Startseite Extracellular stimulation of lung fibroblasts with arachidonic acid increases interleukin 11 expression through p38 and ERK signaling
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Extracellular stimulation of lung fibroblasts with arachidonic acid increases interleukin 11 expression through p38 and ERK signaling

  • Kanako Sasaki ORCID logo , Shotaro Komamura und Kazuyuki Matsuda ORCID logo EMAIL logo
Veröffentlicht/Copyright: 21. Oktober 2022

Abstract

Interleukin-11 (IL-11) is a pleiotropic cytokine that regulates proliferation and motility of cancer cells. Fibroblasts reside in the cancer microenvironment and are the primary source of IL-11. Activated fibroblasts, including cancer-associated fibroblasts that produce IL-11, contribute to the development and progression of cancer, and induce fibrosis associated with cancer. Changes in fatty acid composition or its metabolites, and an increase in free fatty acids have been observed in cancer. The effect of deregulated fatty acids on the development and progression of cancer is not fully understood yet. In the present study, we investigated the effects of fatty acids on mRNA expression and secretion of IL-11 in lung fibroblasts. Among the eight fatty acids added exogenously, arachidonic acid (AA) increased mRNA expression and secretion of IL-11 in lung fibroblasts in a dose-dependent manner. AA-induced upregulation of IL-11 was dependent on the activation of the p38 or ERK MAPK signaling pathways. Furthermore, prostaglandin E2, associated with elevated cyclooxygenase-2 expression, participated in the upregulation of IL-11 via its specific receptor in an autocrine/paracrine manner. These results suggest that AA may mediate IL-11 upregulation in lung fibroblasts in the cancer microenvironment, accompanied by unbalanced fatty acid composition.


Corresponding author: Kazuyuki Matsuda, Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Alexander, L.D., Cui, X.L., Falck, J.R., and Douglas, J.G. (2001). Arachidonic acid directly activates members of the mitogen-activated protein kinase superfamily in rabbit proximal tubule cells. Kidney Int. 59: 2039–2053. https://doi.org/10.1046/j.1523-1755.2001.00718.x.Suche in Google Scholar PubMed

Alsabeeh, N., Chausse, B., Kakimoto, P.A., Kowaltowski, A.J., and Shirihai, O. (2018). Cell culture models of fatty acid overload: problems and solutions. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863: 143–151. https://doi.org/10.1016/j.bbalip.2017.11.006.Suche in Google Scholar PubMed PubMed Central

Bamba, S., Andoh, A., Yasui, H., Makino, J., Kim, S., and Fujiyama, Y. (2003). Regulation of IL-11 expression in intestinal myofibroblasts: role of c-Jun AP-1- and MAPK-dependent pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 285: G529–G538. https://doi.org/10.1152/ajpgi.00050.2003.Suche in Google Scholar PubMed

Brock, T.G., McNish, R.W., and Peters-Golden, M. (1999). Arachidonic acid is preferentially metabolized by cyclooxygenase-2 to prostacyclin and prostaglandin E2. J. Biol. Chem. 274: 11660–11666. https://doi.org/10.1074/jbc.274.17.11660.Suche in Google Scholar PubMed

Bryan, D.-L., Forsyth, K.D., Hart, P.H., and Gibson, R.A. (2006). Polyunsaturated fatty acids regulate cytokine and prostaglandin E2 production by respiratory cells in response to mast cell mediators. Lipids 41: 1101–1107. https://doi.org/10.1007/s11745-006-5059-9.Suche in Google Scholar PubMed

Chang, L. and Karin, M. (2001). Mammalian MAP kinase signalling cascades. Nature 410: 37–40. https://doi.org/10.1038/35065000.Suche in Google Scholar PubMed

Cook, S.A. and Schafer, S. (2020). Hiding in plain sight: interleukin-11 emerges as a master regulator of fibrosis, tissue integrity, and stromal inflammation. Annu. Rev. Med. 71: 263–276. https://doi.org/10.1146/annurev-med-041818-011649.Suche in Google Scholar PubMed

