Finkel, T., and Goldschmidt-Clermont, P.J. (1997). Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275: 1649–1652, https://doi.org/10.1126/science.275.5306.1649.Suche in Google Scholar PubMed
Kaur, S., Coulombe, Y., Ramdzan, Z.M., Leduy, L., Masson, J.Y., and Nepveu, A. (2016). Special AT-rich sequence-binding protein 1 (SATB1) functions as an accessory factor in base excision repair. J. Biol. Chem. 291: 22769–22780, https://doi.org/10.1074/jbc.M116.735696.Suche in Google Scholar PubMed PubMed Central
Khaled, W.T., Choon Lee, S., Stingl, J., Chen, X., Raza Ali, H., Rueda, O.M., Hadi, F., Wang, J., Yu, Y., Chin, S.F., et al.. (2015). BCL11A is a triple-negative breast cancer gene with critical functions in stem and progenitor cells. Nat. Commun. 6: 5987, https://doi.org/10.1038/ncomms6987.Suche in Google Scholar PubMed PubMed Central
Lee, A.C., Fenster, B.E., Ito, H., Takeda, K., Bae, N.S., Hirai, T., Yu, Z.X., Ferrans, V.J., Howard, B.H., and Finkel, T. (1999). Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 274: 7936–7940, https://doi.org/10.1074/jbc.274.12.7936.Suche in Google Scholar PubMed
Liu, N., Hargreaves, V.V., Zhu, Q., Kurland, J.V., Hong, J., Kim, W., Sher, F., Macias-Trevino, C., Rogers, J.M., Kurita, R., et al.. (2018). Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch. Cell 173: 430–442.e417, https://doi.org/10.1016/j.cell.2018.03.016.Suche in Google Scholar PubMed PubMed Central
Liu, P., Keller, J.R., Ortiz, M., Tessarollo, L., Rachel, R.A., Nakamura, T., Jenkins, N.A., and Copeland, N.G. (2003). Bcl11a is essential for normal lymphoid development. Nat. Immunol. 4: 525–532, https://doi.org/10.1038/ni925.Suche in Google Scholar PubMed
Loew, R., Heinz, N., Hampf, M., Bujard, H., and Gossen, M. (2010). Improved Tet-responsive promoters with minimized background expression. BMC Biotechnol. 10: 81, https://doi.org/10.1186/1472-6750-10-81.Suche in Google Scholar PubMed PubMed Central
Luo, J., Emanuele, M.J., Li, D., Creighton, C.J., Schlabach, M.R., Westbrook, T.F., Wong, K.K., and Elledge, S.J. (2009). A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137: 835–848, https://doi.org/10.1016/j.cell.2009.05.006.Suche in Google Scholar PubMed PubMed Central
Marenstein, D.R., Ocampo, M.T., Chan, M.K., Altamirano, A., Basu, A.K., Boorstein, R.J., Cunningham, R.P., and Teebor, G.W. (2001). Stimulation of human endonuclease III by Y box-binding protein 1 (DNA-binding protein B). Interaction between a base excision repair enzyme and a transcription factor. J. Biol. Chem. 276: 21242–21249, https://doi.org/10.1074/jbc.M101594200.Suche in Google Scholar PubMed
Martin, G.A., Viskochil, D., Bollag, G., McCabe, P.C., Crosier, W.J., Haubruck, H., Conroy, L., Clark, R., O’Connell, P., Cawthon, R.M., et al.. (1990). The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63: 843–849, https://doi.org/10.1016/0092-8674(90)90150-d.Suche in Google Scholar PubMed
Masuda, T., Wang, X., Maeda, M., Canver, M.C., Sher, F., Funnell, A.P., Fisher, C., Suciu, M., Martyn, G.E., Norton, L.J., et al.. (2016). Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science 351: 285–289, https://doi.org/10.1126/science.aad3312.Suche in Google Scholar PubMed PubMed Central
Mitsushita, J., Lambeth, J.D., and Kamata, T. (2004). The superoxide-generating oxidase Nox1 is functionally required for Ras oncogene transformation. Cancer Res. 64: 3580–3585, https://doi.org/10.1158/0008-5472.Can-03-3909.Suche in Google Scholar PubMed
Moon, N.S., Premdas, P., Truscott, M., Leduy, L., Berube, G., and Nepveu, A. (2001). S phase-specific proteolytic cleavage is required to activate stable DNA binding by the CDP/cut homeodomain protein. Mol. Cell. Biol. 21: 6332–6345, https://doi.org/10.1128/mcb.21.18.6332-6345.2001.Suche in Google Scholar
