Home Life Sciences Insights in caveolae protein structure arrangements and their local lipid environment
Article
Licensed
Unlicensed Requires Authentication

Insights in caveolae protein structure arrangements and their local lipid environment

  • Esther Ocket and Claudia Matthaeus ORCID logo EMAIL logo
Published/Copyright: July 8, 2024

Abstract

Caveolae are 50–80 nm sized plasma membrane invaginations found in adipocytes, endothelial cells or fibroblasts. They are involved in endocytosis, lipid uptake and the regulation of the cellular lipid metabolism as well as sensing and adapting to changes in plasma membrane tension. Caveolae are characterized by their unique lipid composition and their specific protein coat consisting of caveolin and cavin proteins. Recently, detailed structural information was obtained for the major caveolae protein caveolin1 showing the formation of a disc-like 11-mer protein complex. Furthermore, the importance of the cavin disordered regions in the generation of cavin trimers and caveolae at the plasma membrane were revealed. Thus, finally, structural insights about the assembly of the caveolar coat can be elucidated. Here, we review recent developments in caveolae structural biology with regard to caveolae coat formation and caveolae curvature generation. Secondly, we discuss the importance of specific lipid species necessary for caveolae curvature and formation. In the last years, it was shown that specifically sphingolipids, cholesterol and fatty acids can accumulate in caveolae invaginations and may drive caveolae endocytosis. Throughout, we summarize recent studies in the field and highlight future research directions.


Corresponding author: Claudia Matthaeus, Institute of Nutritional Science, Cellular Physiology of Nutrition, University of Potsdam, Karl-Liebknecht-Str. 24/25, Building 29, Room 0.08, D-14476 Potsdam, Germany, E-mail:

Award Identifier / Grant number: 531499831

Award Identifier / Grant number: DAF #2023-331950

Funding source: Else Kröner-Fresenius-Stiftung

Award Identifier / Grant number: 2023_EKEA.152

Acknowledgments

Structure modelling was done using UCSF ChimeraX.

  1. Research ethics: Not applicable.

  2. Author contributions: E.O. and C.M. wrote the manuscript and prepared the figures.

  3. Competing interests: The authors state no conflict of interest

  4. Research funding: C.M. is funded by Chan Zuckerberg Initiative (DAF #2023–331950), by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, project grant: 531499831), and Else-Kröner-Fresenius-Stiftung and Deutsche Diabetes Gesellschaft.

  5. Data availability: Not applicable.

References

Aboulaich, N., Vainonen, J.P., Lfors, P.S., and Vener, A.V. (2004). Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes. Biochem. J. 383: 237–248, https://doi.org/10.1042/bj20040647, Available at: http://portlandpress.com/biochemj/article-pdf/383/2/237/713697/bj3830237.pdf.Search in Google Scholar

Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A.J., Bambrick, J., et al. (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630: 493–500, https://doi.org/10.1038/s41586-024-07487-w.Search in Google Scholar

Allen, K.N., Entova, S., Ray, L.C., and Imperiali, B. (2019). Monotopic membrane proteins join the fold. Trends Biochem. Sci. 44: 7–20, https://doi.org/10.1016/j.tibs.2018.09.013.Search in Google Scholar

Anderson, R.H., Sochacki, K.A., Vuppula, H., Scott, B.L., Bailey, E.M., Schultz, M.M., Kerkvliet, J.G., Taraska, J.W., Hoppe, A.D., and Francis, K.R. (2021). Sterols lower energetic barriers of membrane bending and fission necessary for efficient clathrin-mediated endocytosis. Cell Rep. 37: 110008, https://doi.org/10.1016/j.celrep.2021.110008.Search in Google Scholar

Ariotti, N., Fernández-Rojo, M.A., Zhou, Y., Hill, M.M., Rodkey, T.L., Inder, K.L., Tanner, L.B., Wenk, M.R., Hancock, J.F., and Parton, R.G. (2014). Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling. J. Cell Biol. 204: 777–792, https://doi.org/10.1083/jcb.201307055.Search in Google Scholar

Ariotti, N., Rae, J., Leneva, N., Ferguson, C., Loo, D., Okano, S., Hill, M.M., Walser, P., Collins, B.M., and Parton, R.G. (2015). Molecular characterization of caveolin-induced membrane curvature. J. Biol. Chem. 290: 24875–24890, https://doi.org/10.1074/jbc.M115.644336.Search in Google Scholar

Balali-Mood, K., Bond, P.J., and Sansom, M.S.P. (2009). Interaction of monotopic membrane enzymes with a lipid bilayer: a coarse-grained MD simulation study. Biochemistry 48: 2135–2145, https://doi.org/10.1021/bi8017398.Search in Google Scholar

Baoukina, S., Ingólfsson, H.I., Marrink, S.J., and Tieleman, D.P. (2018). Curvature-induced sorting of lipids in plasma membrane tethers. Adv. Theory Simul. 1, https://doi.org/10.1002/adts.201800034.Search in Google Scholar

