Abstract
Sensory neurons serve to receive and transmit a wide range of information about the conditions of the world around us as well as the external and internal state of our body. Sensitisation of these nerve cells, i.e. becoming more sensitive to stimuli or the emergence or intensification of spontaneous activity, for example in the context of inflammation or nerve injury, can lead to chronic diseases such as neuropathic pain. For many of these disorders there are only very limited treatment options and in order to find and establish new therapeutic approaches, research into the exact causes of sensitisation with the elucidation of the underlying mechanisms and the identification of the molecular components is therefore essential. These components include plasma membrane receptors and ion channels that are involved in signal reception and transmission. Members of the transient receptor potential (TRP) channel family are also expressed in sensory neurons and some of them play a crucial role in temperature perception. This review article focuses on the heat-sensitive TRPM3 and the cold-sensitive TRPM8 (and TRPA1) channels and their importance in sensitisation of dorsal root ganglion sensory neurons is discussed based on studies related to inflammation and injury- as well as chemotherapy-induced neuropathy.
Acknowledgements
The author would like to thank all members of the Department of Experimental Pain Research for their cooperation and continuous support.
-
Research ethics: Not applicable.
-
Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
Akhilesh, Uniyal, A., Gadepalli, A., Tiwari, V., Allani, M., Chouhan, D., Ummadisetty, O., Verma, N., and Tiwari, V. (2022). Unlocking the potential of TRPV1 based siRNA therapeutics for the treatment of chemotherapy-induced neuropathic pain. Life Sci. 288: 120187, https://doi.org/10.1016/j.lfs.2021.120187.Suche in Google Scholar
Akhilesh, Uniyal, A., Mehta, A., and Tiwari, V. (2024). Combination chemotherapy in rodents: a model for chemotherapy-induced neuropathic pain and pharmacological screening. Metab. Brain Dis. 39: 43–65, https://doi.org/10.1007/s11011-023-01315-2.Suche in Google Scholar
Akiyama, T., Ivanov, M., Nagamine, M., Davoodi, A., Carstens, M.I., Ikoma, A., Cevikbas, F., Kempkes, C., Buddenkotte, J., Steinhoff, M., et al.. (2016). Involvement of TRPV4 in serotonin-evoked scratching. J. Invest. Dermatol. 136: 154–160, https://doi.org/10.1038/jid.2015.388.Suche in Google Scholar
Alkhatib, O., da Costa, R., Gentry, C., Quallo, T., Bevan, S., Andersson, D.A., Freichel, M., Philipp, S.E., and Andersson, D.A. (2019). Promiscuous G-protein-coupled receptor inhibition of transient receptor potential melastatin 3 ion channels by Gβγ subunits. J. Neurosci. 39: 7840–7852, https://doi.org/10.1523/jneurosci.0882-19.2019.Suche in Google Scholar
Almeida, M.C., Hew-Butler, T., Soriano, R.N., Rao, S., Wang, W., Wang, J., Tamayo, N., Oliveira, D.L., Nucci, T.B., Aryal, P., et al.. (2012). Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature. J. Neurosci. 32: 2086–2099, https://doi.org/10.1523/jneurosci.5606-11.2012.Suche in Google Scholar
Aloi, V.D., Pinto, S., Van Bree, R., Luyten, K., Voets, T., and Vriens, J. (2023). TRPM3 as a novel target to alleviate acute oxaliplatin-induced peripheral neuropathic pain. Pain 164: 2060–2069, https://doi.org/10.1097/j.pain.0000000000002906.Suche in Google Scholar
Antoniazzi, C.T.D., Ruviaro, N.A., Peres, D.S., Rodrigues, P., Viero, F.T., and Trevisan, G. (2024). Targeting TRPV4 channels for cancer pain relief. Cancers (Basel) 16, https://doi.org/10.3390/cancers16091703.Suche in Google Scholar
Asuthkar, S., Demirkhanyan, L., Sun, X., Elustondo, P.A., Krishnan, V., Baskaran, P., Velpula, K.K., Thyagarajan, B., Pavlov, E.V., and Zakharian, E. (2015). The TRPM8 protein is a testosterone receptor: II. Functional evidence for an ionotropic effect of testosterone on TRPM8. J. Biol. Chem. 290: 2670–2688, https://doi.org/10.1074/jbc.m114.610873.Suche in Google Scholar
Babes, A., Zorzon, D., and Reid, G. (2004). Two populations of cold-sensitive neurons in rat dorsal root ganglia and their modulation by nerve growth factor. Eur. J. Neurosci. 20: 2276–2282, https://doi.org/10.1111/j.1460-9568.2004.03695.x.Suche in Google Scholar
Badheka, D., Yudin, Y., Borbiro, I., Hartle, C.M., Yazici, A., Mirshahi, T., and Rohacs, T. (2017). Inhibition of transient receptor potential melastatin 3 ion channels by G-protein βγ subunits. eLife 6, https://doi.org/10.7554/elife.26147.Suche in Google Scholar
Bannister, K., Sachau, J., Baron, R., and Dickenson, A.H. (2020). Neuropathic pain: mechanism-based therapeutics. Annu. Rev. Pharmacol. Toxicol. 60: 257–274, https://doi.org/10.1146/annurev-pharmtox-010818-021524.Suche in Google Scholar
Basso, L. and Altier, C. (2017). Transient receptor potential channels in neuropathic pain. Curr. Opin. Pharmacol. 32: 9–15, https://doi.org/10.1016/j.coph.2016.10.002.Suche in Google Scholar
Becker, L.L., Horn, D., Boschann, F., Van Hoeymissen, E., Voets, T., Vriens, J., Prager, C., and Kaindl, A.M. (2023). Primidone improves symptoms in TRPM3-linked developmental and epileptic encephalopathy with spike-and-wave activation in sleep. Epilepsia 64: e61–e68, https://doi.org/10.1111/epi.17586.Suche in Google Scholar
