Startseite Lebenswissenschaften Septin architecture and function in budding yeast
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Septin architecture and function in budding yeast

  • Marian Farkašovský EMAIL logo
Veröffentlicht/Copyright: 6. Februar 2020

Abstract

The septins constitute a conserved family of guanosine phosphate-binding and filament-forming proteins widespread across eukaryotic species. Septins appear to have two principal functions. One is to form a cortical diffusion barrier, like the septin collar at the bud neck of Saccharomyces cerevisiae, which prevents movement of membrane-associated proteins between the mother and daughter cells. The second is to serve as a polymeric scaffold for recruiting the proteins required for critical cellular processes to particular subcellular areas. In the last decade, structural information about the different levels of septin organization has appeared, but crucial structural determinants and factors responsible for septin assembly remain largely unknown. This review highlights recent findings on the architecture and function of septins and their remodeling with an emphasis on mitotically dividing budding yeasts.

Acknowledgments

We gratefully acknowledge financial support from the VEGA (Vedecká Grantová Agentúra, Ministerstvo Školstva Slovenskej Republiky), Grant 2/0003/19. We thank Jacob Bauer for helpful discussions and critical reading of the manuscript.

  1. Conflict of interest statement: The author declares no competing financial interests.

References

Adams, A.E., Johnson, D.I., Longnecker, R.M., Sloat, B.F., and Pringle, J.R. (1990). CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J. Cell Biol. , x–x.10.1083/jcb.111.1.131Suche in Google Scholar PubMed PubMed Central

Altman, R. and Kellogg, D. (1997). Control of mitotic events by Nap1 and the Gin4 kinase. J. Cell Biol. 138, 119–130.10.1083/jcb.138.1.119Suche in Google Scholar PubMed PubMed Central

Apel, A.R., Hoban, K., Chuartzman, S., Tonikian, R., Sidhu, S., Schuldiner, M., Wendland, B., and Prosser, D. (2017). Syp1 regulates the clathrin-mediated and clathrin-independent endocytosis of multiple cargo proteins through a novel sorting motif. Mol. Biol. Cell 28, 2434–2448.10.1091/mbc.e15-10-0731Suche in Google Scholar PubMed PubMed Central

Asano, S., Park, J.E., Yu, L.R., Zhou, M., Sakchaisri, K., Park, C.J., Kang, Y.H., Thorner, J., Veenstra, T.D., and Lee, K.S. (2006). Direct phosphorylation and activation of a Nim1-related kinase Gin4 by Elm1 in budding yeast. J. Biol. Chem. 281, 27090–27098.10.1074/jbc.M601483200Suche in Google Scholar PubMed

Atkins, B.D., Yoshida, S., Saito, K., Wu, C.F., Lew, D.J., and Pellman, D. (2013). Inhibition of Cdc42 during mitotic exit is required for cytokinesis. J. Cell Biol. 202, 231–240.10.1083/jcb.201301090Suche in Google Scholar PubMed PubMed Central

Barral, Y., Parra, M., Bidlingmaier, S., and Snyder, M. (1999). Nim1-related kinases coordinate cell cycle progression with the organization of the peripheral cytoskeleton in yeast. Genes Dev. 13, 176–187.10.1101/gad.13.2.176Suche in Google Scholar PubMed PubMed Central

Barth, P., Schoeffler, A., and Alber, T. (2008). Targeting metastable coiled-coil domains by computational design. J. Am. Chem. Soc. 130, 12038–12044.10.1021/ja802447eSuche in Google Scholar PubMed

Baur, J.D., Rösler, R., Wiese, S., Johnsson, N., and Gronemeyer, T. (2018). Dissecting the nucleotide binding properties of the septins from S. cerevisiae. Cytoskeleton (Hoboken) 76, 45–54.10.1002/cm.21484Suche in Google Scholar PubMed

Beber, A., Alqabandi, M., Prévost, C., Viars, F., Lévy, D., Bassereau, P., Bertin, A., and Mangenot, S. (2019a). Septin-based readout of PI(4,5)P2 incorporation into membranes of giant unilamellar vesicles. Cytoskeleton 76, 92–103.10.1002/cm.21480Suche in Google Scholar PubMed

Beber, A., Taveneau, C., Nania, M., Tsai, F.C., Di Cicco, A., Bassereau, P., Lévy, D., Cabral, J.T., Isambert, H., Mangenot, S., et al. (2019b). Membrane reshaping by micrometric curvature sensitive septin filaments. Nat. Commun. 10, 420.10.1038/s41467-019-08344-5Suche in Google Scholar PubMed PubMed Central

Bender, A. and Pringle, J.R. (1989). Multicopy suppression of the cdc24 budding defect in yeast by CDC42 and three newly identified genes including the ras-related gene RSR1. Proc. Natl. Acad. Sci. USA 86, 9976–9980.10.1073/pnas.86.24.9976Suche in Google Scholar PubMed PubMed Central

Benton, B.K., Tinkelenberg, A., Gonzalez, I., and Cross, F.R. (1997). Cla4p, a Saccharomyces cerevisiae Cdc42p-activated kinase involved in cytokinesis, is activated at mitosis. Mol. Cell. Biol. 17, 5067–5076.10.1128/MCB.17.9.5067Suche in Google Scholar PubMed PubMed Central