Dietze, R., Hammoud, M.K., Gómez-Serrano, M., Unger, A., Bieringer, T., Finkernagel, F., Sokol, A.M., Nist, A., Stiewe, T., Reinartz, S., et al.. (2021). Phosphoproteomics identify arachidonic-acid-regulated signal transduction pathways modulating macrophage functions with implications for ovarian cancer. Theranostics 11: 1377–1395. https://doi.org/10.7150/thno.52442.Suche in Google Scholar PubMed PubMed Central

Dimitriadis, E., Stoikos, C., Baca, M., Fairlie, W.D., McCoubrie, J.E., and Salamonsen, L.A. (2005). Relaxin and prostaglandin E(2) regulate interleukin 11 during human endometrial stromal cell decidualization. J. Clin. Endocrinol. Metab. 90: 3458–3465. https://doi.org/10.1210/jc.2004-1014.Suche in Google Scholar PubMed

Dong, J., Viswanathan, S., Adami, E., Singh, B.K., Chothani, S.P., Ng, B., Lim, W.W., Zhou, J., Tripathi, M., Ko, N.S.J., et al.. (2021). Hepatocyte-specific IL11 cis-signaling drives lipotoxicity and underlies the transition from NAFLD to NASH. Nat. Commun. 12: 66. https://doi.org/10.1038/s41467-020-20303-z.Suche in Google Scholar PubMed PubMed Central

Fujisawa, Y., Matsuda, K., and Uehara, T. (2020). Osteopontin enhances the migration of lung fibroblasts via upregulation of interleukin-6 through the extracellular signal-regulated kinase (ERK) pathway. Biol. Chem. 401: 1071–1080. https://doi.org/10.1515/hsz-2020-0125.Suche in Google Scholar PubMed

Fung, K.Y., Louis, C., Metcalfe, R.D., Kosasih, C.C., Wicks, I.P., Griffin, M.D.W., and Putoczki, T.L. (2022). Emerging roles for IL-11 in inflammatory diseases. Cytokine 149: 155750. https://doi.org/10.1016/j.cyto.2021.155750.Suche in Google Scholar PubMed

Garbers, C. and Scheller, J. (2013). Interleukin-6 and interleukin-11: same same but different. Biol. Chem. 394: 1145–1161. https://doi.org/10.1515/hsz-2013-0166.Suche in Google Scholar PubMed

Garcia, M.C., Ray, D.M., Lackford, B., Rubino, M., Olden, K., and Roberts, J.D. (2009). Arachidonic acid stimulates cell adhesion through a novel p38 MAPK-RhoA signaling pathway that involves heat shock protein 27. J. Biol. Chem. 284: 20936–20945. https://doi.org/10.1074/jbc.m109.020271.Suche in Google Scholar PubMed PubMed Central

Guijas, C., Pérez-Chacón, G., Astudillo, A.M., Rubio, J.M., Gil-de-Gómez, L., Balboa, M.A., and Balsinde, J. (2012). Simultaneous activation of p38 and JNK by arachidonic acid stimulates the cytosolic phospholipase A2-dependent synthesis of lipid droplets in human monocytes. J. Lipid Res. 53: 2343–2354. https://doi.org/10.1194/jlr.m028423.Suche in Google Scholar

Guo, L., Lai, Z., Wang, Y., and Li, Z. (2020). In situ probing changes in fatty-acyl chain length and desaturation of lipids in cancerous areas using mass spectrometry imaging. J. Mass Spectrom. 56: e4621. https://doi.org/10.1002/jms.4621.Suche in Google Scholar PubMed

Gupta, J., Robbins, J., Jilling, T., and Seth, P. (2011). TGFβ-dependent induction of interleukin-11 and interleukin-8 involves SMAD and p38 MAPK pathways in breast tumor models with varied bone metastases potential. Cancer Biol. Ther. 11: 311–316. https://doi.org/10.4161/cbt.11.3.14096.Suche in Google Scholar PubMed PubMed Central