Bastiani, M., Liu, L., Hill, M.M., Jedrychowski, M.P., Nixon, S.J., Lo, H.P., Abankwa, D., Luetterforst, R., Fernandez-Rojo, M., Breen, M.R., et al.. (2009). MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. J. Cell Biol. 185: 1259–1273, https://doi.org/10.1083/JCB.200903053.Search in Google Scholar

Blouin, C.M., Le Lay, S., Eberl, A., Köfeler, H.C., Guerrera, I.C., Klein, C., Le Liepvre, X., Lasnier, F., Bourron, O., Gautier, J.F., et al.. (2010). Lipid droplet analysis in caveolin-deficient adipocytes: alterations in surface phospholipid composition and maturation defects. J. Lipid Res. 51: 945–956, https://doi.org/10.1194/JLR.M001016.Search in Google Scholar

Blouin, C.M., Le Lay, S., Lasnier, F., Dugail, I., and Hajduch, E. (2008). Regulated association of caveolins to lipid droplets during differentiation of 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 376: 331–335, https://doi.org/10.1016/j.bbrc.2008.08.154.Search in Google Scholar

Busija, A.R., Patel, H.H., and Insel, P.A. (2016). Caveolins and cavins in the trafficking, maturation, and degradation of caveolae: implications for cell physiology. Am J Physiol. Cell Physiol. 312: 459–477, https://doi.org/10.1152/ajpcell.00355.2016.Search in Google Scholar

Cai, Q., Guo, L., Gao, H., and Li, X.A. (2013). Caveolar fatty acids and acylation of caveolin-1. PLoS ONE 8: e60884, https://doi.org/10.1371/journal.pone.0060884.Search in Google Scholar

Cheng, J.P.X. and Nichols, B.J. (2016). Caveolae: one function or many? Trends Cell Biol. 26: 177–189, https://doi.org/10.1016/j.tcb.2015.10.010.Search in Google Scholar

Cohen, A.W., Hnasko, R., Schubert, W., and Lisanti, M.P. (2004). Role of caveolae and caveolins in health and disease. Physiol. Rev. 84: 1341–1379, https://doi.org/10.1152/PHYSREV.00046.2003.Search in Google Scholar

Cohen, A.W., Razani, B., Wang, X.B., Combs, T.P., Williams, T.M., Scherer, P.E., and Lisanti, M.P. (2003). Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am. J. Physiol. Cell Physiol. 285: 222–235, https://doi.org/10.1152/ajpcell.00006.2003.Search in Google Scholar

Colom, A., Derivery, E., Soleimanpour, S., Tomba, C., Molin, M.D., Sakai, N., González-Gaitán, M., Matile, S., and Roux, A. (2018). A fluorescent membrane tension probe. Nat. Chem. 10: 1118–1125, https://doi.org/10.1038/s41557-018-0127-3.Search in Google Scholar

Daumke, O., Lundmark, R., Vallis, Y., Martens, S., Butler, P.J.G., and McMahon, H.T. (2007). Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling. Nature 449: 923–927, https://doi.org/10.1038/nature06173.Search in Google Scholar

Del Pozo, M.A., Lolo, F.N., and Echarri, A. (2021). Caveolae: mechanosensing and mechanotransduction devices linking membrane trafficking to mechanoadaptation. Curr. Opin. Cell Biol. 68: 113–123, https://doi.org/10.1016/j.ceb.2020.10.008.Search in Google Scholar

Dietzen, D.J., Hastings, W.R., and Lublin, D.M. (1995). Caveolin is palmitoylated on multiple cysteine residues. J. Biol. Chem. 270: 6838–6842, https://doi.org/10.1074/jbc.270.12.6838.Search in Google Scholar

Dreja, K., Voldstedlund, M., Vinten, J., Tranum-Jensen, J., Hellstrand, P., and Swärd, K. (2002). Cholesterol depletion disrupts caveolae and differentially impairs agonist-induced arterial contraction. Arterioscler., Thromb., Vasc. Biol. 22: 1267–1272, https://doi.org/10.1161/01.ATV.0000023438.32585.A1.Search in Google Scholar

Echarri, A., Muriel, O., Pavón, D.M., Azegrouz, H., Escolar, F., Terrón, M.C., Sanchez-Cabo, F., Martínez, F., Montoya, M.C., Llorca, O., et al.. (2012). Caveolar domain organization and trafficking is regulated by Abl kinases and mDia1. J. Cell Sci. 125: 3097–3113, https://doi.org/10.1242/jcs.090134.Search in Google Scholar

Echarri, A., Pavón, D.M., Sánchez, S., García-García, M., Calvo, E., Huerta-López, C., Velázquez-Carreras, D., Viaris de Lesegno, C., Ariotti, N., Lázaro-Carrillo, A., et al.. (2019). An Abl-FBP17 mechanosensing system couples local plasma membrane curvature and stress fiber remodeling during mechanoadaptation. Nat. Commun. 10: 5828, https://doi.org/10.1038/s41467-019-13782-2.Search in Google Scholar

