Abstract
Caveolae are 50–80 nm sized plasma membrane invaginations found in adipocytes, endothelial cells or fibroblasts. They are involved in endocytosis, lipid uptake and the regulation of the cellular lipid metabolism as well as sensing and adapting to changes in plasma membrane tension. Caveolae are characterized by their unique lipid composition and their specific protein coat consisting of caveolin and cavin proteins. Recently, detailed structural information was obtained for the major caveolae protein caveolin1 showing the formation of a disc-like 11-mer protein complex. Furthermore, the importance of the cavin disordered regions in the generation of cavin trimers and caveolae at the plasma membrane were revealed. Thus, finally, structural insights about the assembly of the caveolar coat can be elucidated. Here, we review recent developments in caveolae structural biology with regard to caveolae coat formation and caveolae curvature generation. Secondly, we discuss the importance of specific lipid species necessary for caveolae curvature and formation. In the last years, it was shown that specifically sphingolipids, cholesterol and fatty acids can accumulate in caveolae invaginations and may drive caveolae endocytosis. Throughout, we summarize recent studies in the field and highlight future research directions.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: 531499831
Funding source: Chan Zuckerberg Initiative
Award Identifier / Grant number: DAF #2023-331950
Funding source: Deutsche Diabetes Gesellschaft
Funding source: Else Kröner-Fresenius-Stiftung
Award Identifier / Grant number: 2023_EKEA.152
Acknowledgments
Structure modelling was done using UCSF ChimeraX.
-
Research ethics: Not applicable.
-
Author contributions: E.O. and C.M. wrote the manuscript and prepared the figures.
-
Competing interests: The authors state no conflict of interest
-
Research funding: C.M. is funded by Chan Zuckerberg Initiative (DAF #2023–331950), by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, project grant: 531499831), and Else-Kröner-Fresenius-Stiftung and Deutsche Diabetes Gesellschaft.
-
Data availability: Not applicable.
References
Aboulaich, N., Vainonen, J.P., Lfors, P.S., and Vener, A.V. (2004). Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes. Biochem. J. 383: 237–248, https://doi.org/10.1042/bj20040647, Available at: http://portlandpress.com/biochemj/article-pdf/383/2/237/713697/bj3830237.pdf.Search in Google Scholar
Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A.J., Bambrick, J., et al. (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630: 493–500, https://doi.org/10.1038/s41586-024-07487-w.Search in Google Scholar
Allen, K.N., Entova, S., Ray, L.C., and Imperiali, B. (2019). Monotopic membrane proteins join the fold. Trends Biochem. Sci. 44: 7–20, https://doi.org/10.1016/j.tibs.2018.09.013.Search in Google Scholar
Anderson, R.H., Sochacki, K.A., Vuppula, H., Scott, B.L., Bailey, E.M., Schultz, M.M., Kerkvliet, J.G., Taraska, J.W., Hoppe, A.D., and Francis, K.R. (2021). Sterols lower energetic barriers of membrane bending and fission necessary for efficient clathrin-mediated endocytosis. Cell Rep. 37: 110008, https://doi.org/10.1016/j.celrep.2021.110008.Search in Google Scholar
Ariotti, N., Fernández-Rojo, M.A., Zhou, Y., Hill, M.M., Rodkey, T.L., Inder, K.L., Tanner, L.B., Wenk, M.R., Hancock, J.F., and Parton, R.G. (2014). Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling. J. Cell Biol. 204: 777–792, https://doi.org/10.1083/jcb.201307055.Search in Google Scholar
Ariotti, N., Rae, J., Leneva, N., Ferguson, C., Loo, D., Okano, S., Hill, M.M., Walser, P., Collins, B.M., and Parton, R.G. (2015). Molecular characterization of caveolin-induced membrane curvature. J. Biol. Chem. 290: 24875–24890, https://doi.org/10.1074/jbc.M115.644336.Search in Google Scholar
Balali-Mood, K., Bond, P.J., and Sansom, M.S.P. (2009). Interaction of monotopic membrane enzymes with a lipid bilayer: a coarse-grained MD simulation study. Biochemistry 48: 2135–2145, https://doi.org/10.1021/bi8017398.Search in Google Scholar
Baoukina, S., Ingólfsson, H.I., Marrink, S.J., and Tieleman, D.P. (2018). Curvature-induced sorting of lipids in plasma membrane tethers. Adv. Theory Simul. 1, https://doi.org/10.1002/adts.201800034.Search in Google Scholar