Nakamura, T., Yamazaki, Y., Saiki, Y., Moriyama, M., Largaespada, D.A., Jenkins, N.A., and Copeland, N.G. (2000). Evi9 encodes a novel zinc finger protein that physically interacts with BCL6, a known human B-cell proto-oncogene product. Mol. Cell. Biol. 20: 3178–3186, https://doi.org/10.1128/MCB.20.9.3178-3186.2000.Suche in Google Scholar PubMed PubMed Central
Orkin, S.H. and Bauer, D.E. (2019). Emerging genetic therapy for sickle cell disease. Annu. Rev. Med. 70: 257–271, https://doi.org/10.1146/annurev-med-041817-125507.Suche in Google Scholar PubMed
Pal, R., Ramdzan, Z.M., Kaur, S., Duquette, P.M., Marcotte, R., Leduy, L., Davoudi, S., Lamarche-Vane, N., Iulianella, A., and Nepveu, A. (2015). CUX2 functions as an accessory factor in the repair of oxidative DNA damage. J. Biol. Chem. 290: 22520–22531, https://doi.org/10.1074/jbc.M115.651042.Suche in Google Scholar PubMed PubMed Central
Pelossof, R., Fairchild, L., Huang, C.H., Widmer, C., Sreedharan, V.T., Sinha, N., Lai, D.Y., Guan, Y., Premsrirut, P.K., Tschaharganeh, D.F., et al.. (2017). Prediction of potent shRNAs with a sequential classification algorithm. Nat. Biotechnol. 35: 350–353, https://doi.org/10.1038/nbt.3807.Suche in Google Scholar PubMed PubMed Central
Philippidis, A. (2024). CASGEVY makes history as FDA approves first CRISPR/Cas9 genome edited therapy. Hum. Gene Ther. 35: 1–4, https://doi.org/10.1089/hum.2023.29263.bfs.Suche in Google Scholar PubMed
Prasad, R., Liu, Y., Deterding, L.J., Poltoratsky, V.P., Kedar, P.S., Horton, J.K., Kanno, S., Asagoshi, K., Hou, E.W., Khodyreva, S.N., et al.. (2007). HMGB1 is a cofactor in mammalian base excision repair. Mol. Cell 27: 829–841, https://doi.org/10.1016/j.molcel.2007.06.029.Suche in Google Scholar PubMed PubMed Central
Ramdzan, Z.M., Ginjala, V., Pinder, J.B., Chung, D., Donovan, C.M., Kaur, S., Leduy, L., Dellaire, G., Ganesan, S., and Nepveu, A. (2017). The DNA repair function of CUX1 contributes to radioresistance. Oncotarget 8: 19021–19038, https://doi.org/10.18632/oncotarget.14875.Suche in Google Scholar PubMed PubMed Central
Ramdzan, Z.M., Pal, R., Kaur, S., Leduy, L., Berube, G., Davoudi, S., Vadnais, C., and Nepveu, A. (2015). The function of CUX1 in oxidative DNA damage repair is needed to prevent premature senescence of mouse embryo fibroblasts. Oncotarget 6: 3613–3626, https://doi.org/10.18632/oncotarget.2919.Suche in Google Scholar PubMed PubMed Central
Ramdzan, Z.M., Vadnais, C., Pal, R., Vandal, G., Cadieux, C., Leduy, L., Davoudi, S., Hulea, L., Yao, L., Karnezis, A.N., et al.. (2014). RAS transformation requires CUX1-dependent repair of oxidative DNA damage. PLoS Biol. 12: e1001807, https://doi.org/10.1371/journal.pbio.1001807.Suche in Google Scholar PubMed PubMed Central
Ramdzan, Z.M., Vickridge, E., Li, L., Faraco, C.C.F., Djerir, B., Leduy, L., Marechal, A., and Nepveu, A. (2021). CUT domains stimulate pol beta enzymatic activities to accelerate completion of base excision repair. J. Mol. Biol. 433: 166806, https://doi.org/10.1016/j.jmb.2020.166806.Suche in Google Scholar PubMed
Rivera, B., Castellsague, E., Bah, I., van Kempen, L.C., and Foulkes, W.D. (2015). Biallelic NTHL1 mutations in a woman with multiple primary tumors. N. Engl. J. Med. 373: 1985–1986, https://doi.org/10.1056/NEJMc1506878.Suche in Google Scholar PubMed
Rocha, C.R.R., Lerner, L.K., Okamoto, O.K., Marchetto, M.C., and Menck, C.F.M. (2013). The role of DNA repair in the pluripotency and differentiation of human stem cells. Mutat. Res. 752: 25–35, https://doi.org/10.1016/j.mrrev.2012.09.001.Suche in Google Scholar PubMed