Hii, C.S., Huang, Z.H., Bilney, A., Costabile, M., Murray, A.W., Rathjen, D.A., Der, C.J., and Ferrante, A. (1998). Stimulation of p38 phosphorylation and activity by arachidonic acid in HeLa cells, HL60 promyelocytic leukemic cells, and human neutrophils. Evidence for cell type-specific activation of mitogen-activated protein kinases. J. Biol. Chem. 273: 19277–19282. https://doi.org/10.1074/jbc.273.30.19277.Suche in Google Scholar PubMed

Hoang, B., Trinh, A., Birnbaumer, L., and Edwards, R.A. (2007). Decreased MAPK- and PGE2-dependent IL-11 production in Giα2−/− colonic myofibroblasts. Am. J. Physiol. Gastrointest. Liver Physiol. 292: G1511–G1519. https://doi.org/10.1152/ajpgi.00307.2006.Suche in Google Scholar PubMed

Huang, S., Wettlaufer, S.H., Hogaboam, C., Aronoff, D.M., and Peters-Golden, M. (2007). Prostaglandin E(2) inhibits collagen expression and proliferation in patient-derived normal lung fibroblasts via E prostanoid 2 receptor and cAMP signaling. Am. J. Physiol. Lung Cell Mol. Physiol. 292: L405–L413. https://doi.org/10.1152/ajplung.00232.2006.Suche in Google Scholar PubMed

Jianyong, Z., Yanruo, H., Xiaoju, T., Yiping, W., and Fengming, L. (2021). Roles of lipid profiles in human non-small cell lung cancer. Technol. Cancer Res. Treat. 20: 15330338211041472. https://doi.org/10.1177/15330338211041472.Suche in Google Scholar PubMed PubMed Central

Kaps, L. and Schuppan, D. (2020). Targeting cancer associated fibroblasts in liver fibrosis and liver cancer using nanocarriers. Cells 9: 2027. https://doi.org/10.3390/cells9092027.Suche in Google Scholar PubMed PubMed Central

Kirk, T., Ahmed, A. and Rognoni, E. (2021). Fibroblast memory in development, homeostasis and disease. Cells 10: 2840. https://doi.org/10.3390/cells10112840.Suche in Google Scholar PubMed PubMed Central

Kortekaas, R.K., Burgess, J.K., van Orsoy, R., Lamb, D., Webster, M., and Gosens, R. (2021). Therapeutic targeting of IL-11 for chronic lung disease. Trends Pharmacol. Sci. 42: 354–366. https://doi.org/10.1016/j.tips.2021.01.007.Suche in Google Scholar PubMed

Lecureur, V., Arzel, M., Ameziane, S., Houlbert, N., Le Vee, M., Jouneau, S., and Fardel, O. (2012). MAPK- and PKC/CREB-dependent induction of interleukin-11 by the environmental contaminant formaldehyde in human bronchial epithelial cells. Toxicology 292: 13–22. https://doi.org/10.1016/j.tox.2011.11.011.Suche in Google Scholar PubMed

Li, Y.J., Wang, X.Q., Sato, T., Kanaji, N., Nakanishi, M., Kim, M., Michalski, J., Nelson, A.J., Sun, J.H., Farid, M., et al.. (2011). Prostaglandin E2 inhibits human lung fibroblast chemotaxis through disparate actions on different E-prostanoid receptors. Am. J. Respir. Cell Mol. Biol. 44: 99–107. https://doi.org/10.1165/rcmb.2009-0163oc.Suche in Google Scholar

Liu, J., Mazzone, P.J., Cata, J.P., Kurz, A., Bauer, M., Mascha, E.J., and Sessler, D.I. (2014). Serum free fatty acid biomarkers of lung cancer. Chest 146: 670–679. https://doi.org/10.1378/chest.13-2568.Suche in Google Scholar PubMed

Liu, Y., Lin, J., Chen, Y., Li, Z., Zhou, J., Lu, X., Chen, Z., and Zuo, D. (2021). Omega-3 polyunsaturated fatty acids inhibit IL-11/STAT3 signaling in hepatocytes during acetaminophen hepatotoxicity. Int. J. Mol. Med. 48: 190. https://doi.org/10.3892/ijmm.2021.5023.Suche in Google Scholar PubMed PubMed Central