Evans, R., O’neill, M., Pritzel, A., Antropova, N., Senior, A., Green, T., Žídek, A., Bates, R., Blackwell, S., Yim, J., et al.. (2022). Protein complex prediction with AlphaFold-Multimer. BioRxiv, https://doi.org/10.1101/2021.10.04.463034.Search in Google Scholar

Fridolfsson, H.N. and Patel, H.H. (2013). Caveolin and caveolae in age associated cardiovascular disease. J. Geriatr. Cardiol. 10: 66–74, https://doi.org/10.3969/j.issn.1671-5411.2013.01.011.Search in Google Scholar

Fujimoto, T. (1996). GPI-anchored proteins, glycosphingolipids, and sphingomyelin are sequestered to caveolae only after crosslinking. J. Histochem. Cytochem. 44: 929–941, https://doi.org/10.1177/44.8.8756764.Search in Google Scholar

Fujimoto, T., Hayashi, M., Iwamoto, M., and Ohno-Iwashita, Y. (1997). Crosslinked plasmalemmal cholesterol is sequestered to caveolae: analysis with a new cytochemical probe. Journal of Histochemistry & Cytochemistry 45: 1197–1205, https://doi.org/10.1177/002215549704500903.Search in Google Scholar

Galbiati, F., Engelman, J.A., Volonte, D., Zhang, X.L., Minetti, C., Li, M., Hou, H., Kneitz, B., Edelmann, W., Lisanti, M.P., et al.. (2001). Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and T-tubule abnormalities. J. Biol. Chem. 276: 21425–21433, https://doi.org/10.1074/jbc.M100828200.Search in Google Scholar

Gambin, Y., Ariotti, N., McMahon, K.-A., Bastiani, M., Sierecki, E., Kovtun, O., Polinkovsky, M.E., Magenau, A., Jung, W., Okano, S., et al.. (2014). Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae. ELife 3: e01434, https://doi.org/10.7554/elife.01434.Search in Google Scholar

Gazzerro, E., Sotgia, F., Bruno, C., Lisanti, M.P., and Minetti, C. (2010). Caveolinopathies: from the biology of caveolin-3 to human diseases. Eur. J. Hum. Genet. 18: 137–145, https://doi.org/10.1038/ejhg.2009.103.Search in Google Scholar

Glenney, J.R. and Soppet, D. (1992). Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proc. Natl. Acad. Sci. U. S. A. 89(21): 10517–10521, https://doi.org/10.1073/pnas.89.21.10517.Search in Google Scholar

Goddard, T.D., Huang, C.C., Meng, E.C., Pettersen, E.F., Couch, G.S., Morris, J.H., and Ferrin, T.E. (2018). UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27(1): 14–25, https://doi.org/10.1002/pro.3235.Search in Google Scholar

Gulsevin, A., Han, B., Porta, J.C., Mchaourab, H.S., Meiler, J., and Kenworthy, A.K. (2023). Template-free prediction of a new monotopic membrane protein fold and assembly by AlphaFold2. Biophys. J. 122: 2041–2052, https://doi.org/10.1016/j.bpj.2022.11.011.Search in Google Scholar

Han, B., Copeland, C.A., Tiwari, A., and Kenworthy, A.K. (2016). Assembly and turnover of caveolae: What do we really know? Front. Cell Dev. Biol. 4: 68, https://doi.org/10.3389/FCELL.2016.00068.Search in Google Scholar

Han, B., Porta, J.C., Hanks, J.L., Peskova, Y., Binshtein, E., Dryden, K., Claxton, D.P., McHaourab, H.S., Karakas, E., Ohi, M.D., et al.. (2020). Structure and assembly of CAV1 8S complexes revealed by single particle electron microscopy. Sci. Adv. 6: eabc6185, https://doi.org/10.1126/SCIADV.ABC6185.Search in Google Scholar

Hansen, C.G., Howard, G., and Nichols, B.J. (2011). Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis. J. Cell Sci. 124: 2777–2785, https://doi.org/10.1242/jcs.084319.Search in Google Scholar

Hansen, C.G., Shvets, E., Howard, G., Riento, K., and Nichols, B.J. (2013). Deletion of cavin genes reveals tissue-specific mechanisms for morphogenesis of endothelial caveolae. Nat. Commun. 4: 1831, https://doi.org/10.1038/NCOMMS2808.Search in Google Scholar

Hao, J.W., Wang, J., Guo, H., Zhao, Y.Y., Sun, H.H., Li, Y.F., Lai, X.Y., Zhao, N., Wang, X., Xie, C., et al.. (2020). CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis. Nat. Commun. 11: 4765, https://doi.org/10.1038/s41467-020-18565-8.Search in Google Scholar

Harmon, C.M. and Abumrad, N.A. (1993). Binding of sulfosuccinimidyl fatty acids to adipocyte membrane proteins: isolation and amino-terminal sequence of an 88-kD protein implicated in transport of long-chain fatty acids. J. Membrane Biol 133: 43–49, https://doi.org/10.1007/BF00231876.Search in Google Scholar