Behrendt, M. (2019). Transient receptor potential channels in the context of nociception and pain - recent insights into TRPM3 properties and function. Biol. Chem. 400: 917–926, https://doi.org/10.1515/hsz-2018-0455.Suche in Google Scholar
Behrendt, M., Gruss, F., Enzeroth, R., Dembla, S., Zhao, S., Crassous, P.A., Mohr, F., Nys, M., Louros, N., Gallardo, R., et al.. (2020). The structural basis for an on-off switch controlling Gβγ-mediated inhibition of TRPM3 channels. Proc. Natl. Acad. Sci. U. S. A. 117: 29090–29100, https://doi.org/10.1073/pnas.2001177117.Suche in Google Scholar
Behrendt, M., Solinski, H.J., Schmelz, M., and Carr, R. (2022). Bradykinin-induced sensitization of transient receptor potential channel melastatin 3 calcium responses in mouse nociceptive neurons. Front. Cell Neurosci. 16: 843225, https://doi.org/10.3389/fncel.2022.843225.Suche in Google Scholar
Bertamino, A., Ostacolo, C., Medina, A., Di Sarno, V., Lauro, G., Ciaglia, T., Vestuto, V., Pepe, G., Basilicata, M.G., Musella, S., et al.. (2020). Exploration of TRPM8 binding sites by β-carboline-based antagonists and their in vitro characterization and in vivo analgesic activities. J. Med. Chem. 63: 9672–9694, https://doi.org/10.1021/acs.jmedchem.0c00816.Suche in Google Scholar
Binder, A., Stengel, M., Klebe, O., Wasner, G., and Baron, R. (2011). Topical high-concentration (40%) menthol-somatosensory profile of a human surrogate pain model. J. Pain 12: 764–773, https://doi.org/10.1016/j.jpain.2010.12.013.Suche in Google Scholar
Bonache, M.A., Llabres, P.J., Martin-Escura, C., De la Torre-Martinez, R., Medina-Peris, A., Butron, L., Gomez-Monterrey, I., Roa, A.M., Fernandez-Ballester, G., Ferrer-Montiel, A., et al.. (2021). Phenylalanine-derived β-lactam TRPM8 modulators. Configuration effect on the antagonist activity. Int. J. Mol. Sci. 22, https://doi.org/10.3390/ijms22052370.Suche in Google Scholar
Bonache, M.A., Martin-Escura, C., de la Torre Martinez, R., Medina, A., Gonzalez-Rodriguez, S., Francesch, A., Cuevas, C., Roa, A.M., Fernandez-Ballester, G., Ferrer-Montiel, A., et al.. (2020). Highly functionalized β-lactams and 2-ketopiperazines as TRPM8 antagonists with antiallodynic activity. Sci. Rep. 10: 14154, https://doi.org/10.1038/s41598-020-70691-x.Suche in Google Scholar
Bonnington, J.K. and McNaughton, P.A. (2003). Signalling pathways involved in the sensitisation of mouse nociceptive neurones by nerve growth factor. J. Physiol. 551: 433–446, https://doi.org/10.1113/jphysiol.2003.039990.Suche in Google Scholar
Calvo, R.R., Meegalla, S.K., Parks, D.J., Parsons, W.H., Ballentine, S.K., Lubin, M.L., Schneider, C., Colburn, R.W., Flores, C.M., and Player, M.R. (2012). Discovery of vinylcycloalkyl-substituted benzimidazole TRPM8 antagonists effective in the treatment of cold allodynia. Bioorg. Med. Chem. Lett. 22: 1903–1907, https://doi.org/10.1016/j.bmcl.2012.01.060.Suche in Google Scholar
Cao, S., Li, Q., Hou, J., Li, Z., Cao, X., Liu, X., and Qin, B. (2019). Intrathecal TRPM8 blocking attenuates cold hyperalgesia via PKC and NF-κB signaling in the dorsal root ganglion of rats with neuropathic pain. J. Pain Res. 12: 1287–1296, https://doi.org/10.2147/jpr.s197168.Suche in Google Scholar
Cappello, G., Spezzaferro, M., Grossi, L., Manzoli, L., and Marzio, L. (2007). Peppermint oil (Mintoil) in the treatment of irritable bowel syndrome: a prospective double blind placebo-controlled randomized trial. Dig. Liver Dis. 39: 530–536, https://doi.org/10.1016/j.dld.2007.02.006.Suche in Google Scholar
Caspani, O., Zurborg, S., Labuz, D., and Heppenstall, P.A. (2009). The contribution of TRPM8 and TRPA1 channels to cold allodynia and neuropathic pain. PLoS One 4: e7383, https://doi.org/10.1371/journal.pone.0007383.Suche in Google Scholar
Chaudhari, S.S., Kadam, A.B., Khairatkar-Joshi, N., Mukhopadhyay, I., Karnik, P.V., Raghuram, A., Rao, S.S., Vaiyapuri, T.S., Wale, D.P., Bhosale, V.M., et al.. (2013). Synthesis and pharmacological evaluation of novel N-aryl-3,4-dihydro-1’H-spiro[chromene-2,4’-piperidine]-1’-carboxamides as TRPM8 antagonists. Bioorg. Med. Chem. 21: 6542–6553, https://doi.org/10.1016/j.bmc.2013.08.031.Suche in Google Scholar
Chuang, H.H., Prescott, E.D., Kong, H., Shields, S., Jordt, S.E., Basbaum, A.I., Chao, M.V., and Julius, D. (2001). Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411: 957–962, https://doi.org/10.1038/35082088.Suche in Google Scholar
Cockburn, E., Kamal, S., Chan, A., Rao, V., Liu, T., Huang, J.Y., and Segal, J.P. (2023). Crohn’s disease: an update. Clin. Med. (Lond) 23: 549–557, https://doi.org/10.7861/clinmed.2023-0493.Suche in Google Scholar
Colburn, R.W., Lubin, M.L., Stone, D.J.Jr., Wang, Y., Lawrence, D., D’Andrea, M.R., Brandt, M.R., Liu, Y., Flores, C.M., and Qin, N. (2007). Attenuated cold sensitivity in TRPM8 null mice. Neuron 54: 379–386, https://doi.org/10.1016/j.neuron.2007.04.017.Suche in Google Scholar
Colvin, L.A., Johnson, P.R., Mitchell, R., Fleetwood-Walker, S.M., and Fallon, M. (2008). From bench to bedside: a case of rapid reversal of bortezomib-induced neuropathic pain by the TRPM8 activator, menthol. J. Clin. Oncol. 26: 4519–4520, https://doi.org/10.1200/jco.2008.18.5017.Suche in Google Scholar