Matsui, S., Yamashita, N., Mino, T., Taki, H., Sugiyama, E., Hayashi, R., Maruyama, M., and Kobayashi, M. (1999). Role of the endogenous prostaglandin E2 in human lung fibroblast interleukin-11 production. Respir. Med. 93: 637–642. https://doi.org/10.1016/s0954-6111(99)90103-8.Suche in Google Scholar PubMed

Matsumoto, H., Naraba, H., Murakami, M., Kudo, I., Yamaki, K., Ueno, A., and Oh-ishi, S. (1997). Concordant induction of prostaglandin E2 synthase with cyclooxygenase-2 leads to preferred production of prostaglandin E2 over thromboxane and prostaglandin D2 in lipopolysaccharide-stimulated rat peritoneal macrophages. Biochem. Biophys. Res. Commun. 230: 110–114. https://doi.org/10.1006/bbrc.1996.5894.Suche in Google Scholar PubMed

Meng, H., Shen, Y., Shen, J., Zhou, F., Shen, S., and Das, U.N. (2013). Effect of n-3 and n-6 unsaturated fatty acids on prostate cancer (PC-3) and prostate epithelial (RWPE-1) cells in vitro. Lipids Health Dis. 12: 160. https://doi.org/10.1186/1476-511x-12-160.Suche in Google Scholar

Metcalfe, R.D., Putoczki, T.L., and Griffin, M.D.W. (2020). Structural understanding of interleukin 6 family cytokine signaling and targeted therapies: focus on interleukin 11. Front. Immunol. 11: 1424. https://doi.org/10.3389/fimmu.2020.01424.Suche in Google Scholar PubMed PubMed Central

Mino, T., Sugiyama, E., Taki, H., Kuroda, A., Yamashita, N., Maruyama, M., and Kobayashi, M. (1998). Interleukin-1alpha and tumor necrosis factor alpha synergistically stimulate prostaglandin E2-dependent production of interleukin-11 in rheumatoid synovial fibroblasts. Arthritis Rheum. 41: 2004–2013. https://doi.org/10.1002/1529-0131(199811)41:11<2004::aid-art16>3.0.co;2-z.10.1002/1529-0131(199811)41:11<2004::AID-ART16>3.0.CO;2-ZSuche in Google Scholar

Morrison, D.K. (2012). MAP kinase pathways. Cold Spring Harbor Perspect. Biol. 4: a011254. https://doi.org/10.1101/cshperspect.a011254.Suche in Google Scholar

Navarro-Tito, N., Robledo, T., and Salazar, E.P. (2008). Arachidonic acid promotes FAK activation and migration in MDA-MB-231 breast cancer cells. Exp. Cell Res. 314: 3340–3355. https://doi.org/10.1016/j.yexcr.2008.08.018.Suche in Google Scholar

Ng, B., Dong, J., D’Agostino, G., Viswanathan, S., Widjaja, A.A., Lim, W.W., Ko, N.S.J., Tan, J., Chothani, S.P., Huang, B., et al.. (2019). Interleukin-11 is a therapeutic target in idiopathic pulmonary fibrosis. Sci. Transl. Med. 11: eaaw1237. https://doi.org/10.1126/scitranslmed.aaw1237.Suche in Google Scholar

Ng, B., Dong, J., Viswanathan, S., Widjaja, A.A., Paleja, B.S., Adami, E., Ko, N.S.J., Wang, M., Lim, S., Tan, J., et al.. (2020). Fibroblast-specific IL11 signaling drives chronic inflammation in murine fibrotic lung disease. Faseb. J. 34: 11802–11815. https://doi.org/10.1096/fj.202001045rr.Suche in Google Scholar

Nishina, T., Deguchi, Y., Ohshima, D., Takeda, W., Ohtsuka, M., Shichino, S., Ueha, S., Yamazaki, S., Kawauchi, M., Nakamura, E., et al.. (2021). Interleukin-11-expressing fibroblasts have a unique gene signature correlated with poor prognosis of colorectal cancer. Nat. Commun. 12: 2281. https://doi.org/10.1038/s41467-021-22450-3.Suche in Google Scholar