Bertin, A., McMurray, M.A., Grob, P., Park, S.-S., Garcia III, G., Patanwala, I., Ng, H., Alber, T., Thorner, J., and Nogales, E. (2008). Saccharomyces cerevisiae septins: supramolecular organization of heterooligomers and the mechanism of filament assembly. Proc. Natl. Acad. Sci. USA 105, 8274–8279.10.1073/pnas.0803330105Suche in Google Scholar PubMed PubMed Central

Bertin, A., McMurray, M.A., Thai, L., Garcia III, G., Votin, V., Grob, P., Allyn, T., Thorner, J., and Nogales, E. (2010). Phosphatidylinositol-4,5-bisphosphate promotes budding yeast septin filament assembly and organization. J. Mol. Biol. 404, 711–731.10.1016/j.jmb.2010.10.002Suche in Google Scholar PubMed PubMed Central

Bertin, A., McMurray, M.A., Pierson, J., Thai, L., McDonald, K.L., Zehr, E.A., Garcia III, G., Peters, P., Thorner, J., and Nogales, E. (2012). Three-dimensional ultrastructure of the septin filament network in Saccharomyces cerevisiae. Mol. Biol. Cell 23, 423–432.10.1091/mbc.e11-10-0850Suche in Google Scholar

Bi, E., Chiavetta, J.B., Chen, H., Chen, G.C., Chan, C.S., and Pringle, J.R. (2000). Identification of novel, evolutionarily conserved Cdc42p-interacting proteins and of redundant pathways linking Cdc24p and Cdc42p to actin polarization in yeast. Mol. Biol. Cell. 11, 773–793.10.1091/mbc.11.2.773Suche in Google Scholar PubMed PubMed Central

Boettner, D.R., D’Agostino, J.L., Torres, O.T., Daugherty-Clarke, K., Uygur, A., Reider, A., Wendland, B., Lemmon, S.K., and Goode, B.L. (2009). The F-BAR protein Syp1 negatively regulates WASp-Arp2/3 complex activity during endocytic patch formation. Curr. Biol. 19, 1979–1987.10.1016/j.cub.2009.10.062Suche in Google Scholar PubMed PubMed Central

Booher, R.N., Deshaies, R.J., and Kirschner, M.W. (1993). Properties of Saccharomyces cerevisiae wee1 and its differential regulation of p34CDC28 in response to G1 and G2 cyclins. EMBO J. 12, 3417–3426.10.1002/j.1460-2075.1993.tb06016.xSuche in Google Scholar PubMed PubMed Central

Booth, E.A., Vane, E.W., Dovala, D., and Thorner, J. (2015). A Forster Resonance Energy Transfer (FRET)-based system provides insight into the ordered assembly of yeast septin hetero-octamers. J. Biol. Chem. 290, 28388–28401.10.1074/jbc.M115.683128Suche in Google Scholar PubMed PubMed Central

Booth, E.A., Sterling, S.M., Dovala, D., Nogales, E., and Thorner, J. (2016). Effects of Bni5 binding on septin filament organization. J. Mol. Biol. 428, 4962–4980.10.1016/j.jmb.2016.10.024Suche in Google Scholar PubMed PubMed Central

Bouquin, N., Barral, Y., Courbeyrette, R., Blondel, M., Snyder, M., and Mann, C. (2000). Regulation of cytokinesis by the Elm1 protein kinase in Saccharomyces cerevisiae. J. Cell Sci. 113, 1435–1445.10.1242/jcs.113.8.1435Suche in Google Scholar PubMed

Brausemann, A., Gerhardt, S., Schott, A.K., Einsle, O., Große-Berkenbusch, A., Johnsson, N., and Gronemeyer, T. (2016). Crystal structure of Cdc11, a septin subunit from Saccharomyces cerevisiae. J. Struct. Biol. 193, 157–161.10.1016/j.jsb.2016.01.004Suche in Google Scholar PubMed

Bridges, A.A., Zhanga, H., Mehtab, S.B., Occhipintia, P., Tanib, T., and Gladfelter, A.S. (2014). Septin assemblies form by diffusion-driven annealing on membranes. Proc. Natl. Acad. Sci. USA 111, 2146–2151.10.1073/pnas.1314138111Suche in Google Scholar PubMed PubMed Central

Bridges, A.A., Jentzsch, M.S., Oakes, P.W., Occhipinti, P., and Gladfelter, A.S. (2016). Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton. J. Cell Biol. 213, 23–32.10.1083/jcb.201512029Suche in Google Scholar PubMed PubMed Central

Brognara, G., Pereira, H.M., Brandão-Neto, J., Araujo, A.P.U., and Garratt, R.C. (2019). Revisiting SEPT7 and the slippage of β-strands in the septin family. J. Struct. Biol. 207, 67–73.10.1016/j.jsb.2019.04.015Suche in Google Scholar PubMed

Brown, A.M., O’Sullivan, A.J., and Gomperts, B.D. (1998). Induction of exocytosis from permeabilized mast cells by the guanosine triphosphatases Rac and Cdc42. Mol. Biol. Cell 9, 1053–1063.10.1091/mbc.9.5.1053Suche in Google Scholar PubMed PubMed Central

