Startseite Porins as helpers in mitochondrial protein translocation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Porins as helpers in mitochondrial protein translocation

  • Alexander Grevel und Thomas Becker ORCID logo EMAIL logo
Veröffentlicht/Copyright: 5. Juni 2020

Abstract

Mitochondria import the vast majority of their proteins via dedicated protein machineries. The translocase of the outer membrane (TOM complex) forms the main entry site for precursor proteins that are produced on cytosolic ribosomes. Subsequently, different protein sorting machineries transfer the incoming preproteins to the mitochondrial outer and inner membranes, the intermembrane space, and the matrix. In this review, we highlight the recently discovered role of porin, also termed voltage-dependent anion channel (VDAC), in mitochondrial protein biogenesis. Porin forms the major channel for metabolites and ions in the outer membrane of mitochondria. Two different functions of porin in protein translocation have been reported. First, it controls the formation of the TOM complex by modulating the integration of the central receptor Tom22 into the mature translocase. Second, porin promotes the transport of carrier proteins toward the carrier translocase (TIM22 complex), which inserts these preproteins into the inner membrane. Therefore, porin acts as a coupling factor to spatially coordinate outer and inner membrane transport steps. Thus, porin links metabolite transport to protein import, which are both essential for mitochondrial function and biogenesis.

Acknowledgments

Work included in this study has been performed in partial fulfillment of the requirements for the doctoral thesis of A.G. This work was supported by the Deutsche Forschungsgemeinschaft (BE 4679/2-2, Funder Id: http://dx.doi.org/10.13039/501100001659) and the Excellence Strategy of the German Federal and State Governments (EXC 2189 CIBSS Project ID 390939984).

References

Abe, Y., Shodai, T., Muto, T., Mihara, K., Torii, H., Nishikawa, S., Endo, T., and Kohda, D. (2000). Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100, 551–560.10.1016/S0092-8674(00)80691-1Suche in Google Scholar

Ahting, U., Thun, C., Hegerl, R., Typke, D., Nargang, F.E., Neupert, W., and Nussberger, S. (1999). The TOM core complex: the general protein import pore of the outer membrane of mitochondria. J. Cell Biol. 147, 959–968.10.1083/jcb.147.5.959Suche in Google Scholar PubMed PubMed Central

Ahting, U., Thieffry, M., Engelhardt, H., Hegerl, R., Neupert, W., and Nussberger, S. (2001). Tom40, the pore-forming component of the protein-conducting TOM channel in the outer membrane of mitochondria. J. Cell Biol. 153, 1151–1160.10.1083/jcb.153.6.1151Suche in Google Scholar PubMed PubMed Central

Alconada, A., Kübrich, M., Moczko, M., Hönlinger, A., and Pfanner, N. (1995). The mitochondrial receptor complex: the small subunit Mom8b/Isp6 supports association of receptors with the general insertion pore and transfer of preproteins. Mol. Cell Biol. 15, 6196–6205.10.1128/MCB.15.11.6196Suche in Google Scholar PubMed PubMed Central

Araiso, Y., Tsutsumi, A., Qiu, J., Imai, K., Shiota, T., Song, J., Lindau, C., Wenz, L.S., Sakaue, H., Yunoki, K., et al. (2019). Structure of the mitochondrial import gate reveals distinct preprotein paths. Nature 575, 395–401.10.1038/s41586-019-1680-7Suche in Google Scholar PubMed

Backes, S., Hess, S., Boos, F., Woellhaf, M.W., Gödel, S., Jung, M., Mühlhaus, T., and Herrmann, J.M. (2018). Tom70 enhances mitochondrial preprotein import efficiency by binding to internal targeting sequences. J. Cell Biol. 217, 1369–1382.10.1083/jcb.201708044Suche in Google Scholar PubMed PubMed Central

Baker, M.J., Frazier, A.E., Gulbis, J.M., and Ryan, M.T. (2007). Mitochondrial protein-import machinery: correlating structure with function. Trends Cell Biol. 17, 456–464.10.1016/j.tcb.2007.07.010Suche in Google Scholar PubMed

Bausewein, T., Mills, D.J., Langer, J.D., Nitschke, B., Nussberger, S., and Kühlbrandt, W. (2017). Cryo-EM structure of the TOM core complex from Neurospora crassa. Cell 170, 693–700.10.1016/j.cell.2017.07.012Suche in Google Scholar PubMed

Bausewein, T., Naveed, H., Liang, J., and Nussberger, S. (2020). The structure of the TOM core complex in the mitochondrial outer membrane. Biol. Chem. 401. [Epub ahead of print].10.1515/hsz-2020-0104Suche in Google Scholar PubMed

Bayrhuber, M., Meins, T., Habeck, M., Becker, S., Villinger, S., Vonrhein, C., Griesinger, C., Zweckstetter, M., and Zeth, K. (2008). Structure of the human voltage-dependent anion channel. Proc. Natl. Acad. Sci. U.S.A. 105, 15370–15375.10.1073/pnas.0808115105Suche in Google Scholar PubMed PubMed Central