Bastiani, M., Liu, L., Hill, M.M., Jedrychowski, M.P., Nixon, S.J., Lo, H.P., Abankwa, D., Luetterforst, R., Fernandez-Rojo, M., Breen, M.R., et al.. (2009). MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. J. Cell Biol. 185: 1259–1273, https://doi.org/10.1083/JCB.200903053.Search in Google Scholar
Blouin, C.M., Le Lay, S., Eberl, A., Köfeler, H.C., Guerrera, I.C., Klein, C., Le Liepvre, X., Lasnier, F., Bourron, O., Gautier, J.F., et al.. (2010). Lipid droplet analysis in caveolin-deficient adipocytes: alterations in surface phospholipid composition and maturation defects. J. Lipid Res. 51: 945–956, https://doi.org/10.1194/JLR.M001016.Search in Google Scholar
Blouin, C.M., Le Lay, S., Lasnier, F., Dugail, I., and Hajduch, E. (2008). Regulated association of caveolins to lipid droplets during differentiation of 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 376: 331–335, https://doi.org/10.1016/j.bbrc.2008.08.154.Search in Google Scholar
Busija, A.R., Patel, H.H., and Insel, P.A. (2016). Caveolins and cavins in the trafficking, maturation, and degradation of caveolae: implications for cell physiology. Am J Physiol. Cell Physiol. 312: 459–477, https://doi.org/10.1152/ajpcell.00355.2016.Search in Google Scholar
Cai, Q., Guo, L., Gao, H., and Li, X.A. (2013). Caveolar fatty acids and acylation of caveolin-1. PLoS ONE 8: e60884, https://doi.org/10.1371/journal.pone.0060884.Search in Google Scholar
Cheng, J.P.X. and Nichols, B.J. (2016). Caveolae: one function or many? Trends Cell Biol. 26: 177–189, https://doi.org/10.1016/j.tcb.2015.10.010.Search in Google Scholar
Cohen, A.W., Hnasko, R., Schubert, W., and Lisanti, M.P. (2004). Role of caveolae and caveolins in health and disease. Physiol. Rev. 84: 1341–1379, https://doi.org/10.1152/PHYSREV.00046.2003.Search in Google Scholar
Cohen, A.W., Razani, B., Wang, X.B., Combs, T.P., Williams, T.M., Scherer, P.E., and Lisanti, M.P. (2003). Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am. J. Physiol. Cell Physiol. 285: 222–235, https://doi.org/10.1152/ajpcell.00006.2003.Search in Google Scholar
Colom, A., Derivery, E., Soleimanpour, S., Tomba, C., Molin, M.D., Sakai, N., González-Gaitán, M., Matile, S., and Roux, A. (2018). A fluorescent membrane tension probe. Nat. Chem. 10: 1118–1125, https://doi.org/10.1038/s41557-018-0127-3.Search in Google Scholar
Daumke, O., Lundmark, R., Vallis, Y., Martens, S., Butler, P.J.G., and McMahon, H.T. (2007). Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling. Nature 449: 923–927, https://doi.org/10.1038/nature06173.Search in Google Scholar
Del Pozo, M.A., Lolo, F.N., and Echarri, A. (2021). Caveolae: mechanosensing and mechanotransduction devices linking membrane trafficking to mechanoadaptation. Curr. Opin. Cell Biol. 68: 113–123, https://doi.org/10.1016/j.ceb.2020.10.008.Search in Google Scholar
Dietzen, D.J., Hastings, W.R., and Lublin, D.M. (1995). Caveolin is palmitoylated on multiple cysteine residues. J. Biol. Chem. 270: 6838–6842, https://doi.org/10.1074/jbc.270.12.6838.Search in Google Scholar
Dreja, K., Voldstedlund, M., Vinten, J., Tranum-Jensen, J., Hellstrand, P., and Swärd, K. (2002). Cholesterol depletion disrupts caveolae and differentially impairs agonist-induced arterial contraction. Arterioscler., Thromb., Vasc. Biol. 22: 1267–1272, https://doi.org/10.1161/01.ATV.0000023438.32585.A1.Search in Google Scholar
Echarri, A., Muriel, O., Pavón, D.M., Azegrouz, H., Escolar, F., Terrón, M.C., Sanchez-Cabo, F., Martínez, F., Montoya, M.C., Llorca, O., et al.. (2012). Caveolar domain organization and trafficking is regulated by Abl kinases and mDia1. J. Cell Sci. 125: 3097–3113, https://doi.org/10.1242/jcs.090134.Search in Google Scholar
Echarri, A., Pavón, D.M., Sánchez, S., García-García, M., Calvo, E., Huerta-López, C., Velázquez-Carreras, D., Viaris de Lesegno, C., Ariotti, N., Lázaro-Carrillo, A., et al.. (2019). An Abl-FBP17 mechanosensing system couples local plasma membrane curvature and stress fiber remodeling during mechanoadaptation. Nat. Commun. 10: 5828, https://doi.org/10.1038/s41467-019-13782-2.Search in Google Scholar
Evans, R., O’neill, M., Pritzel, A., Antropova, N., Senior, A., Green, T., Žídek, A., Bates, R., Blackwell, S., Yim, J., et al.. (2022). Protein complex prediction with AlphaFold-Multimer. BioRxiv, https://doi.org/10.1101/2021.10.04.463034.Search in Google Scholar
Fridolfsson, H.N. and Patel, H.H. (2013). Caveolin and caveolae in age associated cardiovascular disease. J. Geriatr. Cardiol. 10: 66–74, https://doi.org/10.3969/j.issn.1671-5411.2013.01.011.Search in Google Scholar