Dangi, A. and Sharma, S.S. (2024). Pharmacological agents targeting transient receptor potential (TRP) channels in neuropathic pain: preclinical and clinical status. Eur. J. Pharmacol. 980: 176845, https://doi.org/10.1016/j.ejphar.2024.176845.Suche in Google Scholar
De Caro, C., Cristiano, C., Avagliano, C., Bertamino, A., Ostacolo, C., Campiglia, P., Gomez-Monterrey, I., La Rana, G., Gualillo, O., Calignano, A., et al.. (2019). Characterization of new TRPM8 modulators in pain perception. Int. J. Mol. Sci. 20, https://doi.org/10.3390/ijms20225544.Suche in Google Scholar
De Caro, C., Russo, R., Avagliano, C., Cristiano, C., Calignano, A., Aramini, A., Bianchini, G., Allegretti, M., and Brandolini, L. (2018). Antinociceptive effect of two novel transient receptor potential melastatin 8 antagonists in acute and chronic pain models in rat. Br. J. Pharmacol. 175: 1691–1706, https://doi.org/10.1111/bph.14177.Suche in Google Scholar
de Jong, P.R., Takahashi, N., Peiris, M., Bertin, S., Lee, J., Gareau, M.G., Paniagua, A., Harris, A.R., Herdman, D.S., Corr, M., et al.. (2015). TRPM8 on mucosal sensory nerves regulates colitogenic responses by innate immune cells via CGRP. Mucosal Immunol. 8: 491–504, https://doi.org/10.1038/mi.2014.82.Suche in Google Scholar
Dembla, S., Behrendt, M., Mohr, F., Goecke, C., Sondermann, J., Schneider, F.M., Schmidt, M., Stab, J., Enzeroth, R., Leitner, M.G., et al.. (2017). Anti-nociceptive action of peripheral mu-opioid receptors by Gβγ protein-mediated inhibition of TRPM3 channels. Elife 6, https://doi.org/10.7554/elife.26280.Suche in Google Scholar
Descoeur, J., Pereira, V., Pizzoccaro, A., Francois, A., Ling, B., Maffre, V., Couette, B., Busserolles, J., Courteix, C., Noel, J., et al.. (2011). Oxaliplatin-induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors. EMBO Mol. Med. 3: 266–278, https://doi.org/10.1002/emmm.201100134.Suche in Google Scholar
Diver, M.M., Lin King, J.V., Julius, D., and Cheng, Y. (2022). Sensory TRP channels in three dimensions. Annu. Rev. Biochem. 91: 629–649, https://doi.org/10.1146/annurev-biochem-032620-105738.Suche in Google Scholar
Dvornikova, K.A., Platonova, O.N., and Bystrova, E.Y. (2024). The role of TRP channels in sepsis and colitis. Int. J. Mol. Sci. 25, https://doi.org/10.3390/ijms25094784.Suche in Google Scholar
Fernandez-Ballester, G., Fernandez-Carvajal, A., and Ferrer-Montiel, A. (2023). Progress in the structural basis of thermoTRP channel polymodal gating. Int. J. Mol. Sci. 24, https://doi.org/10.3390/ijms24010743.Suche in Google Scholar
Finnerup, N.B., Kuner, R., and Jensen, T.S. (2021). Neuropathic pain: from mechanisms to treatment. Physiol. Rev. 101: 259–301, https://doi.org/10.1152/physrev.00045.2019.Suche in Google Scholar
Frederick, J., Buck, M.E., Matson, D.J., and Cortright, D.N. (2007). Increased TRPA1, TRPM8, and TRPV2 expression in dorsal root ganglia by nerve injury. Biochem. Biophys. Res. Commun. 358: 1058–1064, https://doi.org/10.1016/j.bbrc.2007.05.029.Suche in Google Scholar
Gauchan, P., Andoh, T., Kato, A., and Kuraishi, Y. (2009). Involvement of increased expression of transient receptor potential melastatin 8 in oxaliplatin-induced cold allodynia in mice. Neurosci. Lett. 458: 93–95, https://doi.org/10.1016/j.neulet.2009.04.029.Suche in Google Scholar
Gold, M.S., Pineda-Farias, J.B., Close, D., Patel, S., Johnston, P.A., Stocker, S.D., and Journigan, V.B. (2024). Subcutaneous administration of a novel TRPM8 antagonist reverses cold hypersensitivity while attenuating the drop in core body temperature. Br. J. Pharmacol. 181: 3527–3543, https://doi.org/10.1111/bph.16429.Suche in Google Scholar
Gonzalez, A., Ugarte, G., Restrepo, C., Herrera, G., Pina, R., Gomez-Sanchez, J.A., Pertusa, M., Orio, P., and Madrid, R. (2017). Role of the excitability brake potassium current I(KD) in cold allodynia induced by chronic peripheral nerve injury. J. Neurosci. 37: 3109–3126, https://doi.org/10.1523/jneurosci.3553-16.2017.Suche in Google Scholar
Gonzalez-Ramirez, R., Chen, Y., Liedtke, W.B., and Morales-Lazaro, S.L. (2017). TRP channels and pain (chapter 8). In: Rosenbaum Emir, T.L. (Ed.), Neurobiology of TRP channels. Frontiers in Neuroscience. CRC Press/Taylor & Francis, Boca Raton (FL), pp. 125–147.10.4324/9781315152837-8Suche in Google Scholar
Harrington, A.M., Hughes, P.A., Martin, C.M., Yang, J., Castro, J., Isaacs, N.J., Blackshaw, A.L., and Brierley, S.M. (2011). A novel role for TRPM8 in visceral afferent function. Pain 152: 1459–1468, https://doi.org/10.1016/j.pain.2011.01.027.Suche in Google Scholar
Hatem, S., Attal, N., Willer, J.C., and Bouhassira, D. (2006). Psychophysical study of the effects of topical application of menthol in healthy volunteers. Pain 122: 190–196, https://doi.org/10.1016/j.pain.2006.01.026.Suche in Google Scholar
Held, K., Van Hoeymissen, E., Dallali, I., Persoons, E., Bazeli, B., Wuyts, C., Mulier, M., Pinto, S., Janssens, A., Voets, T., et al.. (2024). A duo of redox-sensitive pore-loop cysteines controls the activity of the neural ion channel TRPM3. ResearchSquare. https://doi.org/10.21203/rs.3.rs-3911792/v1.10.21203/rs.3.rs-3911792/v1Suche in Google Scholar
Held, K., Voets, T., and Vriens, J. (2015). TRPM3 in temperature sensing and beyond. Temperature (Austin) 2: 201–213, https://doi.org/10.4161/23328940.2014.988524.Suche in Google Scholar