Becker, T. and Wagner, T. (2018). Mitochondrial outer membrane channels: emerging diversity in transport processes. Bioassays 40, e1800013.10.1002/bies.201800013Suche in Google Scholar PubMed

Becker, L., Bannwarth, M., Meisinger, C., Hill, K., Model, K., Krimmer, T., Casadio, R., Truscott, K.N., Schulz, G.E., Pfanner, N., et al. (2005). Preprotein translocase of the outer mitochondrial membrane: reconstituted Tom40 forms a characteristic TOM pore. J. Mol. Biol. 353, 1011–1020.10.1016/j.jmb.2005.09.019Suche in Google Scholar PubMed

Becker, T., Guiard, B., Thornton, N., Zufall, N., Stroud, D.A., Wiedemann, N., and Pfanner, N. (2010). Assembly of the mitochondrial protein import channel: role of Tom5 in two-stage interaction of Tom40 with the SAM complex. Mol. Biol. Cell 21, 3106–3113.10.1091/mbc.e10-06-0518Suche in Google Scholar

Becker, T., Wenz, L.S., Thornton, N., Stroud, D., Meisinger, C., Wiedemann, N., and Pfanner, N. (2011). Biogenesis of mitochondria: dual role of Tom7 in modulating assembly of the preprotein translocase of the outer membrane. J. Mol. Biol. 405, 113–124.10.1016/j.jmb.2010.11.002Suche in Google Scholar PubMed

Becker, T., Song, J., and Pfanner, N. (2019). Versatility of preprotein transfer from the cytosol to mitochondria. Trends Cell Biol. 29, 534–548.10.1016/j.tcb.2019.03.007Suche in Google Scholar PubMed

Blachly-Dyson, E., Peng, S., Colombini, M., and Forte, M. (1990). Selectivity changes in site-directed mutants of the VDAC ion channel: structural implications. Science 247, 1233–1236.10.1126/science.1690454Suche in Google Scholar PubMed

Blachly-Dyson, E., Song, J., Wolfgang, W.J., Colombini, M., and Forte, M. (1997). Multicopy suppressors of phenotypes resulting from the absence of yeast VDAC encode a VDAC-like protein. Mol. Cell. Biol. 17, 5727–5738.10.1128/MCB.17.10.5727Suche in Google Scholar PubMed PubMed Central

Brix, J., Dietmeier, K., and Pfanner, N. (1997). Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. J. Biol. Chem. 272, 20730–20735.10.1074/jbc.272.33.20730Suche in Google Scholar PubMed

Callegari, S., Richter, F., Chojnacka, K., Jans, D.C., Lorenzi, I., Pacheu-Grau, D., Jakobs, S., Lenz, C., Urlaub, H., Dudek, J., et al. (2016). TIM29 is a subunit of the human carrier translocase required for protein transport. FEBS Letters 590, 4147–4158.10.1002/1873-3468.12450Suche in Google Scholar PubMed PubMed Central

Callegari, S., Müller, T., Schulz, C., Lenz, C., Jans, D.C., Wissel, M., Opazo, F., Rizozoli, S.O., Jakobs, S., Urlaub, H., et al. (2019). A MICOS-TIM22 association promotes carrier import into human mitochondria. J. Mol. Biol. 431, 2835–2851.10.1016/j.jmb.2019.05.015Suche in Google Scholar PubMed

Campo, M.L., Peixoto, P.M., and Martinez-Caballero, S. (2017). Revisiting trends on mitochondrial mega-channels for the import of proteins and nucleic acids. J. Bioenerg. Biomembr. 49, 75–99.10.1007/s10863-016-9662-zSuche in Google Scholar PubMed

Chacinska, A., Lind, M., Frazier, A.E., Dudek, J., Meisinger, C., Geissler, A., Sickmann, A., Meyer, H.E., Truscott, K.N., Guiard, B., et al. (2005). Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Cell 120, 817–829.10.1016/j.cell.2005.01.011Suche in Google Scholar PubMed

Chan, N.C. and Lithgow, T. (2008). The peripheral membrane subunits of the SAM complex function codependently in mitochondrial outer membrane biogenesis. Mol. Biol. Cell 19, 126–136.10.1091/mbc.e07-08-0796Suche in Google Scholar PubMed PubMed Central

Colombini, M. (2012). Mitochondrial outer membrane channels. Chem. Rev. 112, 6373–6387.10.1021/cr3002033Suche in Google Scholar PubMed

Dekker, P.J.T., Ryan, M.T., Brix, J., Müller, H., Hönlinger, A., andPfanner, N. (1998). Preprotein translocase of the outer mitochondrial membrane: molecular dissection and assembly of the general import pore complex. Mol. Cell Biol. 18, 6515–6524.10.1128/MCB.18.11.6515Suche in Google Scholar PubMed PubMed Central

Dienhart, M.K. and Stuart, R.A. (2008). The yeast Aac2 protein exists in physical association with the cytochrome bc1-COX supercomplex and the TIM23 machinery. Mol. Biol. Cell. 19, 3934–3943.10.1091/mbc.e08-04-0402Suche in Google Scholar PubMed PubMed Central