Hayer, A., Stoeber, M., Bissig, C., and Helenius, A. (2010). Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic 11: 361–382, https://doi.org/10.1111/j.1600-0854.2009.01023.x.Search in Google Scholar

Hibbs, R.G., Burch, G.E., and Phillips, J.H. (1958). The fine structure of the small blood vessels of normal human dermis and subcutis. American Heart Journal 56: 662–670, https://doi.org/10.1016/0002-8703(58)90209-6.Search in Google Scholar

Hill, M.M., Bastiani, M., Luetterforst, R., Kirkham, M., Kirkham, A., Nixon, S.J., Walser, P., Abankwa, D., Oorschot, V.M.J., Martin, S., et al.. (2008). PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132: 113–124, https://doi.org/10.1016/j.cell.2007.11.042.Search in Google Scholar

Hsieh, F.L., Turner, L., Bolla, J.R., Robinson, C.V., Lavstsen, T., and Higgins, M.K. (2016). The structural basis for CD36 binding by the malaria parasite. Nat. Commun. 7: 12837, https://doi.org/10.1038/ncomms12837.Search in Google Scholar

Hubert, M., Larsson, E., Vegesna, N.V.G., Ahnlund, M., Johansson, A.I., Moodie, L.W.K., and Lundmark, R. (2020). Lipid accumulation controls the balance between surface connection and scission of caveolae. ELife 9: e55038, https://doi.org/10.7554/ELIFE.55038.Search in Google Scholar

Jansa, P., Mason, S.W., Hoffmann-Rohrer, U., and Grummt, I. (1998). Cloning and functional characterization of PTRF, a novel protein which induces dissociation of paused ternary transcription complexes. EMBO J. 17: 2855–2864, https://doi.org/10.1093/emboj/17.10.2855.Search in Google Scholar

Kenworthy, A.K. (2023). The building blocks of caveolae revealed: caveolins finally take center stage. Biochem. Soc. Trans. 51: 855–869, https://doi.org/10.1042/BST20221298.Search in Google Scholar

Kenworthy, A.K., Han, B., Ariotti, N., and Parton, R.G. (2023). The role of membrane lipids in the formation and function of caveolae. Cold Spring Harbor Perspect. Biol. 15: a041413, https://doi.org/10.1101/cshperspect.a041413.Search in Google Scholar

Koch, D., Westermann, M., Kessels, M.M., and Qualmann, B. (2012). Ultrastructural freeze-fracture immunolabeling identifies plasma membrane-localized syndapin II as a crucial factor in shaping caveolae. Histochem. Cell Biol. 138: 215–230, https://doi.org/10.1007/s00418-012-0945-0.Search in Google Scholar

Kollmitzer, B., Heftberger, P., Rappolt, M., and Pabst, G. (2013). Monolayer spontaneous curvature of raft-forming membrane lipids. Soft Matter 9: 10877–10884, https://doi.org/10.1039/c3sm51829a.Search in Google Scholar

Kovtun, O., Tillu, V.A., Ariotti, N., Parton, R.G., and Collins, B.M. (2015). Cavin family proteins and the assembly of caveolae. J. Cell Sci. 128: 1269–1278, https://doi.org/10.1242/jcs.167866.Search in Google Scholar

Kovtun, O., Tillu, V.A., Jung, W.R., Leneva, N., Ariotti, N., Chaudhary, N., Mandyam, R.A., Ferguson, C., Morgan, G.P., Johnston, W.A., et al.. (2014). Structural insights into the organization of the cavin membrane coat complex. Dev. Cell 31: 405–419, https://doi.org/10.1016/j.devcel.2014.10.002.Search in Google Scholar

Krishna, A., Prakash, S., and Sengupta, D. (2020). Sphingomyelin effects in caveolin-1 mediated membrane curvature. J. Phys. Chem. B 124: 5177–5185, https://doi.org/10.1021/acs.jpcb.0c02962.Search in Google Scholar

Lamaze, C., Tardif, N., Dewulf, M., Vassilopoulos, S., and Blouin, C.M. (2017). The caveolae dress code: structure and signaling. Curr. Opin. Cell Biol. 47: 117–125, https://doi.org/10.1016/j.ceb.2017.02.014.Search in Google Scholar

Lee, J. and Glover, K.J. (2012). The transmembrane domain of caveolin-1 exhibits a helix-break-helix structure. Biochim. Biophys. Acta Biomembr. 1818: 1158–1164, https://doi.org/10.1016/j.bbamem.2011.12.033.Search in Google Scholar

Le Lay, S., Hajduch, E., Lindsay, M.R., Le Lièpvre, X., Thiele, C., Ferré, P., Parton, R.G., Kurzchalia, T., Simons, K., and Dugail, I. (2006). Cholesterol-induced caveolin targeting to lipid droplets in adipocytes: a role for caveolar endocytosis. Traffic 7: 549–561, https://doi.org/10.1111/j.1600-0854.2006.00406.x.Search in Google Scholar