Brown, J.L., Jaquenoud, M., Gulli, M.P., Chant, J., and Peter, M. (1997). Novel Cdc42-binding proteins Gic1 and Gic2 control cell polarity in yeast. Genes Dev. 11, 2972–2982.10.1101/gad.11.22.2972Suche in Google Scholar PubMed PubMed Central

Byers, B. and Goetsch, L. (1976). A highly ordered ring of membrane-associated filaments in budding yeast. J. Cell Biol. 69, 717–721.10.1083/jcb.69.3.717Suche in Google Scholar PubMed PubMed Central

Cannon, K.S., Woods, B.L., Crutchley, J.M., and Gladfelter, A.S. (2019). An amphipathic helix enables septins to sense micrometer-scale membrane curvature. J. Cell Biol. 218, 1128–1137.10.1083/jcb.201807211Suche in Google Scholar PubMed PubMed Central

Carroll, C.W., Altman, R., Schieltz, D., Yates III, J.R., and Kellogg, D. (1998). The septins are required for the mitosis-specific activation of the Gin4 kinase. J. Cell Biol. 143, 709–717.10.1083/jcb.143.3.709Suche in Google Scholar PubMed PubMed Central

Casamayor, A. and Snyder, M. (2003). Molecular dissection of a yeast septin: distinct domains are required for septin interaction, localization, and function. Mol. Cell. Biol. 23, 2762–2777.10.1128/MCB.23.8.2762-2777.2003Suche in Google Scholar

Caviston, J.P., Longtine, M., Pringle, J.R., and Bi, E. (2003). The role of Cdc42p GTPase-activating proteins in assembly of the septin ring in yeast. Mol. Biol. Cell. 14, 4051–4066.10.1091/mbc.e03-04-0247Suche in Google Scholar

Caydasi, A.K., Kurtulmus, B., Orrico, M.I., Hofmann, A., Ibrahim, B., and Pereira, G. (2010). Elm1 kinase activates the spindle position checkpoint kinase Kin4. J. Cell Biol. 190, 975–989.10.1083/jcb.201006151Suche in Google Scholar

Chant, J., Mischke, M., Mitchell, E., Herskowitz, I., and Pringle, J.R. (1995). Role of Bud3p in producing the axial budding pattern of yeast. J. Cell Biol. 129, 767–778.10.1083/jcb.129.3.767Suche in Google Scholar

Chen, G.C., Kim, Y.J., and Chan, C.S. (1997). The Cdc42 GTPase-associated proteins Gic1 and Gic2 are required for polarized cell growth in Saccharomyces cerevisiae. Genes Dev. 11, 2958–2971.10.1101/gad.11.22.2958Suche in Google Scholar

Chen, H., Kuo, C.C., Kang, H., Howell, A.S., Zyla, T.R., Jin, M., and Lew, D.J. (2012). Cdc42p regulation of the yeast formin Bni1p mediated by the effector Gic2p. Mol. Biol. Cell. 23, 3814–3826.10.1091/mbc.e12-05-0400Suche in Google Scholar

Coso, O.A., Chiariello, M., Yu, J.C., Teramoto, H., Crespo, P., Xu, N., Miki, T., and Gutkind, J.S. (1995). The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81, 1137–1146.10.1016/S0092-8674(05)80018-2Suche in Google Scholar

Cvrčková, F., De Virgilio, C., Manser, E., Pringle, J.R., and Nasmyth, K. (1995). Ste20-like protein kinases are required for normal localization of cell growth and for cytokinesis in budding yeast. Genes Dev. 9, 1817–1830.10.1101/gad.9.15.1817Suche in Google Scholar PubMed

Daniels, C.N., Zyla, T.R., and Lew, D.J. (2018). A role for Gic1 and Gic2 in Cdc42 polarization at elevated temperature. PLoS One 13, e0200863.10.1371/journal.pone.0200863Suche in Google Scholar PubMed PubMed Central

DeMay, B.S., Bai, X., Howard, L., Occhipinti, P., Meseroll, R.A., Spiliotis, E.T., Oldenbourg, R., and Gladfelter, A.S. (2011). Septin filaments exhibit a dynamic, paired organization that is conserved from yeast to mammals. J. Cell Biol. 193, 1065–1081.10.1083/jcb.201012143Suche in Google Scholar PubMed PubMed Central

De Virgilio, C., DeMarini, D.J., and Pringle J.R. (1996). SPR28, a sixth member of the septin gene family in Saccharomyces cerevisiae that is expressed specifically in sporulating cells. Microbiology 142, 2897–2905.10.1099/13500872-142-10-2897Suche in Google Scholar

Dobbelaere, J. and Barral, Y. (2004). Spatial coordination of cytokinetic events by compartmentalization of the cell cortex. Science 305, 393–396.10.1126/science.1099892Suche in Google Scholar

Dobbelaere, J., Gentry, M.S., Hallberg, R.L., and Barral, Y. (2003). Phosphorylation-dependent regulation of septin dynamics during the cell cycle. Dev. Cell 4, 345–357.10.1016/S1534-5807(03)00061-3Suche in Google Scholar

Drgonova, J., Drgon, T., Roh, D.H., and Cabib, E. (1999). The GTP-binding protein Rho1p is required for cell cycle progression and polarization of the yeast cell. J. Cell Biol. 146, 373–387.10.1083/jcb.146.2.373Suche in Google Scholar PubMed PubMed Central