Fujimoto, T. (1996). GPI-anchored proteins, glycosphingolipids, and sphingomyelin are sequestered to caveolae only after crosslinking. J. Histochem. Cytochem. 44: 929–941, https://doi.org/10.1177/44.8.8756764.Search in Google Scholar
Fujimoto, T., Hayashi, M., Iwamoto, M., and Ohno-Iwashita, Y. (1997). Crosslinked plasmalemmal cholesterol is sequestered to caveolae: analysis with a new cytochemical probe. Journal of Histochemistry & Cytochemistry 45: 1197–1205, https://doi.org/10.1177/002215549704500903.Search in Google Scholar
Galbiati, F., Engelman, J.A., Volonte, D., Zhang, X.L., Minetti, C., Li, M., Hou, H., Kneitz, B., Edelmann, W., Lisanti, M.P., et al.. (2001). Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and T-tubule abnormalities. J. Biol. Chem. 276: 21425–21433, https://doi.org/10.1074/jbc.M100828200.Search in Google Scholar
Gambin, Y., Ariotti, N., McMahon, K.-A., Bastiani, M., Sierecki, E., Kovtun, O., Polinkovsky, M.E., Magenau, A., Jung, W., Okano, S., et al.. (2014). Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae. ELife 3: e01434, https://doi.org/10.7554/elife.01434.Search in Google Scholar
Gazzerro, E., Sotgia, F., Bruno, C., Lisanti, M.P., and Minetti, C. (2010). Caveolinopathies: from the biology of caveolin-3 to human diseases. Eur. J. Hum. Genet. 18: 137–145, https://doi.org/10.1038/ejhg.2009.103.Search in Google Scholar
Glenney, J.R. and Soppet, D. (1992). Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proc. Natl. Acad. Sci. U. S. A. 89(21): 10517–10521, https://doi.org/10.1073/pnas.89.21.10517.Search in Google Scholar
Goddard, T.D., Huang, C.C., Meng, E.C., Pettersen, E.F., Couch, G.S., Morris, J.H., and Ferrin, T.E. (2018). UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27(1): 14–25, https://doi.org/10.1002/pro.3235.Search in Google Scholar
Gulsevin, A., Han, B., Porta, J.C., Mchaourab, H.S., Meiler, J., and Kenworthy, A.K. (2023). Template-free prediction of a new monotopic membrane protein fold and assembly by AlphaFold2. Biophys. J. 122: 2041–2052, https://doi.org/10.1016/j.bpj.2022.11.011.Search in Google Scholar
Han, B., Copeland, C.A., Tiwari, A., and Kenworthy, A.K. (2016). Assembly and turnover of caveolae: What do we really know? Front. Cell Dev. Biol. 4: 68, https://doi.org/10.3389/FCELL.2016.00068.Search in Google Scholar
Han, B., Porta, J.C., Hanks, J.L., Peskova, Y., Binshtein, E., Dryden, K., Claxton, D.P., McHaourab, H.S., Karakas, E., Ohi, M.D., et al.. (2020). Structure and assembly of CAV1 8S complexes revealed by single particle electron microscopy. Sci. Adv. 6: eabc6185, https://doi.org/10.1126/SCIADV.ABC6185.Search in Google Scholar
Hansen, C.G., Howard, G., and Nichols, B.J. (2011). Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis. J. Cell Sci. 124: 2777–2785, https://doi.org/10.1242/jcs.084319.Search in Google Scholar
Hansen, C.G., Shvets, E., Howard, G., Riento, K., and Nichols, B.J. (2013). Deletion of cavin genes reveals tissue-specific mechanisms for morphogenesis of endothelial caveolae. Nat. Commun. 4: 1831, https://doi.org/10.1038/NCOMMS2808.Search in Google Scholar
Hao, J.W., Wang, J., Guo, H., Zhao, Y.Y., Sun, H.H., Li, Y.F., Lai, X.Y., Zhao, N., Wang, X., Xie, C., et al.. (2020). CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis. Nat. Commun. 11: 4765, https://doi.org/10.1038/s41467-020-18565-8.Search in Google Scholar
Harmon, C.M. and Abumrad, N.A. (1993). Binding of sulfosuccinimidyl fatty acids to adipocyte membrane proteins: isolation and amino-terminal sequence of an 88-kD protein implicated in transport of long-chain fatty acids. J. Membrane Biol 133: 43–49, https://doi.org/10.1007/BF00231876.Search in Google Scholar
Hayer, A., Stoeber, M., Bissig, C., and Helenius, A. (2010). Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic 11: 361–382, https://doi.org/10.1111/j.1600-0854.2009.01023.x.Search in Google Scholar
Hibbs, R.G., Burch, G.E., and Phillips, J.H. (1958). The fine structure of the small blood vessels of normal human dermis and subcutis. American Heart Journal 56: 662–670, https://doi.org/10.1016/0002-8703(58)90209-6.Search in Google Scholar
Hill, M.M., Bastiani, M., Luetterforst, R., Kirkham, M., Kirkham, A., Nixon, S.J., Walser, P., Abankwa, D., Oorschot, V.M.J., Martin, S., et al.. (2008). PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132: 113–124, https://doi.org/10.1016/j.cell.2007.11.042.Search in Google Scholar