Liu, K.-C., Pace, H., Larsson, E., Hossain, S., Kabedev, A., Shukla, A., Jerschabek, V., Mohan, J., Bergström D, C.A.S., Bally, M., et al.. (2022). Membrane insertion mechanism of the caveola coat protein Cavin1. Proc. Natl. Acad. Sci. U. S. A. 119(25): e2202295119, https://doi.org/10.1073/pnas.2202295119.Search in Google Scholar

Liu, L., Brown, D., Mckee, M., Lebrasseur, N.K., Yang, D., Albrecht, K.H., Ravid, K., and Pilch, P.F. (2008). Cell metabolism deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metab. 8: 310–317, https://doi.org/10.1016/j.cmet.2008.07.008.Search in Google Scholar

Lo, H.P., Nixon, S.J., Hall, T.E., Cowling, B.S., Ferguson, C., Morgan, G.P., Schieber, N.L., Fernandez-Rojo, M.A., Bastiani, M., Floetenmeyer, M., et al.. (2015). The caveolin-Cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle. J. Cell Biol. 210: 833–849, https://doi.org/10.1083/jcb.201501046.Search in Google Scholar

Lolo, F.N., Walani, N., Seemann, E., Zalvidea, D., Pavón, D.M., Cojoc, G., Zamai, M., Viaris de Lesegno, C., Martínez de Benito, F., Sánchez-Álvarez, M., et al.. (2023). Caveolin-1 dolines form a distinct and rapid caveolae-independent mechanoadaptation system. Nat. Cell Biol. 25: 120–133, https://doi.org/10.1038/s41556-022-01034-3.Search in Google Scholar

Lorent, J.H., Levental, K.R., Ganesan, L., Rivera-Longsworth, G., Sezgin, E., Doktorova, M., Lyman, E., and Levental, I. (2020). Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 16: 644–652, https://doi.org/10.1038/s41589-020-0529-6.Search in Google Scholar

Ludwig, A., Howard, G., Mendoza-Topaz, C., Deerinck, T., Mackey, M., Sandin, S., Ellisman, M.H., and Nichols, B.J. (2013). Molecular composition and ultrastructure of the caveolar coat complex. PLoS Biol. 11: e1001640, https://doi.org/10.1371/journal.pbio.1001640.Search in Google Scholar

Ludwig, A., Nichols, B.J., and Sandin, S. (2016). Architecture of the caveolar coat complex. J. Cell Sci. 129: 3077–3083, https://doi.org/10.1242/jcs.191262.Search in Google Scholar

Luse, M.A., Jackson, M.G., Juśkiewicz, Z.J., and Isakson, B.E. (2023). Physiological functions of caveolae in endothelium. Curr. Opin. Physiol. 35: 100701, https://doi.org/10.1016/j.cophys.2023.100701.Search in Google Scholar

Machleidt, T., Li, W.-P., Liu, P., and Anderson, R.G.W. (2000). Multiple domains in Caveolin-1 control its intracellular traffic. J. Cell Biol. 148: 17–28, https://doi.org/10.1083/jcb.148.1.17.Search in Google Scholar

Matthaeus, C., Lahmann, I., Kunz, S., Jonas, W., Melo, A.A., Lehmann, M., Larsson, E., Lundmark, R., Kern, M., Blüher, M., et al.. (2020). EHD2-mediated restriction of caveolar dynamics regulates cellular fatty acid uptake. Proc. Natl. Acad. Sci. U. S. A. 117(13): 7471–7481, https://doi.org/10.1073/pnas.1918415117.Search in Google Scholar

Matthaeus, C., Sochacki, K.A., Dickey, A.M., Puchkov, D., Haucke, V., Lehmann, M., and Taraska, J.W. (2022). The molecular organization of differentially curved caveolae indicates bendable structural units at the plasma membrane. Nat. Commun. 13: 7234, https://doi.org/10.1038/s41467-022-34958-3.Search in Google Scholar

McMahon, K.A., Zajicek, H., Li, W.P., Peyton, M.J., Minna, J.D., Hernandez, V.J., Luby-Phelps, K., and Anderson, R.G.W. (2009). SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function. EMBO J. 28: 1001–1015, https://doi.org/10.1038/emboj.2009.46.Search in Google Scholar

Meng, E.C., Goddard, T.D., Pettersen, E.F., Couch, G.S., Pearson, Z.J., Morris, J.H., and Ferrin, T.E. (2023). UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32: e4792, https://doi.org/10.1002/pro.4792.Search in Google Scholar

Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger, M. (2022). ColabFold: making protein folding accessible to all. Nat. Methods 19: 679–682, https://doi.org/10.1038/s41592-022-01488-1.Search in Google Scholar

Mohan, J., Morén, B., Larsson, E., Holst, M.R., and Lundmark, R. (2015). Cavin3 interacts with cavin1 and caveolin1 to increase surface dynamics of caveolae. J. Cell Sci. 128: 979–991, https://doi.org/10.1242/jcs.161463.Search in Google Scholar

Morén, B., Shah, C., Howes, M.T., Schieber, N.L., Mcmahon, H.T., Parton, R.G., Daumke, O., and Lundmark, R. (2012). EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization. Mol. Biol. Cell 23: 1316–1329, https://doi.org/10.1091/mbc.E11-09-0787.Search in Google Scholar