Hosoya, T., Matsumoto, K., Tashima, K., Nakamura, H., Fujino, H., Murayama, T., and Horie, S. (2014). TRPM8 has a key role in experimental colitis-induced visceral hyperalgesia in mice. Neurogastroenterol. Motil. 26: 1112–1121, https://doi.org/10.1111/nmo.12368.Suche in Google Scholar
Hu, X., Du, L., Liu, S., Lan, Z., Zang, K., Feng, J., Zhao, Y., Yang, X., Xie, Z., Wang, P.L., et al.. (2023). A TRPV4-dependent neuroimmune axis in the spinal cord promotes neuropathic pain. J. Clin. Invest. 133, https://doi.org/10.1172/jci161507.Suche in Google Scholar
Izquierdo, C., Martin-Martinez, M., Gomez-Monterrey, I., and Gonzalez-Muniz, R. (2021). TRPM8 channels: advances in structural studies and pharmacological modulation. Int. J. Mol. Sci. 22, https://doi.org/10.3390/ijms22168502.Suche in Google Scholar
Jennings, E.M., Sullivan, L.C., Jamshidi, R.J., LoCoco, P.M., Smith, H.R., Chavera, T.S., Berg, K.A., and Clarke, W.P. (2022). Age-related changes in peripheral nociceptor function. Neuropharmacology 216: 109187, https://doi.org/10.1016/j.neuropharm.2022.109187.Suche in Google Scholar
Ji, R.R., Samad, T.A., Jin, S.X., Schmoll, R., and Woolf, C.J. (2002). p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36: 57–68, https://doi.org/10.1016/s0896-6273(02)00908-x.Suche in Google Scholar
Journigan, V.B., Feng, Z., Rahman, S., Wang, Y., Amin, A., Heffner, C.E., Bachtel, N., Wang, S., Gonzalez-Rodriguez, S., Fernandez-Carvajal, A., et al.. (2020). Structure-based design of novel biphenyl amide antagonists of human transient receptor potential cation channel subfamily M member 8 channels with potential implications in the treatment of sensory neuropathies. ACS Chem. Neurosci. 11: 268–290, https://doi.org/10.1021/acschemneuro.9b00404.Suche in Google Scholar
Kashio, M. and Tominaga, M. (2022). TRP channels in thermosensation. Curr. Opin. Neurobiol. 75: 102591, https://doi.org/10.1016/j.conb.2022.102591.Suche in Google Scholar
Katanosaka, K., Banik, R.K., Giron, R., Higashi, T., Tominaga, M., and Mizumura, K. (2008). Contribution of TRPV1 to the bradykinin-evoked nociceptive behavior and excitation of cutaneous sensory neurons. Neurosci. Res. 62: 168–175, https://doi.org/10.1016/j.neures.2008.08.004.Suche in Google Scholar
Katsura, H., Obata, K., Mizushima, T., Yamanaka, H., Kobayashi, K., Dai, Y., Fukuoka, T., Tokunaga, A., Sakagami, M., and Noguchi, K. (2006). Antisense knock down of TRPA1, but not TRPM8, alleviates cold hyperalgesia after spinal nerve ligation in rats. Exp. Neurol. 200: 112–123, https://doi.org/10.1016/j.expneurol.2006.01.031.Suche in Google Scholar
Khalil, M., Babes, A., Lakra, R., Forsch, S., Reeh, P.W., Wirtz, S., Becker, C., Neurath, M.F., and Engel, M.A. (2016). Transient receptor potential melastatin 8 ion channel in macrophages modulates colitis through a balance-shift in TNF-α and interleukin-10 production. Mucosal Immunol. 9: 1500–1513, https://doi.org/10.1038/mi.2016.16.Suche in Google Scholar
Kim, K.J., Yoon, Y.W., and Chung, J.M. (1997). Comparison of three rodent neuropathic pain models. Exp. Brain Res. 113: 200–206, https://doi.org/10.1007/bf02450318.Suche in Google Scholar
Kim, S., Barry, D.M., Liu, X.Y., Yin, S., Munanairi, A., Meng, Q.T., Cheng, W., Mo, P., Wan, L., Liu, S.B., et al.. (2016). Facilitation of TRPV4 by TRPV1 is required for itch transmission in some sensory neuron populations. Sci. Signal 9: ra71, https://doi.org/10.1126/scisignal.aaf1047.Suche in Google Scholar
King, J.W., Bennett, A.S.W., Wood, H.M., Baker, C.C., Alsaadi, H., Topley, M., Vanner, S.A., Reed, D.E., and Lomax, A.E. (2024). Expression and function of transient receptor potential melastatin 3 in the spinal afferent innervation of the mouse colon. Am. J. Physiol. Gastrointest. Liver Physiol. 326: G176–G186, https://doi.org/10.1152/ajpgi.00230.2023.Suche in Google Scholar
Kistner, K., Siklosi, N., Babes, A., Khalil, M., Selescu, T., Zimmermann, K., Wirtz, S., Becker, C., Neurath, M.F., Reeh, P.W., et al.. (2016). Systemic desensitization through TRPA1 channels by capsazepine and mustard oil - a novel strategy against inflammation and pain. Sci. Rep. 6: 28621, https://doi.org/10.1038/srep28621.Suche in Google Scholar
Knowlton, W.M., Daniels, R.L., Palkar, R., McCoy, D.D., and McKemy, D.D. (2011). Pharmacological blockade of TRPM8 ion channels alters cold and cold pain responses in mice. PLoS One 6: e25894, https://doi.org/10.1371/journal.pone.0025894.Suche in Google Scholar
Knowlton, W.M., Palkar, R., Lippoldt, E.K., McCoy, D.D., Baluch, F., Chen, J., and McKemy, D.D. (2013). A sensory-labeled line for cold: TRPM8-expressing sensory neurons define the cellular basis for cold, cold pain, and cooling-mediated analgesia. J. Neurosci. 33: 2837–2848, https://doi.org/10.1523/jneurosci.1943-12.2013.Suche in Google Scholar
Koivisto, A.P., Belvisi, M.G., Gaudet, R., and Szallasi, A. (2022). Advances in TRP channel drug discovery: from target validation to clinical studies. Nat. Rev. Drug. Discov. 21: 41–59, https://doi.org/10.1038/s41573-021-00268-4.Suche in Google Scholar
Koivisto, A.P., Voets, T., Iadarola, M.J., and Szallasi, A. (2024). Targeting TRP channels for pain relief: a review of current evidence from bench to bedside. Curr. Opin. Pharmacol. 75: 102447, https://doi.org/10.1016/j.coph.2024.102447.Suche in Google Scholar