Saiki, Y., Yamazaki, Y., Yoshida, M., Katoh, O., and Nakamura, T. (2000). Human EVI9, a homologue of the mouse myeloid leukemia gene, is expressed in the hematopoietic progenitors and down-regulated during myeloid differentiation of HL60 cells. Genomics 70: 387–391, https://doi.org/10.1006/geno.2000.6385.Suche in Google Scholar PubMed
Sankaran, V.G., Menne, T.F., Xu, J., Akie, T.E., Lettre, G., Van Handel, B., Mikkola, H.K., Hirschhorn, J.N., Cantor, A.B., and Orkin, S.H. (2008). Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 322: 1839–1842, https://doi.org/10.1126/science.1165409.Suche in Google Scholar PubMed
Sankaran, V.G., Xu, J., Byron, R., Greisman, H.A., Fisher, C., Weatherall, D.J., Sabath, D.E., Groudine, M., Orkin, S.H., Premawardhena, A., et al.. (2011). A functional element necessary for fetal hemoglobin silencing. N. Engl. J. Med. 365: 807–814, https://doi.org/10.1056/NEJMoa1103070.Suche in Google Scholar PubMed PubMed Central
Sankaran, V.G., Xu, J., Ragoczy, T., Ippolito, G.C., Walkley, C.R., Maika, S.D., Fujiwara, Y., Ito, M., Groudine, M., Bender, M.A., et al.. (2009). Developmental and species-divergent globin switching are driven by BCL11A. Nature 460: 1093–1097, https://doi.org/10.1038/nature08243.Suche in Google Scholar PubMed PubMed Central
Satterwhite, E., Sonoki, T., Willis, T.G., Harder, L., Nowak, R., Arriola, E.L., Liu, H., Price, H.P., Gesk, S., Steinemann, D., et al.. (2001). The BCL11 gene family: involvement of BCL11A in lymphoid malignancies. Blood 98: 3413–3420, https://doi.org/10.1182/blood.v98.12.3413.Suche in Google Scholar PubMed
Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., and Lowe, S.W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602, https://doi.org/10.1016/s0092-8674(00)81902-9.Suche in Google Scholar PubMed
Shimbo, H., Yokoi, T., Aida, N., Mizuno, S., Suzumura, H., Nagai, J., Ida, K., Enomoto, Y., Hatano, C., and Kurosawa, K. (2017). Haploinsufficiency of BCL11A associated with cerebellar abnormalities in 2p15p16.1 deletion syndrome. Mol. Genet Genomic. Med. 5: 429–437, https://doi.org/10.1002/mgg3.289.Suche in Google Scholar PubMed PubMed Central
Simon, R., Wiegreffe, C., and Britsch, S. (2020). Bcl11 transcription factors regulate cortical development and function. Front. Mol. Neurosci. 13: 51, https://doi.org/10.3389/fnmol.2020.00051.Suche in Google Scholar PubMed PubMed Central
Singh, B., Bhat, N.K., and Bhat, H.K. (2012). Induction of NAD(P)H-quinone oxidoreductase 1 by antioxidants in female ACI rats is associated with decrease in oxidative DNA damage and inhibition of estrogen-induced breast cancer. Carcinogenesis 33: 156–163, https://doi.org/10.1093/carcin/bgr237.Suche in Google Scholar PubMed PubMed Central
Soblet, J., Dimov, I., Graf von Kalckreuth, C., Cano-Chervel, J., Baijot, S., Pelc, K., Sottiaux, M., Vilain, C., Smits, G., and Deconinck, N. (2018). BCL11A frameshift mutation associated with dyspraxia and hypotonia affecting the fine, gross, oral, and speech motor systems. Am. J. Med. Genet. A 176: 201–208, https://doi.org/10.1002/ajmg.a.38479.Suche in Google Scholar PubMed PubMed Central
Talseth-Palmer, B.A. (2017). The genetic basis of colonic adenomatous polyposis syndromes. Hered. Cancer Clin. Pract. 15: 5, https://doi.org/10.1186/s13053-017-0065-x.Suche in Google Scholar PubMed PubMed Central
Trachootham, D., Alexandre, J., and Huang, P. (2009). Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov. 8: 579–591, https://doi.org/10.1038/nrd2803.Suche in Google Scholar PubMed
Trachootham, D., Zhou, Y., Zhang, H., Demizu, Y., Chen, Z., Pelicano, H., Chiao, P.J., Achanta, G., Arlinghaus, R.B., Liu, J., et al.. (2006). Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10: 241–252, https://doi.org/10.1016/j.ccr.2006.08.009.Suche in Google Scholar PubMed