Dukanovic, J., Dimmer, K.S., Bonnefoy, N., Krumpe, K., andRapaport, D. (2009). Genetic and functional interactions between the mitochondrial outer membrane proteins Tom6 and Sam37. Mol. Cell. Biol. 29, 5975–5988.10.1128/MCB.00069-09Suche in Google Scholar PubMed PubMed Central

Ellenrieder, L., Opaliński, Ł., Becker, L., Krüger, V., Mirus, O., Straub, S.P., Ebell, K., Flinner, N., Stiller, S.B., Guiard, B., et al. (2016). Separating mitochondrial protein assembly and endoplasmic reticulum tethering by selective coupling of Mdm10. Nat. Commun. 7, 13021.10.1038/ncomms13021Suche in Google Scholar PubMed PubMed Central

Ellenrieder, L., Dieterle, M.P., Doan, K.N., Mårtensson, C.U.,Floerchinger, A., Campo, M.L., Pfanner, N., and Becker, T. (2019). Dual role of mitochondrial porin in metabolite transport across the outer membrane and protein transfer to the inner membrane. Mol. Cell 73, 1056–1065.10.1016/j.molcel.2018.12.014Suche in Google Scholar PubMed

Endo, T., Yamano, K., and Kawano, S. (2011). Structural insight into the mitochondrial protein import system. Biochim. Biophys. Acta 1808, 955–970.10.1016/j.bbamem.2010.07.018Suche in Google Scholar PubMed

Esaki, M., Shimizu, H., Ono, T., Yamamoto, H., Kanamori, T.,Nishikawa, S.I., and Endo, T. (2004). Mitochondrial protein import. Requirement of presequence elements and TOM components for precursor binding to the TOM complex. J. Biol. Chem. 279, 45701–45707.10.1074/jbc.M404591200Suche in Google Scholar PubMed

Flinner, N., Ellenrieder, L., Stiller, S.B., Becker, T., Schleiff, E., and Mirus, O. (2013). Mdm10 is an ancient eukaryotic porin co-occurring with the ERMES complex. Biochim. Biophys. Acta. 1833, 3314–3325.10.1016/j.bbamcr.2013.10.006Suche in Google Scholar PubMed

Gabriel, K., Egan, B., and Lithgow, T. (2003). Tom40, the import channel of the mitochondrial outer membrane, plays an active role in sorting imported proteins. EMBO J. 22, 2380–2386.10.1093/emboj/cdg229Suche in Google Scholar PubMed PubMed Central

Gebert, N., Chacinska, A., Wagner, R., Guiard, B., Koehler, C.M., Rehling, P., Pfanner, N., and Wiedemann, N. (2008). Assembly of the three small Tim proteins precedes docking to the mitochondrial carrier translocase. EMBO Rep. 9, 548–554.10.1038/embor.2008.49Suche in Google Scholar PubMed PubMed Central

Gebert, N., Gebert, M., Oeljeklaus, S., von der Malsburg, K., Stroud, D.A., Kulawiak, B., Wirth, C., Zahedi, R.P., Dolezal, P., Wiese, S., et al. (2011). Dual function of Sdh3 in the respiratory chain and TIM22 protein translocase of the mitochondrial inner membrane. Mol. Cell 44, 811–818.10.1016/j.molcel.2011.09.025Suche in Google Scholar PubMed

Gerbeth, C., Schmidt, O., Rao, S., Harbauer, A.B., Mikropoulou, D., Opalińska, M., Guiard, B., Pfanner, N., and Meisinger, C. (2013). Glucose-induced regulation of protein import receptor Tom22 by cytosolic and mitochondria-bound kinases. Cell Metab. 18, 578–587.10.1016/j.cmet.2013.09.006Suche in Google Scholar PubMed

González Montoro, A., Auffarth, K., Hönscher, C., Bohnert, M., Becker, T., Warscheid, B., Reggiori, F., van der Laan, M., Fröhlich, F., and Ungermann, C. (2018). Vps39 interacts with Tom40 to establish one of two functionally distinct vacuole-mitochondria contact sites. Dev. Cell 45, 621–636.10.1016/j.devcel.2018.05.011Suche in Google Scholar PubMed

Gornicka, A., Bragoszewski, P., Chroscicki, P., Wenz, L.S., Schulz, C., Rehling, P., and Chacinska, A. (2014). A discrete pathway for the transfer of intermembrane space proteins across the outer membrane of mitochondria. Mol. Biol. Cell 25, 3999–4009.10.1091/mbc.e14-06-1155Suche in Google Scholar

Grevel, A., Pfanner, N., and Becker, T. (2019). Coupling of import and assembly pathways in mitochondrial biogenesis. Biol. Chem. 401, 117–129.10.1515/hsz-2019-0310Suche in Google Scholar PubMed

Hansen, K.G. and Herrmann, J.M. (2019). Transport of proteins into mitochondria. Protein J. 38, 330–342.10.1007/s10930-019-09819-6Suche in Google Scholar PubMed

Hansen, K.G., Aviram, N., Laborenz, J., Bibi, C., Meyer, M., Spang, A., Schuldiner, M., and Herrmann, J.M. (2018). An ER surface retrieval pathway safeguards the import of mitochondrial membrane proteins in yeast. Science 361, 1118–1122.10.1126/science.aar8174Suche in Google Scholar PubMed