Egelhofer, T.A., Villen, J., McCusker, D., Gygi, S.P., and Kellogg, D.R. (2008). The septins function in G1 pathways that influence the pattern of cell growth in budding yeast. PLoS One 3, e2022.10.1371/journal.pone.0002022Suche in Google Scholar PubMed PubMed Central

Eluère, R., Varlet, I., Bernadac, A., and Simon, M.N. (2012). Cdk and the anillin homolog Bud4 define a new pathway regulating septin organization in yeast. Cell Cycle 11, 151–158.10.4161/cc.11.1.18542Suche in Google Scholar PubMed

Fang, X., Luo, J., Nishihama, R., Wloka, C., Dravis, C., Travaglia, M., Iwase, M., Vallen, E.A., and Bi, E. (2010). Biphasic targeting and cleavage furrow ingression directed by the tail of a myosin II. J. Cell Biol. 191, 1333–1350.10.1083/jcb.201005134Suche in Google Scholar PubMed PubMed Central

Fares, H., Goetsch, L., and Pringle, J.R. (1996). Identification of a developmentally regulated septin and involvement of the septins in spore formation in Saccharomyces cerevisiae. J. Cell Biol. 132, 399–411.10.1083/jcb.132.3.399Suche in Google Scholar PubMed PubMed Central

Farkasovsky, M., Herter, P., Voss, B., and Wittinghofer, A. (2005). Nucleotide binding and filament assembly of recombinant yeast septin complexes. Biol. Chem. 386, 643–656.10.1515/BC.2005.075Suche in Google Scholar PubMed

Finnigan, G.C., Takagi, J., Cho, C., and Thorner, J. (2015a). Comprehensive genetic analysis of paralogous terminal septin subunits Shs1 and Cdc11 in Saccharomyces cerevisiae. Genetics 200, 821–841.10.1534/genetics.115.176495Suche in Google Scholar PubMed PubMed Central

Finnigan, G.C., Booth, E.A., Duvalyan, A., Liao, E.N., and Thorner, J. (2015b). The carboxy-terminal tails of septins Cdc11 and Shs1 recruit myosin-II binding factor Bni5 to the bud neck in Saccharomyces cerevisiae. Genetics 200, 843–862.10.1534/genetics.115.176503Suche in Google Scholar PubMed PubMed Central

Finnigan, G.C., Duvalyan, A., Liao, E.N., Sargsyan, A., and Thorner, J. (2016). Detection of protein-protein interactions at the septin collar in Saccharomyces cerevisiae using a tripartite split-GFP system. Mol. Biol. Cell 27, 2708–2725.10.1091/mbc.e16-05-0337Suche in Google Scholar PubMed PubMed Central

Frazier, J.A., Wong, M.L., Longtine, M.S., Pringle, J.R., Mann, M., Mitchison, T.J., and Field, C. (1998). Polymerization of purified yeast septins: evidence that organized filament arrays may not be required for septin function. J. Cell Biol. 143, 737–749.10.1083/jcb.143.3.737Suche in Google Scholar PubMed PubMed Central

Gandhi, M., Goode, B.L., and Chan, C.S. (2006). Four novel suppressors of gic1 gic2 and their roles in cytokinesis and polarized cell growth in Saccharomyces cerevisiae. Genetics 174, 665–678.10.1534/genetics.106.058180Suche in Google Scholar PubMed PubMed Central

Gao, X.D., Caviston, J.P., Tcheperegine, S.E., and Bi, E. (2004). Pxl1p, a paxillin-like protein in Saccharomyces cerevisiae, may coordinate Cdc42p and Rho1p functions during polarized growth. Mol. Biol. Cell. 15, 3977–3985.10.1091/mbc.e04-01-0079Suche in Google Scholar PubMed PubMed Central

Gao, X.D., Sperber, L.M., Kane, S.A., Tong, Z., Tong, A.H., Boone, C., and Bi, E. (2007). Sequential and distinct roles of the cadherin domain-containing protein Axl2p in cell polarization in yeast cell cycle. Mol. Biol. Cell. 18, 2542–2560.10.1091/mbc.e06-09-0822Suche in Google Scholar PubMed PubMed Central

Garcia III, G., Bertin, A., Li, Z., Song, Y., McMurray, M.A., Thorner, J., and Nogales, E. (2011). Subunit dependent modulation of septin assembly: budding yeast septin Shs1 promotes ring and gauze formation. J. Cell. Biol. 195, 993–1004.10.1083/jcb.201107123Suche in Google Scholar PubMed PubMed Central

Garrenton, L.S., Stefan, C.J., McMurray, M.A., Emr, S.D., and Thorner, J. (2010). Pheromone-induced anisotropy in yeast plasma membrane phosphatidylinositol-4,5-bisphosphate distribution is required for MAPK signaling. Proc. Natl. Acad. Sci. USA 107, 11805–11810.10.1073/pnas.1005817107Suche in Google Scholar PubMed PubMed Central

Gladfelter, A.S., Bose, I., Zyla, T.R., Bardes, E.S., and Lew, D.J. (2002). Septin ring assembly involves cycles of GTP loading and hydrolysis by Cdc42p. J. Cell Biol. 156, 315–326.10.1083/jcb.200109062Suche in Google Scholar PubMed PubMed Central