Nørregaard, R., Kwon, T.-H., and Frøkiær, J. (2015). Physiology and pathophysiology of cyclooxygenase-2 and prostaglandin E2 in the kidney. Kidney Res. Clin. Pract. 34: 194–200.10.1016/j.krcp.2015.10.004Suche in Google Scholar

Oh, E., Yun, M., Kim, S.K., Seo, G., Bae, J.S., Joo, K., Chae, G.T., and Lee, S.-B. (2014). Palmitate induces COX-2 expression via the sphingolipid pathway-mediated activation of NF-κB, p38, and ERK in human dermal fibroblasts. Arch. Dermatol. Res. 306: 339–345. https://doi.org/10.1007/s00403-013-1434-6.Suche in Google Scholar

Oyesanya, R.A., Lee, Z.P., Wu, J., Chen, J., Song, Y., Mukherjee, A., Dent, P., Kordula, T., Zhou, H., and Fang, X. (2008). Transcriptional and post-transcriptional mechanisms for lysophosphatidic acid-induced cyclooxygenase-2 expression in ovarian cancer cells. Faseb. J. 22: 2639–2651. https://doi.org/10.1096/fj.07-101428.Suche in Google Scholar PubMed PubMed Central

Paine, E., Palmantier, R., Akiyama, S.K., Olden, K., and Roberts, J.D. (2000). Arachidonic acid activates mitogen-activated protein (MAP) kinase-activated protein kinase 2 and mediates adhesion of a human breast carcinoma cell line to collagen type IV through a p38 MAP kinase-dependent pathway. J. Biol. Chem. 275: 11284–11290. https://doi.org/10.1074/jbc.275.15.11284.Suche in Google Scholar PubMed

Piersma, B., Hayward, M.K., and Weaver, V.M. (2020). Fibrosis and cancer: a strained relationship. Biochim. Biophys. Acta Rev. Canc 1873: 188356. https://doi.org/10.1016/j.bbcan.2020.188356.Suche in Google Scholar PubMed PubMed Central

Rajgopal, R., Butcher, M., Weitz, J.I., and Shaughnessy, S.G. (2006). Heparin synergistically enhances interleukin-11 signaling through up-regulation of the MAPK pathway. J. Biol. Chem. 281: 20780–20787. https://doi.org/10.1074/jbc.m600169200.Suche in Google Scholar

Sahai, E., Astsaturov, I., Cukierman, E., DeNardo, D.G., Egeblad, M., Evans, R.M., Fearon, D., Greten, F.R., Hingorani, S.R., Hunter, T., et al.. (2020). A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20: 174–186. https://doi.org/10.1038/s41568-019-0238-1.Suche in Google Scholar PubMed PubMed Central

Samarelli, A.V., Masciale, V., Aramini, B., Coló, G.P., Tonelli, R., Marchioni, A., Bruzzi, G., Gozzi, F., Andrisani, D., Castaniere, I., et al.. (2021). Molecular mechanisms and cellular contribution from lung fibrosis to lung cancer development. Int. J. Mol. Sci. 22: 12179. https://doi.org/10.3390/ijms222212179.Suche in Google Scholar PubMed PubMed Central

Shimodaira, T., Matsuda, K., Uchibori, T., Sugano, M., Uehara, T., and Honda, T. (2018). Upregulation of osteopontin expression via the interaction of macrophages and fibroblasts under IL-1β stimulation. Cytokine 110: 63–69, https://doi.org/10.1016/j.cyto.2018.04.025.Suche in Google Scholar PubMed

Suryadevara, V., Ramchandran, R., Kamp, D.W., and Natarajan, V. (2020). Lipid mediators regulate pulmonary fibrosis: potential mechanisms and signaling pathways. Int. J. Mol. Sci. 21: 4257. https://doi.org/10.3390/ijms21124257.Suche in Google Scholar PubMed PubMed Central