Harbauer, A.B., Opalińska, M., Gerbeth, C., Herman, J.S., Rao, S., Schönfisch, B., Guiard, B., Schmidt, O., Pfanner, N., and Meisinger, C. (2014). Cell cycle-dependent regulation of mitochondrial preprotein translocase. Science 346, 1109–1113.10.1126/science.1261253Suche in Google Scholar PubMed

Hill, K., Model, K., Ryan, M.T., Dietmeier, K., Martin, F., Wagner, R., and Pfanner, N. (1998). Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 395, 516–521.10.1038/26780Suche in Google Scholar PubMed

Hiller, S., Garces, R.G., Malia, T.J., Orekhov, V.Y., Colombini, M., and Wagner, G. (2008). Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321, 1206–1210.10.1126/science.1161302Suche in Google Scholar PubMed PubMed Central

Höhr, A.I.C., Lindau, C., Wirth, C., Qiu, J., Stroud, D.A., Kutik, S., Guiard, B., Hunte, C., Becker, T., Pfanner, N., et al. (2018). Membrane protein insertion through a mitochondrial β-barrel gate. Science 359, eaah6834.10.1126/science.aah6834Suche in Google Scholar PubMed PubMed Central

Hoppins, S.C. and Nargang, F.E. (2004). The Tim8-Tim13 complex of Neurospora crassa functions in the assembly of proteins into both mitochondrial membranes. J. Biol. Chem. 279, 12396–12405.10.1074/jbc.M313037200Suche in Google Scholar PubMed

Kang, Y., Baker, M.J., Liem, M., Louber, J., McKenzie, M.,Atukorala, I., Ang, C.S., Keerthikumar, S., Mathivanan, S., and Stojanovski, D. (2016). Tim29 is a novel subunit of the human TIM22 translocase and is involved in complex assembly and stability. eLife 5, e1746310.7554/eLife.17463Suche in Google Scholar PubMed PubMed Central

Kang, Y., Stroud, D.A., Baker, M.J., De Souza, D.P., Frazier, A.E., Liem, M., Tull, D., Mathivanan, S., McConville, M.J., Thorburn, D.R., et al. (2017). Sengers syndrome-associated mitochondrial acylglycerol kinase is a subunit of the human TIM22 protein import complex. Mol. Cell 67, 457–475.10.1016/j.molcel.2017.06.014Suche in Google Scholar PubMed

Kerscher, O., Holder, J., Srinivasan, M., Leung, R.S., and Jensen, R.E. (1997). The Tim54p-Tim22p complex mediates insertion of proteins into the mitochondrial inner membrane. J. Cell Biol. 139, 1663–1675.10.1083/jcb.139.7.1663Suche in Google Scholar PubMed PubMed Central

Kovermann, P., Truscott, K.N., Guiard, B., Rehling, P., Sepuri, N.B., Müller, H., Jensen, R.E., Wagner, R., and Pfanner, N. (2002). Tim22, the essential core of the mitochondrial protein insertion complex, forms a voltage-activated and signal-gated channel. Mol. Cell 9, 363–373.10.1016/S1097-2765(02)00446-XSuche in Google Scholar

Krüger, V., Becker, T., Becker, L., Montilla-Martinez, M., Ellenrieder, L., Vögtle, F.N., Meyer, H.E., Ryan, M.T., Wiedemann, N., Warscheid, B., et al. (2017). Identification of new channels by systematic analysis of the mitochondrial outer membrane. J. Cell Biol. 216, 3485–3495.10.1083/jcb.201706043Suche in Google Scholar PubMed PubMed Central

Künkele, K.P., Heins, S., Dembowski, M., Nargang, F.E., Benz, R., Thieffry, M., Walz, J., Lill, R., Nussberger, S., and Neupert, W. (1998). The preprotein translocation channel of the outer membrane of mitochondria. Cell 93, 1009–1019.10.1016/S0092-8674(00)81206-4Suche in Google Scholar PubMed

Lahiri, S., Chao, J.T., Tavassoli, S., Wong, A.K., Choudhary, V., Young, B.P., Loewen, C.J., and Prinz, W.A. (2014). A conserved endoplasmic reticulum membrane protein complex (EMC) facilitates phospholipid transfer from the ER to mitochondria. PLoS Biol. 12, e1001969.10.1371/journal.pbio.1001969Suche in Google Scholar PubMed PubMed Central

Lauffer, S., Mäbert, K., Czupalla, C., Pursche, T., Hoflack, B., Rödel, G., and Krause-Buchholz, U. (2012). Saccharomyces cerevisiae porin pore forms complexes with mitochondrial outer membrane proteins Om14p and Om45p. J. Biol. Chem. 287, 17447–17458.10.1074/jbc.M111.328328Suche in Google Scholar PubMed PubMed Central