Krügel, U., Straub, I., Beckmann, H., and Schaefer, M. (2017). Primidone inhibits TRPM3 and attenuates thermal nociception in vivo. Pain 158: 856–867, https://doi.org/10.1097/j.pain.0000000000000846.Suche in Google Scholar
Le Berre, C., Honap, S., and Peyrin-Biroulet, L. (2023). Ulcerative colitis. Lancet 402: 571–584, https://doi.org/10.1016/s0140-6736(23)00966-2.Suche in Google Scholar
Linte, R.M., Ciobanu, C., Reid, G., and Babes, A. (2007). Desensitization of cold- and menthol-sensitive rat dorsal root ganglion neurones by inflammatory mediators. Exp. Brain Res. 178: 89–98, https://doi.org/10.1007/s00221-006-0712-3.Suche in Google Scholar
Lippoldt, E.K., Elmes, R.R., McCoy, D.D., Knowlton, W.M., and McKemy, D.D. (2013). Artemin, a glial cell line-derived neurotrophic factor family member, induces TRPM8-dependent cold pain. J. Neurosci. 33: 12543–12552, https://doi.org/10.1523/jneurosci.5765-12.2013.Suche in Google Scholar
Lolignier, S., Gkika, D., Andersson, D., Leipold, E., Vetter, I., Viana, F., Noel, J., and Busserolles, J. (2016). New insight in cold pain: role of ion channels, modulation, and clinical perspectives. J. Neurosci. 36: 11435–11439, https://doi.org/10.1523/jneurosci.2327-16.2016.Suche in Google Scholar
Lu, W., Yang, X., Zhong, W., Chen, G., Guo, X., Ye, Q., Xu, Y., Qi, Z., Ye, Y., Zhang, J., et al.. (2024). METTL14-mediated m6A epitranscriptomic modification contributes to chemotherapy-induced neuropathic pain by stabilizing GluN2A expression via IGF2BP2. J. Clin. Invest. 134: e174847, https://doi.org/10.1172/jci174847.Suche in Google Scholar
Luo, J., Feng, J., Yu, G., Yang, P., Mack, M.R., Du, J., Yu, W., Qian, A., Zhang, Y., Liu, S., et al.. (2018). Transient receptor potential vanilloid 4-expressing macrophages and keratinocytes contribute differentially to allergic and nonallergic chronic itch. J. Allergy Clin. Immunol. 141: 608–619.e607, https://doi.org/10.1016/j.jaci.2017.05.051.Suche in Google Scholar
Madrid, R., de la Pena, E., Donovan-Rodriguez, T., Belmonte, C., and Viana, F. (2009). Variable threshold of trigeminal cold-thermosensitive neurons is determined by a balance between TRPM8 and Kv1 potassium channels. J. Neurosci. 29: 3120–3131, https://doi.org/10.1523/jneurosci.4778-08.2009.Suche in Google Scholar
Marcotti, A., Fernandez-Trillo, J., Gonzalez, A., Vizcaino-Escoto, M., Ros-Arlanzon, P., Romero, L., Vela, J.M., Gomis, A., Viana, F., and de la Pena, E. (2022). TRPA1 modulation by Sigma-1 receptor prevents oxaliplatin-induced painful peripheral neuropathy. Brain 146: 475–491, https://doi.org/10.1093/brain/awac273.Suche in Google Scholar
Martin-Escura, C., Bonache, M.A., Medina, J.A., Medina-Peris, A., De Andres-Lopez, J., Gonzalez-Rodriguez, S., Kerselaers, S., Fernandez-Ballester, G., Voets, T., Ferrer-Montiel, A., et al.. (2023). Beta-lactam TRPM8 antagonists derived from phe-phenylalaninol conjugates: structure-activity relationships and antiallodynic activity. Int. J. Mol. Sci. 24, https://doi.org/10.3390/ijms241914894.Suche in Google Scholar
Martin-Escura, C., Medina-Peris, A., Spear, L.A., de la Torre Martinez, R., Olivos-Ore, L.A., Barahona, M.V., Gonzalez-Rodriguez, S., Fernandez-Ballester, G., Fernandez-Carvajal, A., Artalejo, A.R., et al.. (2022). β-Lactam TRPM8 antagonist RGM8-51 displays antinociceptive activity in different animal models. Int. J. Mol. Sci. 23, https://doi.org/10.3390/ijms23052692.Suche in Google Scholar
Masuho, I., Chavali, S., Muntean, B.S., Skamangas, N.K., Simonyan, K., Patil, D.N., Kramer, G.M., Ozelius, L., Babu, M.M., and Martemyanov, K.A. (2018). Molecular deconvolution platform to establish disease mechanisms by surveying GPCR signaling. Cell Rep. 24: 557–568.e555, https://doi.org/10.1016/j.celrep.2018.06.080.Suche in Google Scholar
Matos-Cruz, V., Schneider, E.R., Mastrotto, M., Merriman, D.K., Bagriantsev, S.N., and Gracheva, E.O. (2017). Molecular prerequisites for diminished cold sensitivity in ground squirrels and hamsters. Cell Rep. 21: 3329–3337, https://doi.org/10.1016/j.celrep.2017.11.083.Suche in Google Scholar
Mattar, M., Umutoni, F., Hassan, M.A., Wamburu, M.W., Turner, R., Patton, J.S., Chen, X., and Lei, W. (2024). Chemotherapy-induced peripheral neuropathy: a recent update on pathophysiology and treatment. Life (Basel) 14, https://doi.org/10.3390/life14080991.Suche in Google Scholar
Merat, S., Khalili, S., Mostajabi, P., Ghorbani, A., Ansari, R., and Malekzadeh, R. (2010). The effect of enteric-coated, delayed-release peppermint oil on irritable bowel syndrome. Dig. Dis. Sci. 55: 1385–1390, https://doi.org/10.1007/s10620-009-0854-9.Suche in Google Scholar
Mohandass, A., Krishnan, V., Gribkova, E.D., Asuthkar, S., Baskaran, P., Nersesyan, Y., Hussain, Z., Wise, L.M., George, R.E., Stokes, N., et al.. (2020). TRPM8 as the rapid testosterone signaling receptor: implications in the regulation of dimorphic sexual and social behaviors. FASEB J. 34: 10887–10906, https://doi.org/10.1096/fj.202000794r.Suche in Google Scholar
Mueller-Tribbensee, S.M., Karna, M., Khalil, M., Neurath, M.F., Reeh, P.W., and Engel, M.A. (2015). Differential contribution of TRPA1, TRPV4 and TRPM8 to colonic nociception in mice. PLoS One 10: e0128242, https://doi.org/10.1371/journal.pone.0128242.Suche in Google Scholar