Trivedi, R.N., Almeida, K.H., Fornsaglio, J.L., Schamus, S., and Sobol, R.W. (2005). The role of base excision repair in the sensitivity and resistance to temozolomide-mediated cell death. Cancer Res. 65: 6394–6400, https://doi.org/10.1158/0008-5472.CAN-05-0715.Suche in Google Scholar PubMed
Trivedi, R.N., Wang, X.H., Jelezcova, E., Goellner, E.M., Tang, J.B., and Sobol, R.W. (2008). Human methyl purine DNA glycosylase and DNA polymerase beta expression collectively predict sensitivity to temozolomide. Mol. Pharmacol. 74: 505–516, https://doi.org/10.1124/mol.108.045112.Suche in Google Scholar PubMed PubMed Central
Vickridge, E., Faraco, C.C.F., Lo, F., Rahimian, H., Liu, Z.Y., Tehrani, P.S., Djerir, B., Ramdzan, Z.M., Leduy, L., Marechal, A., et al.. (2024). The function of BCL11B in base excision repair contributes to its dual role as an oncogene and a haplo-insufficient tumor suppressor gene. Nucleic Acids Res. 52: 223–242, https://doi.org/10.1093/nar/gkad1037.Suche in Google Scholar PubMed PubMed Central
Vickridge, E., Faraco, C.C.F., Tehrani, P.S., Ramdzan, Z.M., Djerir, B., Rahimian, H., Leduy, L., Maréchal, A., Gingras, A.C., and Nepveu, A. (2022). The DNA repair function of BCL11A suppresses senescence and promotes continued proliferation of triple-negative breast cancer cells. NAR Cancer 4: zcac028, https://doi.org/10.1093/narcan/zcac028.Suche in Google Scholar PubMed PubMed Central
Weinfeld, M., Mani, R.S., Abdou, I., Aceytuno, R.D., and Glover, J.N. (2011). Tidying up loose ends: the role of polynucleotide kinase/phosphatase in DNA strand break repair. Trends Bioc. Sci. 36: 262–271, https://doi.org/10.1016/j.tibs.2011.01.006.Suche in Google Scholar PubMed PubMed Central
Weniger, M.A., Pulford, K., Gesk, S., Ehrlich, S., Banham, A.H., Lyne, L., Martin-Subero, J.I., Siebert, R., Dyer, M.J., Moller, P., et al.. (2006). Gains of the proto-oncogene BCL11A and nuclear accumulation of BCL11A(XL) protein are frequent in primary mediastinal B-cell lymphoma. Leukemia 20: 1880–1882, https://doi.org/10.1038/sj.leu.2404324.Suche in Google Scholar PubMed
Weren, R.D., Ligtenberg, M.J., Kets, C.M., de Voer, R.M., Verwiel, E.T., Spruijt, L., van Zelst-Stams, W.A., Jongmans, M.C., Gilissen, C., Hehir-Kwa, J.Y., et al.. (2015). A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer. Nat. Genet. 47: 668–671, https://doi.org/10.1038/ng.3287.Suche in Google Scholar PubMed
Weyemi, U., Lagente-Chevallier, O., Boufraqech, M., Prenois, F., Courtin, F., Caillou, B., Talbot, M., Dardalhon, M., Al Ghuzlan, A., Bidart, J.M., et al.. (2012). ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene 31: 1117–1129, https://doi.org/10.1038/onc.2011.327.Suche in Google Scholar PubMed PubMed Central
Wiederhold, L., Leppard, J.B., Kedar, P., Karimi-Busheri, F., Rasouli-Nia, A., Weinfeld, M., Tomkinson, A.E., Izumi, T., Prasad, R., Wilson, S.H., et al.. (2004). AP endonuclease-independent DNA base excision repair in human cells. Mol. Cell 15: 209–220, https://doi.org/10.1016/j.molcel.2004.06.003.Suche in Google Scholar PubMed
Wienert, B., Martyn, G.E., Funnell, A.P.W., Quinlan, K.G.R., and Crossley, M. (2018). Wake-up sleepy gene: reactivating fetal globin for beta-hemoglobinopathies. Trends Genet. 34: 927–940, https://doi.org/10.1016/j.tig.2018.09.004.Suche in Google Scholar PubMed
Wilson, D.M. and Bohr, V.A. (2007). The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair 6: 544–559, https://doi.org/10.1016/j.dnarep.2006.10.017.Suche in Google Scholar PubMed
Yao, Z., Aboualizadeh, F., Kroll, J., Akula, I., Snider, J., Lyakisheva, A., Tang, P., Kotlyar, M., Jurisica, I., Boxem, M., et al.. (2020). Split Intein-Mediated Protein Ligation for detecting protein-protein interactions and their inhibition. Nat. Commun. 11: 2440, https://doi.org/10.1038/s41467-020-16299-1.Suche in Google Scholar PubMed PubMed Central