Lionaki, E., de Marcos Lousa, C., Baud, C., Vougioukalaki, M., Panayotou, G., and Tokatlidis, K. (2008). The essential function of Tim12 in vivo is ensured by the assembly interactions of its C-terminal domain. J. Biol. Chem. 283, 15747–15753.10.1074/jbc.M800350200Suche in Google Scholar PubMed PubMed Central

Magri, A., Di Rosa, M.C., Orlandi, I., Guarino, F., Reina, S., Guanaccia, M., Morello, G., Spampinato, A., Cavallaro, S., Messina, A., et al. (2019). Deletion of voltage-dependent anion channel 1 knocks mitochondrial down triggering metabolic rewiring in yeast. Cell Mol. Life Sci. doi:10.1007/s00018-019-03342-8.Suche in Google Scholar PubMed

Mårtensson, C.U., Priesnitz, C., Song, J., Ellenrieder, L., Doan, K.N., Boos, F., Floerchinger, A., Zufall, N., Oeljeklaus, S., Warscheid, B., et al. (2019). Mitochondrial protein translocation-associated degradation. Nature 569, 679–683.10.1038/s41586-019-1227-ySuche in Google Scholar PubMed

Mehnert, C.S., Rampelt, H., Gebert, M., Oeljeklaus, S., Schrempp, S.G., Kochbeck, L., Guiard, B., Warscheid, B., and van der Laan, M. (2014). The mitochondrial ADP/ATP carrier associates with the inner membrane presequence translocase in a stoichiometric manner. J. Biol. Chem. 289, 27352–27362.10.1074/jbc.M114.556498Suche in Google Scholar PubMed PubMed Central

Meisinger, C., Rissler, M., Chacinska, A., Sanjuán Szklarz, L.K.S., Milenkovic, D., Kozjak, V., Schönfisch, B., Lohaus, C., Meyer, H.E., Yaffe, M.P., et al. (2004). The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. Dev. Cell 7, 61–71.10.1016/j.devcel.2004.06.003Suche in Google Scholar PubMed

Mertins, B., Psakis, G., and Essen, L.O. (2014). Voltage-dependent anion channels: the wizard of the mitochondrial outer membrane. Biol. Chem. 395, 1435–1442.10.1515/hsz-2014-0203Suche in Google Scholar PubMed

Messina, A., Reina, S., Guarino, F., and de Pinto, V. (2012). VDAC isoforms in mammals. Biochim. Biophys. Acta 1818, 1466–1476.10.1016/j.bbamem.2011.10.005Suche in Google Scholar PubMed

Model, K., Prinz, T., Ruiz, T., Rademacher, M., Krimmer, T., Kühlbrandt, W., Pfanner, N., and Meisinger, C. (2002). Protein translocase of the outer mitochondrial membrane: role of import receptors in the structural organization of the TOM complex. J. Mol. Biol. 316, 657–666.10.1006/jmbi.2001.5365Suche in Google Scholar PubMed

Morgenstern, M., Stiller, S.B., Lübbert, P., Peikert, C.D., Dannenmaier, S., Drepper, F., Weil, U., Höß, P., Feuerstein, R., Gebert, M., et al. (2017). Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Rep. 19, 2836–2852.10.1016/j.celrep.2017.06.014Suche in Google Scholar PubMed PubMed Central

Müller, C.S., Bildl, W., Haupt, A., Ellenrieder, L., Becker, T., Hunte, C., Fakler, B., and Schulte, U. (2016). Cryo-slicing blue native-mass spectrometry (csBN-MS), a novel technology for high-resolution complexome profiling. Mol. Cell Proteomics 15, 669–681.10.1074/mcp.M115.054080Suche in Google Scholar PubMed PubMed Central

Myata, N., Fujii, S., and Kuge, O. (2018). Porin proteins have critical functions in mitochondrial phospholipid metabolism in yeast. J. Biol. Chem. 293, 17593–17605.10.1074/jbc.RA118.005410Suche in Google Scholar PubMed PubMed Central

Neupert, W. (2015). A perspective on transport of proteins into mitochondria: a myriad of open questions. J. Mol. Biol. 427, 1135–1158.10.1016/j.jmb.2015.02.001Suche in Google Scholar PubMed

Opaliński, Ł., Song, J., Priesnitz, C., Wenz, L.S., Oeljeklaus, S.,Warscheid, B., Pfanner, N., and Becker, T. (2018). Recruitment of cytosolic J-proteins by TOM receptors promotes mitochondrial protein biogenesis. Cell Rep. 25, 2036–2043.10.1016/j.celrep.2018.10.083Suche in Google Scholar PubMed PubMed Central

Pagliarini, D.J., Calvo, S.E., Chang, B., Sheth, S.A., Vafai, S.B., Ong, S.-E., Walford, G.A., Sugiana, C., Boneh, A., Chen, W.K., et al. (2008). A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123.10.1016/j.cell.2008.06.016Suche in Google Scholar PubMed PubMed Central

Palmieri, F. and Pierri, C.L. (2010). Mitochondrial metabolite transport. Essays Biochem. 47, 37–52.10.1042/bse0470037Suche in Google Scholar PubMed