Mulier, M., Van Ranst, N., Corthout, N., Munck, S., Vanden Berghe, P., Vriens, J., Voets, T., and Moilanen, L. (2020). Upregulation of TRPM3 in nociceptors innervating inflamed tissue. Elife 9, https://doi.org/10.7554/elife.61103.Suche in Google Scholar
Nakagawa, T. and Kaneko, S. (2017). Roles of transient receptor potential ankyrin 1 in oxaliplatin-induced peripheral neuropathy. Biol. Pharm. Bull. 40: 947–953, https://doi.org/10.1248/bpb.b17-00243.Suche in Google Scholar
Namer, B., Kleggetveit, I.P., Handwerker, H., Schmelz, M., and Jorum, E. (2008). Role of TRPM8 and TRPA1 for cold allodynia in patients with cold injury. Pain 139: 63–72, https://doi.org/10.1016/j.pain.2008.03.007.Suche in Google Scholar
Nassini, R., Gees, M., Harrison, S., De Siena, G., Materazzi, S., Moretto, N., Failli, P., Preti, D., Marchetti, N., Cavazzini, A., et al.. (2011). Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain 152: 1621–1631, https://doi.org/10.1016/j.pain.2011.02.051.Suche in Google Scholar
Naziroglu, M. and Braidy, N. (2017). Thermo-sensitive TRP channels: novel targets for treating chemotherapy-induced peripheral pain. Front. Physiol. 8: 1040, https://doi.org/10.3389/fphys.2017.01040.Suche in Google Scholar
Obata, K., Katsura, H., Mizushima, T., Yamanaka, H., Kobayashi, K., Dai, Y., Fukuoka, T., Tokunaga, A., Tominaga, M., and Noguchi, K. (2005). TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J. Clin. Invest. 115: 2393–2401, https://doi.org/10.1172/JCI25437.Suche in Google Scholar
Oberwinkler, J. and Philipp, S.E. (2014). Trpm3. Handb. Exp. Pharmacol. 222: 427–459, https://doi.org/10.1007/978-3-642-54215-2_17.Suche in Google Scholar
Ostacolo, C., Ambrosino, P., Russo, R., Lo Monte, M., Soldovieri, M.V., Laneri, S., Sacchi, A., Vistoli, G., Taglialatela, M., and Calignano, A. (2013). Isoxazole derivatives as potent transient receptor potential melastatin type 8 (TRPM8) agonists. Eur. J. Med. Chem. 69: 659–669, https://doi.org/10.1016/j.ejmech.2013.08.056.Suche in Google Scholar
Parks, D.J., Parsons, W.H., Colburn, R.W., Meegalla, S.K., Ballentine, S.K., Illig, C.R., Qin, N., Liu, Y., Hutchinson, T.L., Lubin, M.L., et al.. (2011). Design and optimization of benzimidazole-containing transient receptor potential melastatin 8 (TRPM8) antagonists. J. Med. Chem. 54: 233–247, https://doi.org/10.1021/jm101075v.Suche in Google Scholar
Patel, R., Goncalves, L., Leveridge, M., Mack, S.R., Hendrick, A., Brice, N.L., and Dickenson, A.H. (2014). Anti-hyperalgesic effects of a novel TRPM8 agonist in neuropathic rats: a comparison with topical menthol. Pain 155: 2097–2107, https://doi.org/10.1016/j.pain.2014.07.022.Suche in Google Scholar
Pozzi, E., Terribile, G., Cherchi, L., Di Girolamo, S., Sancini, G., and Alberti, P. (2024). Ion Channel and transporter involvement in chemotherapy-induced peripheral neurotoxicity. Int. J. Mol. Sci. 25, https://doi.org/10.3390/ijms25126552.Suche in Google Scholar
Premkumar, L.S., Raisinghani, M., Pingle, S.C., Long, C., and Pimentel, F. (2005). Downregulation of transient receptor potential melastatin 8 by protein kinase C-mediated dephosphorylation. J. Neurosci. 25: 11322–11329, https://doi.org/10.1523/jneurosci.3006-05.2005.Suche in Google Scholar
Proudfoot, C.J., Garry, E.M., Cottrell, D.F., Rosie, R., Anderson, H., Robertson, D.C., Fleetwood-Walker, S.M., and Mitchell, R. (2006). Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. Curr. Biol. 16: 1591–1605, https://doi.org/10.1016/j.cub.2006.07.061.Suche in Google Scholar
Qi, L., Iskols, M., Shi, D., Reddy, P., Walker, C., Lezgiyeva, K., Voisin, T., Pawlak, M., Kuchroo, V.K., Chiu, I.M., et al.. (2024). A mouse DRG genetic toolkit reveals morphological and physiological diversity of somatosensory neuron subtypes. Cell 187: 1508–1526.e1516, https://doi.org/10.1016/j.cell.2024.02.006.Suche in Google Scholar
Quallo, T., Alkhatib, O., Gentry, C., Andersson, D.A., and Bevan, S. (2017). G protein betagamma subunits inhibit TRPM3 ion channels in sensory neurons. Elife 6, https://doi.org/10.7554/elife.26138.Suche in Google Scholar
Ramachandran, R., Hyun, E., Zhao, L., Lapointe, T.K., Chapman, K., Hirota, C.L., Ghosh, S., McKemy, D.D., Vergnolle, N., Beck, P.L., et al.. (2013). TRPM8 activation attenuates inflammatory responses in mouse models of colitis. Proc. Natl. Acad. Sci. U. S. A. 110: 7476–7481, https://doi.org/10.1073/pnas.1217431110.Suche in Google Scholar
Rimola, V., Osthues, T., Konigs, V., Geisslinger, G., and Sisignano, M. (2021). Oxaliplatin causes transient changes in TRPM8 channel activity. Int. J. Mol. Sci. 22, https://doi.org/10.3390/ijms22094962.Suche in Google Scholar
Rohacs, T. (2024). Phosphoinositide regulation of TRP channels: a functional overview in the structural Era. Annu. Rev. Physiol. 86: 329–355, https://doi.org/10.1146/annurev-physiol-042022-013956.Suche in Google Scholar
Rottenberg, S., Disler, C., and Perego, P. (2021). The rediscovery of platinum-based cancer therapy. Nat. Rev. Cancer 21: 37–50, https://doi.org/10.1038/s41568-020-00308-y.Suche in Google Scholar
Shan, L., Xu, K., Ji, L., Zeng, Q., Liu, Y., Wu, Y., Chen, Y., Li, Y., Hu, Q., Wu, J., et al.. (2024). Injured sensory neurons-derived galectin-3 contributes to neuropathic pain via programming microglia in the spinal dorsal horn. Brain Behav. Immun. 117: 80–99, https://doi.org/10.1016/j.bbi.2024.01.002.Suche in Google Scholar