Hsieh, F.L., Turner, L., Bolla, J.R., Robinson, C.V., Lavstsen, T., and Higgins, M.K. (2016). The structural basis for CD36 binding by the malaria parasite. Nat. Commun. 7: 12837, https://doi.org/10.1038/ncomms12837.Search in Google Scholar
Hubert, M., Larsson, E., Vegesna, N.V.G., Ahnlund, M., Johansson, A.I., Moodie, L.W.K., and Lundmark, R. (2020). Lipid accumulation controls the balance between surface connection and scission of caveolae. ELife 9: e55038, https://doi.org/10.7554/ELIFE.55038.Search in Google Scholar
Jansa, P., Mason, S.W., Hoffmann-Rohrer, U., and Grummt, I. (1998). Cloning and functional characterization of PTRF, a novel protein which induces dissociation of paused ternary transcription complexes. EMBO J. 17: 2855–2864, https://doi.org/10.1093/emboj/17.10.2855.Search in Google Scholar
Kenworthy, A.K. (2023). The building blocks of caveolae revealed: caveolins finally take center stage. Biochem. Soc. Trans. 51: 855–869, https://doi.org/10.1042/BST20221298.Search in Google Scholar
Kenworthy, A.K., Han, B., Ariotti, N., and Parton, R.G. (2023). The role of membrane lipids in the formation and function of caveolae. Cold Spring Harbor Perspect. Biol. 15: a041413, https://doi.org/10.1101/cshperspect.a041413.Search in Google Scholar
Koch, D., Westermann, M., Kessels, M.M., and Qualmann, B. (2012). Ultrastructural freeze-fracture immunolabeling identifies plasma membrane-localized syndapin II as a crucial factor in shaping caveolae. Histochem. Cell Biol. 138: 215–230, https://doi.org/10.1007/s00418-012-0945-0.Search in Google Scholar
Kollmitzer, B., Heftberger, P., Rappolt, M., and Pabst, G. (2013). Monolayer spontaneous curvature of raft-forming membrane lipids. Soft Matter 9: 10877–10884, https://doi.org/10.1039/c3sm51829a.Search in Google Scholar
Kovtun, O., Tillu, V.A., Ariotti, N., Parton, R.G., and Collins, B.M. (2015). Cavin family proteins and the assembly of caveolae. J. Cell Sci. 128: 1269–1278, https://doi.org/10.1242/jcs.167866.Search in Google Scholar
Kovtun, O., Tillu, V.A., Jung, W.R., Leneva, N., Ariotti, N., Chaudhary, N., Mandyam, R.A., Ferguson, C., Morgan, G.P., Johnston, W.A., et al.. (2014). Structural insights into the organization of the cavin membrane coat complex. Dev. Cell 31: 405–419, https://doi.org/10.1016/j.devcel.2014.10.002.Search in Google Scholar
Krishna, A., Prakash, S., and Sengupta, D. (2020). Sphingomyelin effects in caveolin-1 mediated membrane curvature. J. Phys. Chem. B 124: 5177–5185, https://doi.org/10.1021/acs.jpcb.0c02962.Search in Google Scholar
Lamaze, C., Tardif, N., Dewulf, M., Vassilopoulos, S., and Blouin, C.M. (2017). The caveolae dress code: structure and signaling. Curr. Opin. Cell Biol. 47: 117–125, https://doi.org/10.1016/j.ceb.2017.02.014.Search in Google Scholar
Lee, J. and Glover, K.J. (2012). The transmembrane domain of caveolin-1 exhibits a helix-break-helix structure. Biochim. Biophys. Acta Biomembr. 1818: 1158–1164, https://doi.org/10.1016/j.bbamem.2011.12.033.Search in Google Scholar
Le Lay, S., Hajduch, E., Lindsay, M.R., Le Lièpvre, X., Thiele, C., Ferré, P., Parton, R.G., Kurzchalia, T., Simons, K., and Dugail, I. (2006). Cholesterol-induced caveolin targeting to lipid droplets in adipocytes: a role for caveolar endocytosis. Traffic 7: 549–561, https://doi.org/10.1111/j.1600-0854.2006.00406.x.Search in Google Scholar
Liu, K.-C., Pace, H., Larsson, E., Hossain, S., Kabedev, A., Shukla, A., Jerschabek, V., Mohan, J., Bergström D, C.A.S., Bally, M., et al.. (2022). Membrane insertion mechanism of the caveola coat protein Cavin1. Proc. Natl. Acad. Sci. U. S. A. 119(25): e2202295119, https://doi.org/10.1073/pnas.2202295119.Search in Google Scholar
Liu, L., Brown, D., Mckee, M., Lebrasseur, N.K., Yang, D., Albrecht, K.H., Ravid, K., and Pilch, P.F. (2008). Cell metabolism deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metab. 8: 310–317, https://doi.org/10.1016/j.cmet.2008.07.008.Search in Google Scholar
Lo, H.P., Nixon, S.J., Hall, T.E., Cowling, B.S., Ferguson, C., Morgan, G.P., Schieber, N.L., Fernandez-Rojo, M.A., Bastiani, M., Floetenmeyer, M., et al.. (2015). The caveolin-Cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle. J. Cell Biol. 210: 833–849, https://doi.org/10.1083/jcb.201501046.Search in Google Scholar