Papić, D., Elbaz-Alon, Y., Koerdt, S.N., Leopold, K., Worm, D., Jung, M., Schuldiner, M., and Rapaport, D. (2013). The role of Djp1 in import of the mitochondrial protein Mim1 demonstrates specificity between a cochaperone and its substrate protein. Mol. Cell Biol. 33, 4083–4094.10.1128/MCB.00227-13Suche in Google Scholar PubMed PubMed Central

Paschen, S.A., Waizenegger, T., Stan, T., Preuss, M., Cyrklaff, M., Hell, K., Rapaport, D., and Neupert, W. (2003). Evolutionary conservation of biogenesis of β-barrel membrane proteins. Nature 426, 862–866.10.1038/nature02208Suche in Google Scholar PubMed

Peixoto, P.M.V., Grana, F., Roy, T.J., Dunn, C.D., Flores, M., Jensen, R.E., and Campo, M.L. (2007). Awaking TIM22, a dynamic ligand-gated channel for protein insertion in the mitochondrial inner membrane. J. Biol. Chem. 282, 18694–18701.10.1074/jbc.M700775200Suche in Google Scholar PubMed

Pfanner, N., Warscheid, B., and Wiedemann, N. (2019). Mitochondrial proteins: from biogenesis to functional networks. Nat. Rev. Mol. Cell Biol. 20, 267–284.10.1038/s41580-018-0092-0Suche in Google Scholar PubMed PubMed Central

Qiu, J., Wenz, L.S., Zerbes, R.M., Oeljeklaus, S., Bohnert, M., Stroud, D.A., Wirth, C., Ellenrieder, L., Thornton, N., Kutik, S., et al. (2013). Coupling of mitochondrial import and export translocases by receptor-mediated supercomplex formation. Cell 154, 596–608.10.1016/j.cell.2013.06.033Suche in Google Scholar PubMed

Rampelt, H., Sucec, I., Bersch, B., Horten, P., Perschil, I., Martinou, J.C., van der Laan, M., Wiedemann, N., Schanda, P., and Pfanner, N. (2020). The mitochondrial carrier pathway transports non-canonical substrates with an odd number of transmembrane segments. BMC Biol. 18, 2.10.1186/s12915-019-0733-6Suche in Google Scholar PubMed PubMed Central

Rao, S., Schmidt, O., Harbauer, A., Schönfisch, B., Guiard, B., Pfanner, N., and Meisinger, C. (2012). Biogenesis of the preprotein translocase of the outer mitochondrial membrane: protein kinase A phosphorylates the precursor of Tom40 and impairs its import. Mol. Biol. Cell 23, 1618–1627.10.1091/mbc.e11-11-0933Suche in Google Scholar

Rehling, P., Model, K., Brandner, K., Kovermann, P., Sickmann, A., Meyer, H.E., Kühlbrandt, W., Wagner, R., Truscott, K.N., and Pfanner, N. (2003). Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science 299, 1747–1751.10.1126/science.1080945Suche in Google Scholar PubMed

Ryan, M.T., Müller, H., and Pfanner, N. (1999). Functional staging of ADP/ATP carrier translocation across the outer mitochondrial membrane. J. Biol. Chem. 274, 20619–20627.10.1074/jbc.274.29.20619Suche in Google Scholar PubMed

Sakaue, H., Shiota, T., Ishizaka, N., Kawano, S., Tamura, Y., Tan, K.S., Imai, K., Motono, C., Hirokawa, T., Taki, K., et al. (2019). Porin associates with Tom22 to regulate the mitochondrial protein gate assembly. Mol. Cell 73, 1044–105510.1016/j.molcel.2019.01.003Suche in Google Scholar PubMed

Schmitt, S., Ahting, U., Eichacker, L., Granvogl, B., Go, N.E., Nargang, F.E., Neupert, W., and Nussberger, S. (2005). Role of Tom5 in maintaining the structural stability of the TOM complex of mitochondria. J. Biol. Chem. 280, 14499–14506.10.1074/jbc.M413667200Suche in Google Scholar PubMed

Schmidt, O., Harbauer, A.B., Rao, S., Eyrich, B., Zahedi, R.P., Stojanovski, D., Schönfisch, B., Guiard, B., Sickmann, A., Pfanner, N., et al. (2011). Regulation of mitochondrial protein import by cytosolic kinases. Cell 144, 227–239.10.1016/j.cell.2010.12.015Suche in Google Scholar PubMed

Sherman, E.L., Go, N.E., and Nargang, F.E. (2005). Functions of the small proteins in the TOM complex of Neurospora crassa. Mol. Biol. Cell 16, 4172–4182.10.1091/mbc.e05-03-0187Suche in Google Scholar PubMed PubMed Central

Shiota, T., Imai, K., Qiu, J., Hewitt, V.L., Tan, K., Shen, H.H., Sakiyama, N., Fukasawa, Y., Hayat, S., Kamiya, M., et al. (2015). Molecular architecture of the active mitochondrial protein gate. Science 349, 1544–1548.10.1126/science.aac6428Suche in Google Scholar PubMed