Taki, H., Sugiyama, E., Mino, T., Kuroda, A., and Kobayashi, M. (1998). Differential inhibitory effects of indomethacin, dexamethasone, and interferon-gamma (IFN-γ) on IL-11 production by rheumatoid synovial cells. Clin. Exp. Immunol. 112: 133–138. https://doi.org/10.1046/j.1365-2249.1998.00552.x.Suche in Google Scholar PubMed PubMed Central

Villegas-Comonfort, S., Serna-Marquez, N., Galindo-Hernandez, O., Navarro-Tito, N., and Salazar, E.P. (2012). Arachidonic acid induces an increase of β-1,4-galactosyltransferase I expression in MDA-MB-231 breast cancer cells. J. Cell. Biochem. 113: 3330–3341. https://doi.org/10.1002/jcb.24209.Suche in Google Scholar PubMed

Villegas-Comonfort, S., Castillo-Sanchez, R., Serna-Marquez, N., Cortes-Reynosa, P., and Salazar, E.P. (2014). Arachidonic acid promotes migration and invasion through a PI3K/Akt-dependent pathway in MDA-MB-231 breast cancer cells. Prostaglandins Leukot. Essent. Fatty Acids 90: 169–177. https://doi.org/10.1016/j.plefa.2014.01.007.Suche in Google Scholar PubMed

Wang, X., Che, X., Liu, C., Fan, Y., Bai, M., Hou, K., Shi, X., Zhang, X., Liu, B., Zheng, C., et al.. (2018). Cancer-associated fibroblasts-stimulated interleukin-11 promotes metastasis of gastric cancer cells mediated by upregulation of MUC1. Exp. Cell Res. 368: 184–193. https://doi.org/10.1016/j.yexcr.2018.04.028.Suche in Google Scholar PubMed

Wei, L., Wu, Z., and Chen, Y.Q. (2022). Multi-targeted therapy of cancer by omega-3 fatty acids-an update. Cancer Lett. 526: 193–204. https://doi.org/10.1016/j.canlet.2021.11.023.Suche in Google Scholar PubMed

White, E.S., Atrasz, R.G., Dickie, E.G., Aronoff, D.M., Stambolic, V., Mak, T.W., Moore, B.B., and Peters-Golden, M. (2005). Prostaglandin E2 inhibits fibroblast migration by E-prostanoid 2 receptor-mediated increase in PTEN activity. Am. J. Respir. Cell Mol. Biol. 32: 135–141. https://doi.org/10.1165/rcmb.2004-0126oc.Suche in Google Scholar

White, K.E., Ding, Q., Moore, B.B., Peters-Golden, M., Ware, L.B., Matthay, M.A., and Olman, M.A. (2008). Prostaglandin E2 mediates IL-1β-related fibroblast mitogenic effects in acute lung injury through differential utilization of prostanoid receptors. J. Immunol. 180: 637–646. https://doi.org/10.4049/jimmunol.180.1.637.Suche in Google Scholar PubMed PubMed Central

Widjaja, A.A., Singh, B.K., Adami, E., Viswanathan, S., Dong, J., D’Agostino, G.A., Ng, B., Lim, W.W., Tan, J., Paleja, B.S., et al.. (2019). Inhibiting interleukin 11 signaling reduces hepatocyte death and liver fibrosis, inflammation, and steatosis in mouse models of nonalcoholic steatohepatitis. Gastroenterology 157: 777–792.e14. https://doi.org/10.1053/j.gastro.2019.05.002.Suche in Google Scholar PubMed

Widjaja, A.A., Chothani, S.P., and Cook, S.A. (2020). Different roles of interleukin 6 and interleukin 11 in the liver: implications for therapy. Hum. Vaccines Immunother. 16: 2357–2362. https://doi.org/10.1080/21645515.2020.1761203.Suche in Google Scholar PubMed PubMed Central