Goryachev, A.B. and Leda, M. (2017). Many roads to symmetry breaking: molecular mechanisms and theoretical models of yeast cell polarity. Mol. Biol. Cell 28, 370–380.10.1091/mbc.e16-10-0739Suche in Google Scholar PubMed PubMed Central

Goryachev, A.B. and Pokhilko, A.V. (2008). Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity. FEBS Lett. 582, 1437–1443.10.1016/j.febslet.2008.03.029Suche in Google Scholar

Halme, A., Michelitch, M., Mitchell, E.L., and Chant, J. (1996). Bud10p directs axial cell polarization in budding yeast and resembles a transmembrane receptor. Curr. Biol. 6, 570–579.10.1016/S0960-9822(02)00543-2Suche in Google Scholar

Haarer, B.K. and Pringle, J.R. (1987). Immunofluorescence localization of the Saccharomyces cerevisiae CDC12 gene product to the vicinity of the 10-nm filaments in the mother-bud neck. Mol. Cell Biol. 7, 3678–3687.10.1128/MCB.7.10.3678Suche in Google Scholar

Hartwell, L.H. (1971). Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp. Cell Res. 69, 265–276.10.1016/0014-4827(71)90223-0Suche in Google Scholar

Howell, A.S. and Lew, D.J. (2012). Morphogenesis and the cell cycle. Genetics 190, 51–77.10.1534/genetics.111.128314Suche in Google Scholar PubMed PubMed Central

Howell, A.S., Savage, N.S., Johnson, S.A., Bose, I., Wagner, A.W., Zyla, T.R., Nijhout, H.F., Reed, M.C., Goryachev, A.B., and Lew, D.J. (2009). Singularity in polarization: rewiring yeast cells to make two buds. Cell 139, 731–743.10.1016/j.cell.2009.10.024Suche in Google Scholar PubMed PubMed Central

Irazoqui, J.E., Gladfelter, A.S., and Lew, D.J. (2004). Cdc42p, GTP hydrolysis, and the cell’s sense of direction. Cell Cycle. 3, 861–864.10.4161/cc.3.7.993Suche in Google Scholar

Iwase, M., Luo, J., Nagaraj, S., Longtine, M., Kim, H.B., Haarer, B.K., Caruso, C., Tong, Z., Pringle, J.R., and Bi, E. (2006). Role of a Cdc42p effector pathway in recruitment of the yeast septins to the presumptive bud site. Mol. Biol. Cell. 17, 1110–1125.10.1091/mbc.e05-08-0793Suche in Google Scholar PubMed PubMed Central

Iwase, M., Luo, J., Bi, E., and Toh-e, A. (2007). Shs1 plays separable roles in septin organization and cytokinesis in Saccharomyces cerevisiae. Genetics 177, 215–229.10.1534/genetics.107.073007Suche in Google Scholar PubMed PubMed Central

Johnson, E.S. (2004). Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382.10.1146/annurev.biochem.73.011303.074118Suche in Google Scholar PubMed

Johnson, E.S. and Blobel, G. (1999). Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J. Cell Biol. 147, 981–994.10.1083/jcb.147.5.981Suche in Google Scholar PubMed PubMed Central

Johnson, E.S., Schwienhorst, I., Dohmen, R.J., and Blobel, G. (1997). The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 16, 5509–5519.10.1093/emboj/16.18.5509Suche in Google Scholar PubMed PubMed Central

Johnson, J.M., Jin, M., and Lew, D.J. (2011). Symmetry breaking and the establishment of cell polarity in budding yeast. Curr. Opin. Genet. Dev. 21, 740–746.10.1016/j.gde.2011.09.007Suche in Google Scholar PubMed PubMed Central

Káčeriková, R., Godočíková, J., Wang, Z., Kutejová, E., Raunser, S., and Farkašovský, M. (2018). Modulation of septin higher-order structure by the Cdc28 protein kinase. Biologia 73, 1025–1033.10.2478/s11756-018-0116-4Suche in Google Scholar

Kang, P.J., Sanson, A., Lee, B., and Park, H.O. (2001). A GDP/GTP exchange factor involved in linking a spatial landmark to cell polarity. Science 292, 1376–1378.10.1126/science.1060360Suche in Google Scholar PubMed PubMed Central

Kang, P.J., Angerman, E., Nakashima, K., Pringle, J.R., and Park, H.O. (2004). Interactions among Rax1p, Rax2p, Bud8p, and Bud9p in marking cortical sites for bipolar bud-site selection in yeast. Mol. Biol. Cell 15, 5145–5157.10.1091/mbc.e04-07-0600Suche in Google Scholar PubMed PubMed Central

Kang, P.J., Hood-DeGrenier, J.K., and Park, H.O. (2013). Coupling of septins to the axial landmark by Bud4 in budding yeast. J. Cell Sci. 126, 1218–1226.10.1242/jcs.118521Suche in Google Scholar PubMed PubMed Central

Kang, H., Tsygankov, D., and Lew, D.J. (2016). Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. Mol. Biol. Cell. 27, 1764–1775.10.1091/mbc.e16-01-0014Suche in Google Scholar