Lolo, F.N., Walani, N., Seemann, E., Zalvidea, D., Pavón, D.M., Cojoc, G., Zamai, M., Viaris de Lesegno, C., Martínez de Benito, F., Sánchez-Álvarez, M., et al.. (2023). Caveolin-1 dolines form a distinct and rapid caveolae-independent mechanoadaptation system. Nat. Cell Biol. 25: 120–133, https://doi.org/10.1038/s41556-022-01034-3.Search in Google Scholar
Lorent, J.H., Levental, K.R., Ganesan, L., Rivera-Longsworth, G., Sezgin, E., Doktorova, M., Lyman, E., and Levental, I. (2020). Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 16: 644–652, https://doi.org/10.1038/s41589-020-0529-6.Search in Google Scholar
Ludwig, A., Howard, G., Mendoza-Topaz, C., Deerinck, T., Mackey, M., Sandin, S., Ellisman, M.H., and Nichols, B.J. (2013). Molecular composition and ultrastructure of the caveolar coat complex. PLoS Biol. 11: e1001640, https://doi.org/10.1371/journal.pbio.1001640.Search in Google Scholar
Ludwig, A., Nichols, B.J., and Sandin, S. (2016). Architecture of the caveolar coat complex. J. Cell Sci. 129: 3077–3083, https://doi.org/10.1242/jcs.191262.Search in Google Scholar
Luse, M.A., Jackson, M.G., Juśkiewicz, Z.J., and Isakson, B.E. (2023). Physiological functions of caveolae in endothelium. Curr. Opin. Physiol. 35: 100701, https://doi.org/10.1016/j.cophys.2023.100701.Search in Google Scholar
Machleidt, T., Li, W.-P., Liu, P., and Anderson, R.G.W. (2000). Multiple domains in Caveolin-1 control its intracellular traffic. J. Cell Biol. 148: 17–28, https://doi.org/10.1083/jcb.148.1.17.Search in Google Scholar
Matthaeus, C., Lahmann, I., Kunz, S., Jonas, W., Melo, A.A., Lehmann, M., Larsson, E., Lundmark, R., Kern, M., Blüher, M., et al.. (2020). EHD2-mediated restriction of caveolar dynamics regulates cellular fatty acid uptake. Proc. Natl. Acad. Sci. U. S. A. 117(13): 7471–7481, https://doi.org/10.1073/pnas.1918415117.Search in Google Scholar
Matthaeus, C., Sochacki, K.A., Dickey, A.M., Puchkov, D., Haucke, V., Lehmann, M., and Taraska, J.W. (2022). The molecular organization of differentially curved caveolae indicates bendable structural units at the plasma membrane. Nat. Commun. 13: 7234, https://doi.org/10.1038/s41467-022-34958-3.Search in Google Scholar
McMahon, K.A., Zajicek, H., Li, W.P., Peyton, M.J., Minna, J.D., Hernandez, V.J., Luby-Phelps, K., and Anderson, R.G.W. (2009). SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function. EMBO J. 28: 1001–1015, https://doi.org/10.1038/emboj.2009.46.Search in Google Scholar
Meng, E.C., Goddard, T.D., Pettersen, E.F., Couch, G.S., Pearson, Z.J., Morris, J.H., and Ferrin, T.E. (2023). UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32: e4792, https://doi.org/10.1002/pro.4792.Search in Google Scholar
Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger, M. (2022). ColabFold: making protein folding accessible to all. Nat. Methods 19: 679–682, https://doi.org/10.1038/s41592-022-01488-1.Search in Google Scholar
Mohan, J., Morén, B., Larsson, E., Holst, M.R., and Lundmark, R. (2015). Cavin3 interacts with cavin1 and caveolin1 to increase surface dynamics of caveolae. J. Cell Sci. 128: 979–991, https://doi.org/10.1242/jcs.161463.Search in Google Scholar
Morén, B., Shah, C., Howes, M.T., Schieber, N.L., Mcmahon, H.T., Parton, R.G., Daumke, O., and Lundmark, R. (2012). EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization. Mol. Biol. Cell 23: 1316–1329, https://doi.org/10.1091/mbc.E11-09-0787.Search in Google Scholar
Murata, M., Peranen, J., Schreinert, R., Wielandt, F., Kurzchalia, T.V., and Simons, K. (1995). VIP21/caveolin is a cholesterol-binding protein (membrane microdomains/intracellular transport/membrane reconstitution). Proc. Natl. Acad. Sci. U. S. A. 92(22): 10339–10343, https://doi.org/10.1073/pnas.92.22.10339.Search in Google Scholar
Ohi, M.D. and Kenworthy, A.K. (2022). Emerging insights into the molecular architecture of Caveolin-1. J. Membr. Biol. 255: 375–383, https://doi.org/10.1007/s00232-022-00259-5.Search in Google Scholar
Örtegren, U., Karlsson, M., Blazic, N., Blomqvist, M., Nystrom, F.H., Gustavsson, J., Fredman, P., and Strålfors, P. (2004). Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary rat adipocytes. Eur. J. Biochem. 271: 2028–2036, https://doi.org/10.1111/j.1432-1033.2004.04117.x.Search in Google Scholar