Widjaja, A.A., Viswanathan, S., Jinrui, D., Singh, B.K., Tan, J., Wei Ting, J.G., Lamb, D., Shekeran, S.G., George, B.L., Schafer, S., et al.. (2021). Molecular dissection of pro-fibrotic IL11 signaling in cardiac and pulmonary fibroblasts. Front. Mol. Biosci. 8: 740650. https://doi.org/10.3389/fmolb.2021.740650.Suche in Google Scholar PubMed PubMed Central

Wu, F., Yang, J., Liu, J., Wang, Y., Mu, J., Zeng, Q., Deng, S., and Zhou, H. (2021). Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct. Targeted Ther. 6: 218. https://doi.org/10.1038/s41392-021-00641-0.Suche in Google Scholar PubMed PubMed Central

Xin, C., Chu, L., Zhang, L., Geng, D., Wang, Y., Sun, D., Sui, P., Zhao, X., Gong, Z., Sui, M., et al.. (2019). Expression of cytosolic phospholipase A2 (cPLA2)-arachidonic acid (AA)-cyclooxygenase-2 (COX-2) pathway factors in lung cancer patients and its implication in lung cancer early detection and prognosis. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 25: 5543–5551. https://doi.org/10.12659/msm.915314.Suche in Google Scholar PubMed PubMed Central

Xu, D.H., Zhu, Z., Wakefield, M.R., Xiao, H., Bai, Q., and Fang, Y. (2016). The role of IL-11 in immunity and cancer. Cancer Lett. 373: 156–163. https://doi.org/10.1016/j.canlet.2016.01.004.Suche in Google Scholar PubMed

Yamazumi, K., Nakayama, T., Kusaba, T., Wen, C.Y., Yoshizaki, A., Yakata, Y., Nagayasu, T., and Sekine, I. (2006). Expression of interleukin-11 and interleukin-11 receptor α in human colorectal adenocarcinoma; immunohistochemical analyses and correlation with clinicopathological factors. World J. Gastroenterol. 12: 317–321. https://doi.org/10.3748/wjg.v12.i2.317.Suche in Google Scholar PubMed PubMed Central

Yoshida, K., Shinohara, H., Haneji, T., and Nagata, T. (2007). Arachidonic acid inhibits osteoblast differentiation through cytosolic phospholipase A2-dependent pathway. Oral Dis. 13: 32–39. https://doi.org/10.1111/j.1601-0825.2006.01239.x.Suche in Google Scholar PubMed

Zhang, L., Han, L., He, J., Lv, J., Pan, R., and Lv, T. (2020). A high serum-free fatty acid level is associated with cancer. J. Cancer Res. Clin. Oncol. 146: 705–710. https://doi.org/10.1007/s00432-019-03095-8.Suche in Google Scholar PubMed PubMed Central

Zhang, N., Wang, L., Luo, G., Tang, X., Ma, L., Zheng, Y., Liu, S., C, A.P., and Jiang, Z. (2019). Arachidonic acid regulation of intracellular signaling pathways and target gene expression in bovine ovarian granulosa cells. Animals 9: 374, https://doi.org/10.3390/ani9060374.Suche in Google Scholar PubMed PubMed Central

Zhao, Z.A., Zhang, Z.R., Xu, X., Deng, W.B., Li, M., Leng, J.Y., Liang, X.H., and Yang, Z.M. (2012). Arachidonic acid regulation of the cytosolic phospholipase A 2α/cyclooxygenase-2 pathway in mouse endometrial stromal cells. Fertil. Steril. 97: 1199. https://doi.org/10.1016/j.fertnstert.2012.02.011.Suche in Google Scholar PubMed

Zhu, B., Zhang, J., Zheng, Q., Dong, B., Wang, M., Liu, J., and Cao, Y. (2021). Free fatty acid is a promising biomarker in triage screening for patients with colorectal cancer: a case-control study. Cancer Manag. Res. 13: 3749–3759. https://doi.org/10.2147/cmar.s307753.Suche in Google Scholar PubMed PubMed Central


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2022-0218).


Received: 2022-07-04
Accepted: 2022-10-10
Published Online: 2022-10-21
Published in Print: 2023-01-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2022-0218/html?lang=de
Button zum nach oben scrollen