Silverman, H.A., Chen, A., Kravatz, N.L., Chavan, S.S., and Chang, E.H. (2020). Involvement of neural transient receptor potential channels in peripheral inflammation. Front. Immunol. 11: 590261, https://doi.org/10.3389/fimmu.2020.590261.Suche in Google Scholar
Singto, T., Filor, V., Vidak, J., Klopfleisch, R., and Baumer, W. (2024). Dendritic cells under allergic condition enhance the activation of pruritogen-responsive neurons via inducing itch receptors in a co-culture study. BMC Immunol. 25: 17, https://doi.org/10.1186/s12865-024-00604-4.Suche in Google Scholar
Smith, P.A. (2023). Neuropathic pain; what we know and what we should do about it. Front. Pain Res. (Lausanne) 4: 1220034, https://doi.org/10.3389/fpain.2023.1220034.Suche in Google Scholar
Staaf, S., Oerther, S., Lucas, G., Mattsson, J.P., and Ernfors, P. (2009). Differential regulation of TRP channels in a rat model of neuropathic pain. Pain 144: 187–199, https://doi.org/10.1016/j.pain.2009.04.013.Suche in Google Scholar
Straub, I., Krügel, U., Mohr, F., Teichert, J., Rizun, O., Konrad, M., Oberwinkler, J., and Schaefer, M. (2013). Flavanones that selectively inhibit TRPM3 attenuate thermal nociception in vivo. Mol. Pharmacol. 84: 736–750, https://doi.org/10.1124/mol.113.086843.Suche in Google Scholar
Su, L., Shu, R., Song, C., Yu, Y., Wang, G., Li, Y., and Liu, C. (2017). Downregulations of TRPM8 expression and membrane trafficking in dorsal root ganglion mediate the attenuation of cold hyperalgesia in CCI rats induced by GFRα3 knockdown. Brain Res. Bull. 135: 8–24, https://doi.org/10.1016/j.brainresbull.2017.08.002.Suche in Google Scholar
Su, L., Wang, C., Yu, Y.H., Ren, Y.Y., Xie, K.L., and Wang, G.L. (2011). Role of TRPM8 in dorsal root ganglion in nerve injury-induced chronic pain. BMC Neurosci. 12: 120, https://doi.org/10.1186/1471-2202-12-120.Suche in Google Scholar
Su, S., Yudin, Y., Kim, N., Tao, Y.X., and Rohacs, T. (2021). TRPM3 channels play roles in heat hypersensitivity and spontaneous pain after nerve injury. J. Neurosci. 41: 2457–2474, https://doi.org/10.1523/jneurosci.1551-20.2020.Suche in Google Scholar
Touhara, K.K. and MacKinnon, R. (2018). Molecular basis of signaling specificity between GIRK channels and GPCRs. Elife 7, https://doi.org/10.7554/elife.42908.Suche in Google Scholar
Trevisan, G., Materazzi, S., Fusi, C., Altomare, A., Aldini, G., Lodovici, M., Patacchini, R., Geppetti, P., and Nassini, R. (2013). Novel therapeutic strategy to prevent chemotherapy-induced persistent sensory neuropathy by TRPA1 blockade. Cancer Res. 73: 3120–3131, https://doi.org/10.1158/0008-5472.can-12-4370.Suche in Google Scholar
Vangeel, L., Benoit, M., Miron, Y., Miller, P.E., De Clercq, K., Chaltin, P., Verfaillie, C., Vriens, J., and Voets, T. (2020). Functional expression and pharmacological modulation of TRPM3 in human sensory neurons. Br. J. Pharmacol. 177: 2683–2695, https://doi.org/10.1111/bph.14994.Suche in Google Scholar
Vanneste, M., Mulier, M., Freitas, A.C.N., Van Ranst, N., Kerstens, A., Voets, T., and Everaerts, W. (2021). TRPM3 is expressed in afferent bladder neurons and is upregulated during bladder inflammation. Int. J. Mol. Sci. 22.10.3390/ijms23010107Suche in Google Scholar
Viana, F., de la Pena, E., and Belmonte, C. (2002). Specificity of cold thermotransduction is determined by differential ionic channel expression. Nat. Neurosci. 5: 254–260, https://doi.org/10.1038/nn809.Suche in Google Scholar
Vriens, J., Owsianik, G., Hofmann, T., Philipp, S.E., Stab, J., Chen, X., Benoit, M., Xue, F., Janssens, A., Kerselaers, S., et al.. (2011). TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70: 482–494, https://doi.org/10.1016/j.neuron.2011.02.051.Suche in Google Scholar
Vriens, J. and Voets, T. (2018). Sensing the heat with TRPM3. Pflüger’s Arch. 470: 799–807, https://doi.org/10.1007/s00424-017-2100-1.Suche in Google Scholar
Vriens, J. and Voets, T. (2019). Heat sensing involves a TRiPlet of ion channels. Br. J. Pharmacol. 176: 3893–3898, https://doi.org/10.1111/bph.14812.Suche in Google Scholar
Wang, D., Gao, Q., Schaefer, I., Moerz, H., Hoheisel, U., Rohr, K., Greffrath, W., and Treede, R.D. (2022). TRPM3-mediated dynamic mitochondrial activity in nerve growth factor-induced latent sensitization of chronic low back pain. Pain 163: e1115–e1128, https://doi.org/10.1097/j.pain.0000000000002642.Suche in Google Scholar
Wasner, G., Naleschinski, D., Binder, A., Schattschneider, J., McLachlan, E.M., and Baron, R. (2008). The effect of menthol on cold allodynia in patients with neuropathic pain. Pain Med. 9: 354–358, https://doi.org/10.1111/j.1526-4637.2007.00290.x.Suche in Google Scholar
Wasner, G., Schattschneider, J., Binder, A., and Baron, R. (2004). Topical menthol--a human model for cold pain by activation and sensitization of C nociceptors. Brain 127: 1159–1171, https://doi.org/10.1093/brain/awh134.Suche in Google Scholar
Wu, B., Su, X., Zhang, W., Zhang, Y.H., Feng, X., Ji, Y.H., and Tan, Z.Y. (2021). Oxaliplatin depolarizes the IB4(-) dorsal root ganglion neurons to drive the development of neuropathic pain through TRPM8 in mice. Front. Mol. Neurosci. 14: 690858, https://doi.org/10.3389/fnmol.2021.690858.Suche in Google Scholar