Shoshan-Barmatz, V., Ben-Hail, D., Admoni, L., Krelin, Y., and Tripathi, S.S. (2015). The mitochondrial voltage-dependent anion channel 1 in tumor cells. Biochim. Biophys. Acta 1848, 2547–2575.10.1016/j.bbamem.2014.10.040Suche in Google Scholar PubMed

Suzuki, H., Kadowaki, T., Maeda, M., Sasaki, H., Nabekura, J., Sakaguchi, M., and Mihara, K. (2004). Membrane-embedded C-terminal segment of rat mitochondrial TOM40 constitutes protein-conducting pore with enriched β-structure. J. Biol. Chem. 279, 50619–50629.10.1074/jbc.M408604200Suche in Google Scholar PubMed

Thornton, N., Stroud, D.A., Milenkovic, D., Guiard, B., Pfanner, N., and Becker, T. (2010). Two modular forms of the mitochondrial sorting and assembly machinery are involved in biogenesis of α-helical outer membrane proteins. J. Mol. Biol. 396, 540–549.10.1016/j.jmb.2009.12.026Suche in Google Scholar PubMed

Truscott, K.N., Wiedemann, N., Rehling, P., Müller, H., Meisinger, C., Pfanner, N., and Guiard, B. (2002). Mitochondrial import of the ADP/ATP carrier: the essential TIM complex of the intermembrane space is required for precursor release from the TOM complex. Mol. Cell. Biol. 22, 7780–7789.10.1128/MCB.22.22.7780-7789.2002Suche in Google Scholar PubMed PubMed Central

Tucker, K. and Park, E. (2019). Cryo-EM structure of the mitochondrial protein-import channel TOM complex at near-atomic resolution. Nat. Struct. Mol. Biol. 26, 1158–1166.10.1038/s41594-019-0339-2Suche in Google Scholar PubMed PubMed Central

Ujwal, R., Cascio, D., Colletier, J.P., Faham, S., Zhang, J., Toro, L., Ping, P., and Abramson, J. (2008). The crystal structure of mouse VDAC1 at 2.3 Å resolution reveals mechanistic insights into metabolite gating. Proc. Natl. Acad. Sci. USA 105, 17742–17747.10.1073/pnas.0809634105Suche in Google Scholar PubMed PubMed Central

van der Laan, M., Wiedemann, N., Mick, D.U., Guiard, B., Rehling, P., and Pfanner, N. (2006). A role for Tim21 in membrane potential-dependent preprotein sorting in mitochondria. Curr. Biol. 16, 2271–2276.10.1016/j.cub.2006.10.025Suche in Google Scholar PubMed

van Wilpe, S., Ryan, M.T., Hill, K., Maarse, A.C., Meisinger, C., Brix, J., Dekker, P.J.T., Moczko, M., Wagner, R., Meijer, M., et al. (1999). Tom22 is a multifunctional organizer of the mitochondrial preprotein translocase. Nature 401, 485–489.10.1038/46802Suche in Google Scholar PubMed

Vasiljev, A., Ahting, U., Nargang, F.E., Go, N.E., Habib, S.J., Kozany, C., Panneels, V., Sinning, I., Prkisch, H., Neupert, W., et al. (2004). Reconstituted TOM core complex and Tim9/Tim10 complex of mitochondria are sufficient for translocation of the ADP/ATP carrier across membranes. Mol. Biol. Cell 15, 1445–1458.10.1091/mbc.e03-05-0272Suche in Google Scholar PubMed PubMed Central

von der Malsburg, K., Müller, J.M., Bohnert, M., Oeljeklaus, S., Kwiatkowska, P., Becker, T., Loniewska-Lwowska, A., Wiese, S., Rao, S., Milenkovic, D., et al. (2011). Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev. Cell, 21, 694–707.10.1016/j.devcel.2011.08.026Suche in Google Scholar PubMed

Vukotic, M., Nolte, H., König, T., Saita, S., Ananjew, M., Krüger, M., Tatsuta, T., and Langer, T. (2017). Acylglycerol kinase mutated in Sengers syndrome is a subunit of the TIM22 protein translocase in mitochondria. Mol. Cell 67, 471–490.10.1016/j.molcel.2017.06.013Suche in Google Scholar PubMed

Wagner, K., Gebert, N., Guiard, B., Brandner, K., Truscott, K.N., Wiedemann, N., Pfanner, N., and Rehling, P. (2008). The assembly pathway of the mitochondrial carrier translocase involves four preprotein translocases. Mol. Cell Biol. 28, 4251–4260.10.1128/MCB.02216-07Suche in Google Scholar PubMed PubMed Central

Webb, C.T., Gorman, M.A., Lazarou, M., Ryan, M.T., and Gulbis, J.M. (2006). Crystal structure of the mitochondrial chaperone TIM9-10 reveals a six-bladed α-propeller. Mol Cell. 21, 123–133.10.1016/j.molcel.2005.11.010Suche in Google Scholar PubMed

Weidberg, H. and Amon, A. (2018). MitoCPR – a surveillance pathway that protects mitochondria in response to protein import stress. Science 360, eaan4146.10.1126/science.aan4146Suche in Google Scholar PubMed PubMed Central