Murata, M., Peranen, J., Schreinert, R., Wielandt, F., Kurzchalia, T.V., and Simons, K. (1995). VIP21/caveolin is a cholesterol-binding protein (membrane microdomains/intracellular transport/membrane reconstitution). Proc. Natl. Acad. Sci. U. S. A. 92(22): 10339–10343, https://doi.org/10.1073/pnas.92.22.10339.Search in Google Scholar

Ohi, M.D. and Kenworthy, A.K. (2022). Emerging insights into the molecular architecture of Caveolin-1. J. Membr. Biol. 255: 375–383, https://doi.org/10.1007/s00232-022-00259-5.Search in Google Scholar

Örtegren, U., Karlsson, M., Blazic, N., Blomqvist, M., Nystrom, F.H., Gustavsson, J., Fredman, P., and Strålfors, P. (2004). Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary rat adipocytes. Eur. J. Biochem. 271: 2028–2036, https://doi.org/10.1111/j.1432-1033.2004.04117.x.Search in Google Scholar

Parolini, I., Sargiacomo, M., Galbiati, F., Rizzo, G., Grignani, F., Engelman, J.A., Okamoto, T., Ikezu, T., Scherer, P.E., Mora, R., et al.. (1999). Expression of Caveolin-1 is required for the transport of Caveolin-2 to the plasma membrane. J. Biol. Chem. 274: 25718–25725, https://doi.org/10.1074/jbc.274.36.25718.Search in Google Scholar

Parton, R.G. and Del Pozo, M.A. (2013). Caveolae as plasma membrane sensors, protectors and organizers. Nat. Rev. Mol. Cell Biol. 14: 98–112, https://doi.org/10.1038/nrm3512.Search in Google Scholar

Parton, R.G. (1994). Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J. Histochem. Cytochem. 42: 155–166, https://doi.org/10.1177/42.2.8288861.Search in Google Scholar

Parton, R.G. (2018). Caveolae: structure, function, and relationship to disease. Annu. Rev. Cell Dev. Biol. 34: 111–136, https://doi.org/10.1146/annurev-cellbio-100617-062737.Search in Google Scholar

Parton, R.G., Kozlov, M.M., and Ariotti, N. (2020). Caveolae and lipid sorting: shaping the cellular response to stress. J. Cell Biol. 219: e201905071, https://doi.org/10.1083/jcb.201905071.Search in Google Scholar

Patni, N., Hegele, R.A., and Garg, A. (2022). Caveolar dysfunction and lipodystrophies. Eur. J. Endocrinol. 186: C1–C4, https://doi.org/10.1530/EJE-21-1243.Search in Google Scholar

Pelkmans, L. and Zerial, M. (2005). Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae. Nature 436: 128–133, https://doi.org/10.1038/nature03866.Search in Google Scholar

Pettersen, E.F., Goddard, T.D., Huang, C.C., Meng, E.C., Couch, G.S., Croll, T.I., Morris, J.H., and Ferrin, T.E. (2021). UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30: 70–82, https://doi.org/10.1002/pro.3943.Search in Google Scholar

Pöhnl, M., Trollmann, M.F.W., and Böckmann, R.A. (2023). Nonuniversal impact of cholesterol on membranes mobility, curvature sensing and elasticity. Nat. Commun. 14: 8038, https://doi.org/10.1038/s41467-023-43892-x.Search in Google Scholar

Porta, J.C., Han, B., Gulsevin, A., Min Chung, J., Peskova, Y., Connolly, S., Mchaourab, H.S., Meiler, J., Karakas, E., Kenworthy, A.K., et al.. (2022). Molecular architecture of the human caveolin-1 complex. Sci. Adv. 8: eabn7232, https://doi.org/10.1126/sciadv.abn7232.Search in Google Scholar

Puchkov, D., Müller, P.M., Lehmann, M., and Matthaeus, C. (2023). Analyzing the cellular plasma membrane by fast and efficient correlative STED and platinum replica EM. Front. Cell Dev. Biol. 11, https://doi.org/10.3389/fcell.2023.1305680.Search in Google Scholar

Razani, B., Combs, T.P., Wang, X.B., Frank, P.G., Park, D.S., Russell, R.G., Li, M., Tang, B., Jelicks, L.A., Scherer, P.E., et al.. (2002a). Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J. Biol. Chem. 277: 8635–8647, https://doi.org/10.1074/jbc.M110970200.Search in Google Scholar

Razani, B., Wang, X.B., Engelman, J.A., Battista, M., Lagaud, G., Zhang, X.L., Kneitz, B., Hou, H., Christ, G.J., Edelmann, W., et al.. (2002b). Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol. Cell. Biol. 22: 2329–2344, https://doi.org/10.1128/MCB.22.7.2329-2344.2002.Search in Google Scholar