Parolini, I., Sargiacomo, M., Galbiati, F., Rizzo, G., Grignani, F., Engelman, J.A., Okamoto, T., Ikezu, T., Scherer, P.E., Mora, R., et al.. (1999). Expression of Caveolin-1 is required for the transport of Caveolin-2 to the plasma membrane. J. Biol. Chem. 274: 25718–25725, https://doi.org/10.1074/jbc.274.36.25718.Search in Google Scholar
Parton, R.G. and Del Pozo, M.A. (2013). Caveolae as plasma membrane sensors, protectors and organizers. Nat. Rev. Mol. Cell Biol. 14: 98–112, https://doi.org/10.1038/nrm3512.Search in Google Scholar
Parton, R.G. (1994). Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J. Histochem. Cytochem. 42: 155–166, https://doi.org/10.1177/42.2.8288861.Search in Google Scholar
Parton, R.G. (2018). Caveolae: structure, function, and relationship to disease. Annu. Rev. Cell Dev. Biol. 34: 111–136, https://doi.org/10.1146/annurev-cellbio-100617-062737.Search in Google Scholar
Parton, R.G., Kozlov, M.M., and Ariotti, N. (2020). Caveolae and lipid sorting: shaping the cellular response to stress. J. Cell Biol. 219: e201905071, https://doi.org/10.1083/jcb.201905071.Search in Google Scholar
Patni, N., Hegele, R.A., and Garg, A. (2022). Caveolar dysfunction and lipodystrophies. Eur. J. Endocrinol. 186: C1–C4, https://doi.org/10.1530/EJE-21-1243.Search in Google Scholar
Pelkmans, L. and Zerial, M. (2005). Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae. Nature 436: 128–133, https://doi.org/10.1038/nature03866.Search in Google Scholar
Pettersen, E.F., Goddard, T.D., Huang, C.C., Meng, E.C., Couch, G.S., Croll, T.I., Morris, J.H., and Ferrin, T.E. (2021). UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30: 70–82, https://doi.org/10.1002/pro.3943.Search in Google Scholar
Pöhnl, M., Trollmann, M.F.W., and Böckmann, R.A. (2023). Nonuniversal impact of cholesterol on membranes mobility, curvature sensing and elasticity. Nat. Commun. 14: 8038, https://doi.org/10.1038/s41467-023-43892-x.Search in Google Scholar
Porta, J.C., Han, B., Gulsevin, A., Min Chung, J., Peskova, Y., Connolly, S., Mchaourab, H.S., Meiler, J., Karakas, E., Kenworthy, A.K., et al.. (2022). Molecular architecture of the human caveolin-1 complex. Sci. Adv. 8: eabn7232, https://doi.org/10.1126/sciadv.abn7232.Search in Google Scholar
Puchkov, D., Müller, P.M., Lehmann, M., and Matthaeus, C. (2023). Analyzing the cellular plasma membrane by fast and efficient correlative STED and platinum replica EM. Front. Cell Dev. Biol. 11, https://doi.org/10.3389/fcell.2023.1305680.Search in Google Scholar
Razani, B., Combs, T.P., Wang, X.B., Frank, P.G., Park, D.S., Russell, R.G., Li, M., Tang, B., Jelicks, L.A., Scherer, P.E., et al.. (2002a). Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J. Biol. Chem. 277: 8635–8647, https://doi.org/10.1074/jbc.M110970200.Search in Google Scholar
Razani, B., Wang, X.B., Engelman, J.A., Battista, M., Lagaud, G., Zhang, X.L., Kneitz, B., Hou, H., Christ, G.J., Edelmann, W., et al.. (2002b). Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol. Cell. Biol. 22: 2329–2344, https://doi.org/10.1128/MCB.22.7.2329-2344.2002.Search in Google Scholar
Ring, A., Le Lay, S., Pohl, J., Verkade, P., and Stremmel, W. (2006). Caveolin-1 is required for fatty acid translocase (FAT/CD36) localization and function at the plasma membrane of mouse embryonic fibroblasts. Biochim. Biophys. Acta 1761: 416–423, https://doi.org/10.1016/j.bbalip.2006.03.016.Search in Google Scholar
Root, K.T., Julien, J.A., and Glover, K.J. (2019). Secondary structure of caveolins: a mini review. Biochem. Soc. Trans. 47: 1489–1498, https://doi.org/10.1042/BST20190375.Search in Google Scholar
Rothberg, K.G., Heuser, J.E., Donzell, W.C., Ying, Y.-S., Glenney, J.R., and Anderson, R.G.W. (1992). Caveolin, a protein component of caveolae membrane coats. Cell 68: 673–682, https://doi.org/10.1016/0092-8674(92)90143-Z.Search in Google Scholar
Sargiacomo, M., Scherer, P.E., Tang, Z., Kubler, E., Song, K.S., Sanders, M.C., and Lisantit, M.P. (1995). Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc. Natl. Acad. Sci. U. S. A. 92(20): 9407–9411, https://doi.org/10.1073/pnas.92.20.9407.Search in Google Scholar
Scherer, P.E., Lewis, R.Y., Volonté, D., Engelman, J.A., Galbiati, F., Couet, J., Stave Kohtz, D., van Donselaar, E., Peters, P., and Lisanti, M.P. (1997). Cell-type and tissue-specific expression of caveolin-2: caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J. Biol. Chem. 272: 29337–29346, https://doi.org/10.1074/jbc.272.46.29337.Search in Google Scholar