Kaplan, C., Jing, B., Winterflood, C.M., Bridges, A.A., Occhipinti, P., Schmied, J., Grinhagens, S., Gronemeyer, T., Tinnefeld, P., Gladfelter, A.S., et al. (2015). Absolute arrangement of subunits in cytoskeletal septin filaments in cells measured by fluorescence microscopy. Nano Lett. 15, 3859–3864.10.1021/acs.nanolett.5b00693Suche in Google Scholar PubMed

Kawasaki, R., Fujimura-Kamada, K., Toi, H., Kato, H., and Tanaka, K. (2003). The upstream regulator, Rsr1p, and downstream effectors, Gic1p and Gic2p, of the Cdc42p small GTPase coordinately regulate initiation of budding in Saccharomyces cerevisiae. Genes Cells 8, 235–250.10.1046/j.1365-2443.2003.00629.xSuche in Google Scholar PubMed

Kim, M.S., Froese, C.D., Estey, M.P., and Trimble, W.S. (2011). SEPT9 occupies the terminal positions in septin octamers and mediates polymerization-dependent functions in abscission. J. Cell Biol. 195, 815–826.10.1083/jcb.201106131Suche in Google Scholar PubMed PubMed Central

Kinoshita, M. (2003). Assembly of mammalian septins. J. Biochem. 134, 491–496.10.1093/jb/mvg182Suche in Google Scholar PubMed

Knaus, M., Pelli-Gulli, M.P., van Drogen, F., Springer, S., Jaquenoud, M., and Peter, M. (2007). Phosphorylation of Bem2p and Bem3p may contribute to local activation of Cdc42p at bud emergence. EMBO J. 26, 4501–4513.10.1038/sj.emboj.7601873Suche in Google Scholar PubMed PubMed Central

Kozminski, K.G., Beven, L., Angerman, E., Tong, A.H., Boone, C., and Park, H.O. (2003). Interaction between a Ras and a Rho GTPase couples selection of a growth site to the development of cell polarity in yeast. Mol. Biol. Cell 14, 4958–4970.10.1091/mbc.e03-06-0426Suche in Google Scholar PubMed PubMed Central

Kozubowski, L., Larson, J.R., and Tatchell, K. (2005). Role of the septin ring in the asymmetric localization of proteins at the mother-bud neck in Saccharomyces cerevisiae. Mol. Biol. Cell 16, 3455–3466.10.1091/mbc.e04-09-0764Suche in Google Scholar PubMed PubMed Central

Kozubowski, L., Saito, K., Johnson, J.M., Howell, A.S., Zyla, T.R., and Lew, D.J. (2008). Symmetry-breaking polarization driven by a Cdc42p GEF-PAK complex. Curr. Biol. 18, 1719–1726.10.1016/j.cub.2008.09.060Suche in Google Scholar PubMed PubMed Central

Krokowski, S., Lobato-Márquez, D., Chastanet, A., Pereira, P.M., Angelis, D., Galea, D., Larrouy-Maumus, G., Henriques, R., Spiliotis, E.T., Carballido-López, R., et al. (2018). Septins recognize and entrap dividing bacterial cells for delivery to lysosomes. Cell Host Microbe 24, 866–874.e4.10.1016/j.chom.2018.11.005Suche in Google Scholar PubMed PubMed Central

Kusch, J., Meyer, A., Snyder, M.P., and Barral, Y. (2002). Microtubule capture by the cleavage apparatus is required for proper spindle positioning in yeast. Genes Dev. 16, 1627–1639.10.1101/gad.222602Suche in Google Scholar PubMed PubMed Central

Kustermann, J., Wu, Y., Rieger, L., Dedden, D., Phan, T., Walther, P., Dünkler, A., and Johnsson, N. (2017). The cell polarity proteins Boi1p and Boi2p stimulate vesicle fusion at the plasma membrane of yeast cells. J. Cell Sci. 130, 2996–3008.10.1242/jcs.206334Suche in Google Scholar PubMed

Lai, H., Chiou, J.G., Zhurikhina, A., Zyla, T.R., Tsygankov, D., and Lew, D.J. (2018). Temporal regulation of morphogenetic events in Saccharomyces cerevisiae. Mol. Biol. Cell 29, 2069–2083.10.1091/mbc.E18-03-0188Suche in Google Scholar PubMed PubMed Central

Lee, P.R., Song, S., Ro, H.S., Park, C.J., Lippincott, J., Li, R., Pringle, J.R., De, V.C., Longtine, M.S., and Lee, K.S. (2002). Bni5p, a septin-interacting protein, is required for normal septin function and cytokinesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 22, 6906–6920.10.1128/MCB.22.19.6906-6920.2002Suche in Google Scholar PubMed PubMed Central

Li, S.J. and Hochstrasser, M. (1999). A new protease required for cell-cycle progression in yeast. Nature 398, 246–251.10.1038/18457Suche in Google Scholar PubMed

Li, R., Zheng, Y., and Drubin, D.G. (1995). Regulation of cortical actin cytoskeleton assembly during polarized cell growth in budding yeast. J. Cell Biol. 128, 599–615.10.1083/jcb.128.4.599Suche in Google Scholar PubMed PubMed Central