Xie, M.X., Cao, X.Y., Zeng, W.A., Lai, R.C., Guo, L., Wang, J.C., Xiao, Y.B., Zhang, X., Chen, D., Liu, X.G., et al.. (2021). ATF4 selectively regulates heat nociception and contributes to kinesin-mediated TRPM3 trafficking. Nat. Commun. 12: 1401, https://doi.org/10.1038/s41467-021-21731-1.Suche in Google Scholar
Xie, M.X., Rao, J.H., Tian, X.Y., Liu, J.K., Li, X., Chen, Z.Y., Cao, Y., Chen, A.N., Shu, H.H., and Zhang, X.L. (2024). ATF4 inhibits TRPV4 function and controls itch perception in rodents and nonhuman primates. Pain 165: 1840–1859, https://doi.org/10.1097/j.pain.0000000000003189.Suche in Google Scholar
Xing, H., Chen, M., Ling, J., Tan, W., and Gu, J.G. (2007). TRPM8 mechanism of cold allodynia after chronic nerve injury. J. Neurosci. 27: 13680–13690, https://doi.org/10.1523/jneurosci.2203-07.2007.Suche in Google Scholar
Xu, Z., Lee, M.C., Sheehan, K., Fujii, K., Rabl, K., Rader, G., Varney, S., Sharma, M., Eilers, H., Kober, K., et al.. (2024). Chemotherapy for pain: reversing inflammatory and neuropathic pain with the anticancer agent mithramycin A. Pain 165: 54–74, https://doi.org/10.1097/j.pain.0000000000002972.Suche in Google Scholar
Yeh, T.Y., Luo, I.W., Hsieh, Y.L., Tseng, T.J., Chiang, H., and Hsieh, S.T. (2020). Peripheral neuropathic pain: from experimental models to potential therapeutic targets in dorsal root ganglion neurons. Cells 9, https://doi.org/10.3390/cells9122725.Suche in Google Scholar
Zhang, Q., Dias, F., Fang, Q., Henry, G., Wang, Z., Suttle, A., and Chen, Y. (2022). Involvement of sensory neurone-TRPV4 in acute and chronic itch behaviours. Acta Derm. Venereol. 102: adv00651, https://doi.org/10.2340/actadv.v102.1621.Suche in Google Scholar
Zhang, X. (2019). Direct galpha(q) gating is the sole mechanism for TRPM8 inhibition caused by bradykinin receptor activation. Cell Rep. 27: 3672–3683.e3674.10.1016/j.celrep.2019.05.080Suche in Google Scholar
Zhang, X., Mak, S., Li, L., Parra, A., Denlinger, B., Belmonte, C., and McNaughton, P.A. (2012). Direct inhibition of the cold-activated TRPM8 ion channel by Gαq. Nat. Cell Biol. 14: 851–858, https://doi.org/10.1038/ncb2529.Suche in Google Scholar
Zhang, Z., Yan, X., Kang, L., Leng, Z., Ji, Y., Yang, S., Du, X., Fang, K., Wang, Z., Li, Z., et al.. (2024). TRPM8 inhibits substance P release from primary sensory neurons via PKA/GSK-3β to protect colonic epithelium in colitis. Cell Death Dis. 15: 91, https://doi.org/10.1038/s41419-024-06480-5.Suche in Google Scholar
Zhao, C. and MacKinnon, R. (2023). Structural and functional analyses of a GPCR-inhibited ion channel TRPM3. Neuron 111: 81–91.e87, https://doi.org/10.1016/j.neuron.2022.10.002.Suche in Google Scholar
Zhao, M., Isami, K., Nakamura, S., Shirakawa, H., Nakagawa, T., and Kaneko, S. (2012). Acute cold hypersensitivity characteristically induced by oxaliplatin is caused by the enhanced responsiveness of TRPA1 in mice. Mol. Pain 8: 55, https://doi.org/10.1186/1744-8069-8-55.Suche in Google Scholar
Zhao, M., Liu, L., Chen, Z., Ding, N., Wen, J., Liu, J., Ge, N., and Zhang, X. (2022). Upregulation of transient receptor potential cation channel subfamily M member-3 in bladder afferents is involved in chronic pain in cyclophosphamide-induced cystitis. Pain 163: 2200–2212, https://doi.org/10.1097/j.pain.0000000000002616.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Highlight: GBM Young Investigators Part 5
- Highlight: young research groups in Germany – 5th edition
- Protein persulfidation in plants: mechanisms and functions beyond a simple stress response
- Pathological and physiological roles of ADP-ribosylation: established functions and new insights
- Implications of TRPM3 and TRPM8 for sensory neuron sensitisation
- The complex regulation of Slo1 potassium channels from a structural perspective
- The TOM complex from an evolutionary perspective and the functions of TOMM70
- Insights in caveolae protein structure arrangements and their local lipid environment
- Insights into caudate amphibian skin secretions with a focus on the chemistry and bioactivity of derived peptides
- Analysis of cell cycle stage, replicated DNA, and chromatin-associated proteins using high-throughput flow cytometry
- A tailored cytochrome P450 monooxygenase from Gordonia rubripertincta CWB2 for selective aliphatic monooxygenation
Artikel in diesem Heft
- Frontmatter
- Highlight: GBM Young Investigators Part 5
- Highlight: young research groups in Germany – 5th edition
- Protein persulfidation in plants: mechanisms and functions beyond a simple stress response
- Pathological and physiological roles of ADP-ribosylation: established functions and new insights
- Implications of TRPM3 and TRPM8 for sensory neuron sensitisation
- The complex regulation of Slo1 potassium channels from a structural perspective
- The TOM complex from an evolutionary perspective and the functions of TOMM70
- Insights in caveolae protein structure arrangements and their local lipid environment
- Insights into caudate amphibian skin secretions with a focus on the chemistry and bioactivity of derived peptides
- Analysis of cell cycle stage, replicated DNA, and chromatin-associated proteins using high-throughput flow cytometry
- A tailored cytochrome P450 monooxygenase from Gordonia rubripertincta CWB2 for selective aliphatic monooxygenation