Scherer, P.E., Okamotot, T., Chun, M., Nishimotot, I., Lodish, H.F., and Lisanti, M.P. (1996). Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc. Natl. Acad. Sci. U. S. A. 93(1): 131–135, https://doi.org/10.1073/pnas.93.1.131.Search in Google Scholar
Seemann, E., Sun, M., Krueger, S., Tröger, J., Hou, W., Haag, N., Schüler, S., Westermann, M., Huebner, C.A., Romeike, B., et al.. (2017). Deciphering caveolar functions by syndapin III KO-mediated impairment of caveolar invagination. eLife 6: e29854, https://doi.org/10.7554/eLife.29854.001.Search in Google Scholar
Senju, Y., Itoh, Y., Takano, K., Hamada, S., and Suetsugu, S. (2011). Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting. J. Cell Sci. 124: 2032–2040, https://doi.org/10.1242/jcs.086264.Search in Google Scholar
Senju, Y., Rosenbaum, E., Shah, C., Hamada-Nakahara, S., Itoh, Y., Yamamoto, K., Hanawa-Suetsugu, K., Daumke, O., and Suetsugu, S. (2015). Phosphorylation of PACSIN2 by protein kinase C triggers the removal of caveolae from the plasma membrane. J. Cell Sci. 128: 2766–2780, https://doi.org/10.1242/jcs.167775.Search in Google Scholar
Sharma, D.K., Brown, J.C., Choudhury, A., Peterson, T.E., Holicky, E., Marks, D.L., Simari, R., Parton, R.G., and Pagano, R.E. (2004). Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol. Biol. Cell 15: 3114–3122, https://doi.org/10.1091/mbc.e04-03-0189.Search in Google Scholar
Shvets, E., Bitsikas, V., Howard, G., Hansen, C.G., and Nichols, B.J. (2015). Dynamic caveolae exclude bulk membrane proteins and are required for sorting of excess glycosphingolipids. Nat. Commun. 6: 6867, https://doi.org/10.1038/ncomms7867.Search in Google Scholar
Simard, J.R., Meshulam, T., Pillai, B.K., Kirber, M.T., Brunaldi, K., Xu, S., Pilch, P.F., and Hamilton, J.A. (2010). Caveolins sequester FA on the cytoplasmic leaflet of the plasma membrane, augment triglyceride formation, and protect cells from lipotoxicity. J. Lipid Res. 51: 914–922, https://doi.org/10.1194/jlr.M900251.Search in Google Scholar
Song, K.S., Scherer, P.E., Tang, Z., Okamoto, T., Li, S., Chafel, M., Chu, C., Stave Kohtz, D., and Lisanti, M.P. (1996). Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells: caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J. Biol. Chem. 271: 15160–15165, https://doi.org/10.1074/jbc.271.25.15160.Search in Google Scholar
Sonnino, S. and Prinetti, A. (2009). Sphingolipids and membrane environments for caveolin. FEBS Lett. 583: 597–606, https://doi.org/10.1016/j.febslet.2009.01.007.Search in Google Scholar
Stoeber, M., Schellenberger, P., Siebert, C.A., Leyrat, C., Grünewald, K., and Helenius, A. (2016). Model for the architecture of caveolae based on a flexible, net-like assembly of Cavin1 and Caveolin discs. Proc. Natl. Acad. Sci. U. S. A. 113(50): E8069–E8078, https://doi.org/10.1073/pnas.1616838113.Search in Google Scholar
Stoeber, M., Stoeck, I.K., HéCurrency Signnni, C., Bleck, C.K.E., Balistreri, G., and Helenius, A. (2012). Oligomers of the ATPase EHD2 confine caveolae to the plasma membrane through association with actin. EMBO J. 31: 2350–2364, https://doi.org/10.1038/emboj.2012.98.Search in Google Scholar
Subczynski, W.K., Pasenkiewicz-Gierula, M., Widomska, J., Mainali, L., and Raguz, M. (2017). High cholesterol/low cholesterol: effects in biological membranes: a review. Cell Biochem. Biophys. 75: 369–385, https://doi.org/10.1007/s12013-017-0792-7.Search in Google Scholar
Tagawa, A., Mezzacasa, A., Hayer, A., Longatti, A., Pelkmans, L., and Helenius, A. (2005). Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargo-triggered, vesicular transporters. J. Cell Biol. 170: 769–779, https://doi.org/10.1083/jcb.200506103.Search in Google Scholar
Tang, Z., Scherer, P.E., Okamoto, T., Song, K., Chu, C., Stave Kohtz, D., Nishimoto, I., Lodish, H.F., and Lisanti, M.P. (1996). Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J. Biol. Chem. 271: 2255–2261, https://doi.org/10.1074/jbc.271.4.2255.Search in Google Scholar
Thorn, H., Stenkula, K.G., Karlsson, M., Örtegren, U., Nystrom, F.H., Gustavsson, J., and Strålfors, P. (2003). Cell surface orifices of caveolae and localization of caveolin to the necks of caveolae in adipocytes. Mol. Biol. Cell 14: 3967–3976, https://doi.org/10.1091/mbc.E03-01-0050.Search in Google Scholar