Liao, Y., He, F., Gong, T., Bi, E., and Gao, X.D. (2013). Msb1 interacts with Cdc42, Boi1, and Boi2 and may coordinate Cdc42 and Rho1 functions during early stage of bud development in budding yeast. PLoS One 8, e66321.10.1371/journal.pone.0066321Suche in Google Scholar PubMed PubMed Central

Longtine, M.S., Fares, H., and Pringle, J.R. (1998). Role of the yeast Gin4p protein kinase in septin assembly and the relationship between septin assembly and septin function. J. Cell Biol. 143, 719–736.10.1083/jcb.143.3.719Suche in Google Scholar PubMed PubMed Central

Longtine, M.S., Theesfeld, C.L., McMillan, J.N., Weaver, E., Pringle, J.R., and Lew, D.J. (2000). Septin-dependent assembly of a cell cycle-regulatory module in Saccharomyces cerevisiae. Mol. Cell. Biol. 20, 4049–4061.10.1128/MCB.20.11.4049-4061.2000Suche in Google Scholar PubMed PubMed Central

Ma, X.J., Lu, Q., and Grunstein, M. (1996). A search for proteins that interact genetically with histone H3 and H4 amino termini uncovers novel regulators of the Swe1 kinase in Saccharomycescerevisiae. Genes Dev. 10, 1327–1340.10.1101/gad.10.11.1327Suche in Google Scholar PubMed

Macedo, J.N., Valadares, N.F., Marques, I.A., Ferreira, F.M., Damalio, J.C., Pereira, H.M., Garratt, R.C., and Araujo, A.P. (2013). The structure and properties of septin 3: a possible missing link in septin filament formation. Biochem. J. 450, 95–105.10.1042/BJ20120851Suche in Google Scholar PubMed

Makhnevych, T., Ptak, C., Lusk, C.P., Aitchison, J.D., and Wozniak, R.W. (2007). The role of karyopherins in the regulated sumoylation of septins. J. Cell Biol. 177, 39–49.10.1083/jcb.200608066Suche in Google Scholar PubMed PubMed Central

McCusker, D., Denison, C., Anderson, S., Egelhofer, T.A., Yates III, J.R., Gygi, S.P., and Kellogg, D.R. (2007). Cdk1 coordinates cell-surface growth with the cell cycle. Nat. Cell Biol. 9, 506–515.10.1038/ncb1568Suche in Google Scholar PubMed

McMillan, J.N., Longtine, M.S., Sia, R.A., Theesfeld, C.L., Bardes, E.S., Pringle, J.R., and Lew, D.J. (1999). The morphogenesis checkpoint in Saccharomyces cerevisiae: cell cycle control of swe1p degradation by Hsl1p and Hsl7p. Mol. Cell. Biol. 19, 6929–6939.10.1128/MCB.19.10.6929Suche in Google Scholar PubMed PubMed Central

McMurray, M.A. and Thorner, J. (2009). Septins: molecular partitioning and the generation of cellular asymmetry. Cell Div. 4, 18.10.1186/1747-1028-4-18Suche in Google Scholar PubMed PubMed Central

McQuilken, M., Jentzsch, M.S., Verma, A., Mehta, S.B., Oldenbourg, R., and Gladfelter, A.S. (2017). Analysis of septin reorganization at cytokinesis using polarized fluorescence microscopy. Front. Cell Dev. Biol. 5, 42.10.3389/fcell.2017.00042Suche in Google Scholar PubMed PubMed Central

Meitinger, F., Palani, S., and Pereira, G. (2012). The power of MEN in cytokinesis. Cell Cycle 11, 219–228.10.4161/cc.11.2.18857Suche in Google Scholar PubMed

Meitinger, F., Richter, H., Heisel, S., Hub, B., Seufert, W., and Pereira, G. (2013). A safeguard mechanism regulates Rho GTPases to coordinate cytokinesis with the establishment of cell polarity. PLoS Biol. 11, e1001495.10.1371/journal.pbio.1001495Suche in Google Scholar PubMed PubMed Central

Merlini, L., Fraschini, R., Boettcher, B., Barral, Y., Lucchini, G., and Piatti, S. (2012). Budding yeast dma proteins control septin dynamics and the spindle position checkpoint by promoting the recruitment of the Elm1 kinase to the bud neck. PLoS Genet. 8, e1002670.10.1371/journal.pgen.1002670Suche in Google Scholar PubMed PubMed Central

Merlini, L., Bolognesi, A., Juanes, M.A., Vandermoere, F., Courtellemont, T., Pascolutti, R., Séveno, M., Barral, Y., and Piatti, S. (2015). Rho1- and Pkc1-dependent phosphorylation of the F-BAR protein Syp1 contributes to septin ring assembly. Mol. Biol. Cell 26, 3245–3262.10.1091/mbc.e15-06-0366Suche in Google Scholar

Mino, A., Tanaka, K., Kamei, T., Umikawa, M., Fujiwara, T., and Takai, Y. (1998). Shs1p: a novel member of septin that interacts with Spa2p, involved in polarized growth in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 251, 732–736.10.1006/bbrc.1998.9541Suche in Google Scholar PubMed

Moffat, J. and Andrews, B. (2004). Late-G1 cyclin-CDK activity is essential for control of cell morphogenesis in budding yeast. Nat. Cell Biol. 6, 59–66.10.1038/ncb1078Suche in Google Scholar PubMed