Ring, A., Le Lay, S., Pohl, J., Verkade, P., and Stremmel, W. (2006). Caveolin-1 is required for fatty acid translocase (FAT/CD36) localization and function at the plasma membrane of mouse embryonic fibroblasts. Biochim. Biophys. Acta 1761: 416–423, https://doi.org/10.1016/j.bbalip.2006.03.016.Search in Google Scholar

Root, K.T., Julien, J.A., and Glover, K.J. (2019). Secondary structure of caveolins: a mini review. Biochem. Soc. Trans. 47: 1489–1498, https://doi.org/10.1042/BST20190375.Search in Google Scholar

Rothberg, K.G., Heuser, J.E., Donzell, W.C., Ying, Y.-S., Glenney, J.R., and Anderson, R.G.W. (1992). Caveolin, a protein component of caveolae membrane coats. Cell 68: 673–682, https://doi.org/10.1016/0092-8674(92)90143-Z.Search in Google Scholar

Sargiacomo, M., Scherer, P.E., Tang, Z., Kubler, E., Song, K.S., Sanders, M.C., and Lisantit, M.P. (1995). Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc. Natl. Acad. Sci. U. S. A. 92(20): 9407–9411, https://doi.org/10.1073/pnas.92.20.9407.Search in Google Scholar

Scherer, P.E., Lewis, R.Y., Volonté, D., Engelman, J.A., Galbiati, F., Couet, J., Stave Kohtz, D., van Donselaar, E., Peters, P., and Lisanti, M.P. (1997). Cell-type and tissue-specific expression of caveolin-2: caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J. Biol. Chem. 272: 29337–29346, https://doi.org/10.1074/jbc.272.46.29337.Search in Google Scholar

Scherer, P.E., Okamotot, T., Chun, M., Nishimotot, I., Lodish, H.F., and Lisanti, M.P. (1996). Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc. Natl. Acad. Sci. U. S. A. 93(1): 131–135, https://doi.org/10.1073/pnas.93.1.131.Search in Google Scholar

Seemann, E., Sun, M., Krueger, S., Tröger, J., Hou, W., Haag, N., Schüler, S., Westermann, M., Huebner, C.A., Romeike, B., et al.. (2017). Deciphering caveolar functions by syndapin III KO-mediated impairment of caveolar invagination. eLife 6: e29854, https://doi.org/10.7554/eLife.29854.001.Search in Google Scholar

Senju, Y., Itoh, Y., Takano, K., Hamada, S., and Suetsugu, S. (2011). Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting. J. Cell Sci. 124: 2032–2040, https://doi.org/10.1242/jcs.086264.Search in Google Scholar

Senju, Y., Rosenbaum, E., Shah, C., Hamada-Nakahara, S., Itoh, Y., Yamamoto, K., Hanawa-Suetsugu, K., Daumke, O., and Suetsugu, S. (2015). Phosphorylation of PACSIN2 by protein kinase C triggers the removal of caveolae from the plasma membrane. J. Cell Sci. 128: 2766–2780, https://doi.org/10.1242/jcs.167775.Search in Google Scholar

Sharma, D.K., Brown, J.C., Choudhury, A., Peterson, T.E., Holicky, E., Marks, D.L., Simari, R., Parton, R.G., and Pagano, R.E. (2004). Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol. Biol. Cell 15: 3114–3122, https://doi.org/10.1091/mbc.e04-03-0189.Search in Google Scholar

Shvets, E., Bitsikas, V., Howard, G., Hansen, C.G., and Nichols, B.J. (2015). Dynamic caveolae exclude bulk membrane proteins and are required for sorting of excess glycosphingolipids. Nat. Commun. 6: 6867, https://doi.org/10.1038/ncomms7867.Search in Google Scholar

Simard, J.R., Meshulam, T., Pillai, B.K., Kirber, M.T., Brunaldi, K., Xu, S., Pilch, P.F., and Hamilton, J.A. (2010). Caveolins sequester FA on the cytoplasmic leaflet of the plasma membrane, augment triglyceride formation, and protect cells from lipotoxicity. J. Lipid Res. 51: 914–922, https://doi.org/10.1194/jlr.M900251.Search in Google Scholar

Song, K.S., Scherer, P.E., Tang, Z., Okamoto, T., Li, S., Chafel, M., Chu, C., Stave Kohtz, D., and Lisanti, M.P. (1996). Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells: caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J. Biol. Chem. 271: 15160–15165, https://doi.org/10.1074/jbc.271.25.15160.Search in Google Scholar

Sonnino, S. and Prinetti, A. (2009). Sphingolipids and membrane environments for caveolin. FEBS Lett. 583: 597–606, https://doi.org/10.1016/j.febslet.2009.01.007.Search in Google Scholar

Stoeber, M., Schellenberger, P., Siebert, C.A., Leyrat, C., Grünewald, K., and Helenius, A. (2016). Model for the architecture of caveolae based on a flexible, net-like assembly of Cavin1 and Caveolin discs. Proc. Natl. Acad. Sci. U. S. A. 113(50): E8069–E8078, https://doi.org/10.1073/pnas.1616838113.Search in Google Scholar