Tillu, V.A., Lim, Y., Kovtun, O., Mureev, S., Ferguson, C., Bastiani, M., McMahon, K., Lo, H.P., Hall, T.E., Alexandrov, K., et al.. (2018). A variable undecad repeat domain in cavin1 regulates caveola formation and stability. EMBO Rep. 19: e45775, https://doi.org/10.15252/embr.201845775.Search in Google Scholar
Tillu, V.A., Rae, J., Gao, Y., Ariotti, N., Floetenmeyer, M., Kovtun, O., McMahon, K.-A., Chaudhary, N., Parton, R.G., and Collins, B.M. (2021). Cavin1 intrinsically disordered domains are essential for fuzzy electrostatic interactions and caveola formation. Nat. Commun. 12: 931, https://doi.org/10.1038/s41467-021-21035-4.Search in Google Scholar
Trigatti, B.L., Anderson, R.G.W., and Gerber, G.E. (1999). Identification of caveolin-1 as a fatty acid binding protein. Biochem. Biophys. Res. Commun. 255: 34–39, https://doi.org/10.1006/bbrc.1998.0123.Search in Google Scholar
Vasquez Rodriguez, S.Y. and Lazaridis, T. (2023). Simulations suggest a scaffolding mechanism of membrane deformation by the caveolin 8S complex. Biophys. J. 122: 4082–4090, https://doi.org/10.1016/j.bpj.2023.09.008.Search in Google Scholar
Walser, P.J., Ariotti, N., Howes, M., Ferguson, C., Webb, R., Schwudke, D., Leneva, N., Cho, K.J., Cooper, L., Rae, J., et al.. (2012). Constitutive formation of caveolae in a bacterium. Cell 150: 752–763, https://doi.org/10.1016/j.cell.2012.06.042.Search in Google Scholar
Yao, Y., Hong, S., Zhou, H., Yuan, T., Zeng, R., and Liao, K. (2009). The differential protein and lipid compositions of noncaveolar lipid microdomains and caveolae. Cell Research 19: 497–506, https://doi.org/10.1038/cr.2009.27.Search in Google Scholar
Yeow, I., Howard, G., Chadwick, J., Mendoza-Topaz, C., Hansen, C.G., Nichols, B.J., and Shvets, E. (2017). EHD proteins cooperate to generate caveolar clusters and to maintain caveolae during repeated mechanical stress. Curr. Biol. 27: 2951–2962, https://doi.org/10.1016/j.cub.2017.07.047.Search in Google Scholar
Yesylevskyy, S.O., Rivel, T., and Ramseyer, C. (2017). The influence of curvature on the properties of the plasma membrane. Insights from atomistic molecular dynamics simulations. Sci. Rep. 7: 16078, https://doi.org/10.1038/s41598-017-16450-x.Search in Google Scholar
Zhou, Y., Ariotti, N., Rae, J., Liang, H., Tillu, V., Tee, S., Bastiani, M., Bademosi, A.T., Collins, B.M., Meunier, F.A., et al.. (2021). Caveolin-1 and cavin1 act synergistically to generate a unique lipid environment in caveolae. J. Cell Biol. 220: e202005138, https://doi.org/10.1083/JCB.202005138.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Highlight: GBM Young Investigators Part 5
- Highlight: young research groups in Germany – 5th edition
- Protein persulfidation in plants: mechanisms and functions beyond a simple stress response
- Pathological and physiological roles of ADP-ribosylation: established functions and new insights
- Implications of TRPM3 and TRPM8 for sensory neuron sensitisation
- The complex regulation of Slo1 potassium channels from a structural perspective
- The TOM complex from an evolutionary perspective and the functions of TOMM70
- Insights in caveolae protein structure arrangements and their local lipid environment
- Insights into caudate amphibian skin secretions with a focus on the chemistry and bioactivity of derived peptides
- Analysis of cell cycle stage, replicated DNA, and chromatin-associated proteins using high-throughput flow cytometry
- A tailored cytochrome P450 monooxygenase from Gordonia rubripertincta CWB2 for selective aliphatic monooxygenation
Articles in the same Issue
- Frontmatter
- Highlight: GBM Young Investigators Part 5
- Highlight: young research groups in Germany – 5th edition
- Protein persulfidation in plants: mechanisms and functions beyond a simple stress response
- Pathological and physiological roles of ADP-ribosylation: established functions and new insights
- Implications of TRPM3 and TRPM8 for sensory neuron sensitisation
- The complex regulation of Slo1 potassium channels from a structural perspective
- The TOM complex from an evolutionary perspective and the functions of TOMM70
- Insights in caveolae protein structure arrangements and their local lipid environment
- Insights into caudate amphibian skin secretions with a focus on the chemistry and bioactivity of derived peptides
- Analysis of cell cycle stage, replicated DNA, and chromatin-associated proteins using high-throughput flow cytometry
- A tailored cytochrome P450 monooxygenase from Gordonia rubripertincta CWB2 for selective aliphatic monooxygenation