Yin, B., Delwel, R., Valk, P.J., Wallace, M.R., Loh, M.L., Shannon, K.M., and Largaespada, D.A. (2009). A retroviral mutagenesis screen reveals strong cooperation between Bcl11a overexpression and loss of the Nf1 tumor suppressor gene. Blood 113: 1075–1085, https://doi.org/10.1182/blood-2008-03-144436.Suche in Google Scholar PubMed PubMed Central
Yin, J., Zhang, F., Tao, H., Ma, X., Su, G., Xie, X., Xu, Z., Zheng, Y., Liu, H., He, C., et al.. (2016). BCL11A expression in acute phase chronic myeloid leukemia. Leuk Res. 47: 88–92, https://doi.org/10.1016/j.leukres.2016.05.018.Suche in Google Scholar PubMed
Yoshida, M., Nakashima, M., Okanishi, T., Kanai, S., Fujimoto, A., Itomi, K., Morimoto, M., Saitsu, H., Kato, M., Matsumoto, N., et al.. (2018). Identification of novel BCL11A variants in patients with epileptic encephalopathy: expanding the phenotypic spectrum. Clin. Genet. 93: 368–373, https://doi.org/10.1111/cge.13067.Suche in Google Scholar PubMed
Young, T.W., Mei, F.C., Yang, G., Thompson-Lanza, J.A., Liu, J., and Cheng, X. (2004). Activation of antioxidant pathways in ras-mediated oncogenic transformation of human surface ovarian epithelial cells revealed by functional proteomics and mass spectrometry. Cancer Res. 64: 4577–4584, https://doi.org/10.1158/0008-5472.CAN-04-0222.Suche in Google Scholar PubMed
Zhou, J., Ahn, J., Wilson, S.H., and Prives, C. (2001). A role for p53 in base excision repair. EMBO J. 20: 914–923, https://doi.org/10.1093/emboj/20.4.914.Suche in Google Scholar PubMed PubMed Central
Zhou, X., Vink, M., Klaver, B., Berkhout, B., and Das, A.T. (2006). Optimization of the Tet-On system for regulated gene expression through viral evolution. Gene Ther. 13: 1382–1390, https://doi.org/10.1038/sj.gt.3302780.Suche in Google Scholar PubMed
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review
- Structure, function, and recombinant production of EGFL7
- Research Articles/Short Communications
- Protein Structure and Function
- Zinc and copper effect mechanical cell adhesion properties of the amyloid precursor protein
- The BCL11A transcription factor stimulates the enzymatic activities of the OGG1 DNA glycosylase
- Cell Biology and Signaling
- Bioprospecting hydroxylated chalcones in in vitro model of ischemia-reoxygenation and probing NOX4 interactions via molecular docking
- Carnosic acid prevents heat stress-induced oxidative damage by regulating heat-shock proteins and apoptotic proteins in mouse testis
- Novel Techniques
- Simultaneous spectral illumination of microplates for high-throughput optogenetics and photobiology
- A platform for the early selection of non-competitive antibody-fragments from yeast surface display libraries
Artikel in diesem Heft
- Frontmatter
- Review
- Structure, function, and recombinant production of EGFL7
- Research Articles/Short Communications
- Protein Structure and Function
- Zinc and copper effect mechanical cell adhesion properties of the amyloid precursor protein
- The BCL11A transcription factor stimulates the enzymatic activities of the OGG1 DNA glycosylase
- Cell Biology and Signaling
- Bioprospecting hydroxylated chalcones in in vitro model of ischemia-reoxygenation and probing NOX4 interactions via molecular docking
- Carnosic acid prevents heat stress-induced oxidative damage by regulating heat-shock proteins and apoptotic proteins in mouse testis
- Novel Techniques
- Simultaneous spectral illumination of microplates for high-throughput optogenetics and photobiology
- A platform for the early selection of non-competitive antibody-fragments from yeast surface display libraries