Weinhäupl, K., Lindau, C., Hessel, A., Wang, Y., Schütze, C., Jores, T., Melchionda, L., Schönfisch, B., Kalbacher, H., Bersch, B., et al. (2018). Structural basis of membrane protein chaperoning through the mitochondrial intermembrane space. Cell, 175, 1365–1379.10.1016/j.cell.2018.10.039Suche in Google Scholar PubMed PubMed Central

Wenz, L.S., Ellenrieder, L., Qiu, J., Bohnert, M., Zufall, N., van der Laan, M., Pfanner, N., Wiedemann, N., and Becker, T. (2015). Sam37 is crucial for formation of the mitochondrial TOM-SAM supercomplex, thereby promoting β-barrel biogenesis. J. Cell. Biol. 210, 1047–1054.10.1083/jcb.201504119Suche in Google Scholar PubMed PubMed Central

Wiedemann, N., Pfanner, N., and Ryan, M.T. (2001). The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. EMBO J. 20, 951–960.10.1093/emboj/20.5.951Suche in Google Scholar PubMed PubMed Central

Wiedemann, N., Kozjak, V., Chacinska, A., Schönfisch, B., Rospert, S., Ryan, M.T., Pfanner, N., and Meisinger, C. (2003). Machinery for protein sorting and assembly in the mitochondrial outer membrane. Nature 424, 565–571.10.1038/nature01753Suche in Google Scholar PubMed

Wiedemann, N., van der Laan, M., Hutu, D.P., Rehling, P., andPfanner, N. (2007). Sorting switch of mitochondrial presequence translocase involves coupling of motor module to respiratory chain. J. Cell Biol. 179, 1115–1122.10.1083/jcb.200709087Suche in Google Scholar PubMed PubMed Central

Wu, Y. and Sha, B. (2006). Crystal structure of yeast outer membrane translocon member Tom70p. Nat. Struct. Mol. Biol. 13, 589–593.10.1038/nsmb1106Suche in Google Scholar PubMed

Yamamoto, H., Fukui, K., Takahashi, H., Kitamura, S., Shiota, T., Terao, K., Ushida, M., Esaki, M., Nishikawa, S., Yoshihisa, T., et al. (2009). Roles of Tom70 in import of presequence-containing mitochondrial proteins. J. Biol. Chem. 284, 31635–31646.10.1074/jbc.M109.041756Suche in Google Scholar PubMed PubMed Central

Yamano, K., Yatsukawa, Y., Esaki, M., Hobbs, A.E.A., Jensen, R.E., and Endo, T. (2008). Tom20 and Tom22 share the common signal recognition pathway in mitochondrial protein import. J. Biol. Chem. 283, 3799–3807.10.1074/jbc.M708339200Suche in Google Scholar PubMed

Yamano, K., Tanaka-Yamano, S., and Endo, T. (2010). Mdm10 as a dynamic constituent of the TOB/SAM complex directs coordinated assembly of Tom40. EMBO Rep. 11, 187–193.10.1038/embor.2009.283Suche in Google Scholar PubMed PubMed Central

Young, J.C., Hoogenraad, N.J., and Hartl, F.U. (2003). Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112, 41–50.10.1016/S0092-8674(02)01250-3Suche in Google Scholar PubMed

Received: 2019-12-18
Accepted: 2020-01-15
Published Online: 2020-06-05
Published in Print: 2020-05-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Highlight: In Honor of Walter Neupert: Mitochondria
  3. Editorial
  4. Mitochondria and friends – a special issue in honor of Walter Neupert (1939–2019)
  5. Early steps in mitochondrial protein translocation
  6. From cytosol to mitochondria: the beginning of a protein journey
  7. Evolution of mitochondrial protein import – lessons from trypanosomes
  8. Protein import: crossing the outer membrane
  9. Biogenesis pathways of α-helical mitochondrial outer membrane proteins
  10. The structure of the TOM core complex in the mitochondrial outer membrane
  11. Porins as helpers in mitochondrial protein translocation
  12. Protein translocation beyond the outer membrane
  13. From TOM to the TIM23 complex – handing over of a precursor
  14. How to get to the other side of the mitochondrial inner membrane – the protein import motor
  15. The biogenesis of mitochondrial intermembrane space proteins
  16. Protein import by the mitochondrial disulfide relay in higher eukaryotes
  17. Mitochondrial ultrastructure and dynamics
  18. The MICOS complex, a structural element of mitochondria with versatile functions
  19. Asymmetric inheritance of mitochondria in yeast
  20. Lipid transport and mitochondrial contact sites
  21. New horizons in mitochondrial contact site research
  22. The endoplasmic reticulum-mitochondria encounter structure: coordinating lipid metabolism across membranes
  23. Lipid homeostasis in mitochondria
  24. The biogenesis of enzymes
  25. Modular assembly of yeast mitochondrial ATP synthase and cytochrome oxidase
  26. From the discovery to molecular understanding of cellular iron-sulfur protein biogenesis
  27. Mitochondrial quality control
  28. Regulation of mitochondrial plasticity by the i-AAA protease YME1L
  29. PINK1 and Parkin: team players in stress-induced mitophagy
Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2019-0438/html
Button zum nach oben scrollen