Stoeber, M., Stoeck, I.K., HéCurrency Signnni, C., Bleck, C.K.E., Balistreri, G., and Helenius, A. (2012). Oligomers of the ATPase EHD2 confine caveolae to the plasma membrane through association with actin. EMBO J. 31: 2350–2364, https://doi.org/10.1038/emboj.2012.98.Search in Google Scholar

Subczynski, W.K., Pasenkiewicz-Gierula, M., Widomska, J., Mainali, L., and Raguz, M. (2017). High cholesterol/low cholesterol: effects in biological membranes: a review. Cell Biochem. Biophys. 75: 369–385, https://doi.org/10.1007/s12013-017-0792-7.Search in Google Scholar

Tagawa, A., Mezzacasa, A., Hayer, A., Longatti, A., Pelkmans, L., and Helenius, A. (2005). Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargo-triggered, vesicular transporters. J. Cell Biol. 170: 769–779, https://doi.org/10.1083/jcb.200506103.Search in Google Scholar

Tang, Z., Scherer, P.E., Okamoto, T., Song, K., Chu, C., Stave Kohtz, D., Nishimoto, I., Lodish, H.F., and Lisanti, M.P. (1996). Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J. Biol. Chem. 271: 2255–2261, https://doi.org/10.1074/jbc.271.4.2255.Search in Google Scholar

Thorn, H., Stenkula, K.G., Karlsson, M., Örtegren, U., Nystrom, F.H., Gustavsson, J., and Strålfors, P. (2003). Cell surface orifices of caveolae and localization of caveolin to the necks of caveolae in adipocytes. Mol. Biol. Cell 14: 3967–3976, https://doi.org/10.1091/mbc.E03-01-0050.Search in Google Scholar

Tillu, V.A., Lim, Y., Kovtun, O., Mureev, S., Ferguson, C., Bastiani, M., McMahon, K., Lo, H.P., Hall, T.E., Alexandrov, K., et al.. (2018). A variable undecad repeat domain in cavin1 regulates caveola formation and stability. EMBO Rep. 19: e45775, https://doi.org/10.15252/embr.201845775.Search in Google Scholar

Tillu, V.A., Rae, J., Gao, Y., Ariotti, N., Floetenmeyer, M., Kovtun, O., McMahon, K.-A., Chaudhary, N., Parton, R.G., and Collins, B.M. (2021). Cavin1 intrinsically disordered domains are essential for fuzzy electrostatic interactions and caveola formation. Nat. Commun. 12: 931, https://doi.org/10.1038/s41467-021-21035-4.Search in Google Scholar

Trigatti, B.L., Anderson, R.G.W., and Gerber, G.E. (1999). Identification of caveolin-1 as a fatty acid binding protein. Biochem. Biophys. Res. Commun. 255: 34–39, https://doi.org/10.1006/bbrc.1998.0123.Search in Google Scholar

Vasquez Rodriguez, S.Y. and Lazaridis, T. (2023). Simulations suggest a scaffolding mechanism of membrane deformation by the caveolin 8S complex. Biophys. J. 122: 4082–4090, https://doi.org/10.1016/j.bpj.2023.09.008.Search in Google Scholar

Walser, P.J., Ariotti, N., Howes, M., Ferguson, C., Webb, R., Schwudke, D., Leneva, N., Cho, K.J., Cooper, L., Rae, J., et al.. (2012). Constitutive formation of caveolae in a bacterium. Cell 150: 752–763, https://doi.org/10.1016/j.cell.2012.06.042.Search in Google Scholar

Yao, Y., Hong, S., Zhou, H., Yuan, T., Zeng, R., and Liao, K. (2009). The differential protein and lipid compositions of noncaveolar lipid microdomains and caveolae. Cell Research 19: 497–506, https://doi.org/10.1038/cr.2009.27.Search in Google Scholar

Yeow, I., Howard, G., Chadwick, J., Mendoza-Topaz, C., Hansen, C.G., Nichols, B.J., and Shvets, E. (2017). EHD proteins cooperate to generate caveolar clusters and to maintain caveolae during repeated mechanical stress. Curr. Biol. 27: 2951–2962, https://doi.org/10.1016/j.cub.2017.07.047.Search in Google Scholar

Yesylevskyy, S.O., Rivel, T., and Ramseyer, C. (2017). The influence of curvature on the properties of the plasma membrane. Insights from atomistic molecular dynamics simulations. Sci. Rep. 7: 16078, https://doi.org/10.1038/s41598-017-16450-x.Search in Google Scholar

Zhou, Y., Ariotti, N., Rae, J., Liang, H., Tillu, V., Tee, S., Bastiani, M., Bademosi, A.T., Collins, B.M., Meunier, F.A., et al.. (2021). Caveolin-1 and cavin1 act synergistically to generate a unique lipid environment in caveolae. J. Cell Biol. 220: e202005138, https://doi.org/10.1083/JCB.202005138.Search in Google Scholar

Received: 2024-03-19
Accepted: 2024-06-19
Published Online: 2024-07-08
Published in Print: 2024-10-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2024-0046/html
Scroll to top button