Mortensen, E.M., McDonald, H., Yates 3rd, J., and Kellogg, D.R. (2002). Cell cycle-dependent assembly of a Gin4-septin complex. Mol. Biol. Cell 13, 2091–2105.10.1091/mbc.01-10-0500Suche in Google Scholar PubMed PubMed Central

Mostowy, S., Bonazzi, M., Hamon, M.A., Tham, T.N., Mallet, A., Lelek, M., Gouin, E., Demangel, C., Brosch, R., Zimmer, C., et al. (2010). Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe 8, 433–444.10.1016/j.chom.2010.10.009Suche in Google Scholar PubMed

Nagaraj, S., Rajendran, A., Jackson, C.E., and Longtine, M.S. (2008). Role of nucleotide binding in septin-septin interactions and septin localization in Saccharomyces cerevisiae. Mol. Cell. Biol. 28, 5120–5138.10.1128/MCB.00786-08Suche in Google Scholar PubMed PubMed Central

Nam, S.C., Sung, H., Kang, S.H., Joo, J.Y., Lee, S.J., Chung, Y.B., Lee, C.K., and Song, S. (2007). Phosphorylation-dependent septin interaction of Bni5 is important for cytokinesis. J. Microbiol. 45, 227–233.Suche in Google Scholar

Okada, S., Leda, M., Hanna, J., Savage, N.S., Bi, E., and Goryachev, A.B. (2013). Daughter cell identity emerges from the interplay of Cdc42, septins, and exocytosis. Dev. Cell. 26, 148–161.10.1016/j.devcel.2013.06.015Suche in Google Scholar PubMed PubMed Central

Ong, K., Wloka, C., Okada, S., Svitkina, T., and Bi, E. (2014). Architecture and dynamic remodelling of the septin cytoskeleton during the cell cycle. Nat. Commun. 5, 5698.10.1038/ncomms6698Suche in Google Scholar PubMed PubMed Central

Pan, F., Malmberg, R.L., and Momany, M. (2007). Analysis of septins across kingdoms reveals orthology and new motifs. BMC Evol. Biol. 7, 103.10.1186/1471-2148-7-103Suche in Google Scholar PubMed PubMed Central

Park, H.O. and Bi, E. (2007). Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol. Mol. Biol. Rev. 71, 48–96.10.1128/MMBR.00028-06Suche in Google Scholar PubMed PubMed Central

Patasi, C., Godočíková, J., Michlíková, S., Nie, Y., Káčeriková, R., Kválová, K., Raunser, S., and Farkašovský, M. (2015). The role of Bni5 in the regulation of septin higher-order structure formation. Biol. Chem. 396, 1325–1337.10.1515/hsz-2015-0165Suche in Google Scholar PubMed

Petronczki, M., Lenart, P., and Peters, J.M. (2008). Polo on the rise-from mitotic entry to cytokinesis with Plk1. Dev. Cell. 14, 646–659.10.1016/j.devcel.2008.04.014Suche in Google Scholar PubMed

Pospich, S. and Raunser, S. (2018). Single particle cryo-EM-an optimal tool to study cytoskeletal proteins. Curr. Opin. Struct. Biol. 52, 16–24.10.1016/j.sbi.2018.07.006Suche in Google Scholar PubMed

Qadota, H., Python, C.P., Inoue, S.B., Arisawa, M., Anraku, Y., Zheng, Y., Watanabe, T., Levin, D.E., and Ohya, Y. (1996). Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-β-glucan synthase. Science 272, 279–281.10.1126/science.272.5259.279Suche in Google Scholar PubMed

Qiu, W., Neo, S.P., Yu, X., and Cai, M. (2008). A novel septin-associated protein, Syp1p, is required for normal cell cycle-dependent septin cytoskeleton dynamics in yeast. Genetics 180, 1445–1457.10.1534/genetics.108.091900Suche in Google Scholar PubMed PubMed Central

Renz, C., Oeljeklaus, S., Grinhagens, S., Warscheid, B., Johnsson, N., and Gronemeyer, T. (2016). Identification of cell cycle dependent interaction partners of the septins by quantitative mass spectrometry. PLoS One 11, e0148340.10.1371/journal.pone.0148340Suche in Google Scholar

Ribet, D., Boscaini, S., Cauvin, C., Siguier, M., Mostowy, S., Echard, A., and Cossart, P. (2017). SUMOylation of human septins is critical for septin filament bundling and cytokinesis. J. Cell Biol. 216, 4041–4052.10.1083/jcb.201703096Suche in Google Scholar

Rincon, S., Coll, P.M., and Perez, P. (2007). Spatial regulation of Cdc42 during cytokinesis. Cell Cycle 6, 1687–1691.10.4161/cc.6.14.4481Suche in Google Scholar

Roeseler, S., Sandrock, K., Bartsch, I., and Zieger, B. (2009). Septins, a novel group of GTP-binding proteins: relevance in hemostasis, neuropathology and oncogenesis. Klin. Padiatr. 221, 150–155.10.1055/s-0029-1220706Suche in Google Scholar

Russell, P., Moreno, S., and Reed, S.I. (1989). Conservation of mitotic controls in fission and budding yeasts. Cell 57, 295–303.10.1016/0092-8674(89)90967-7Suche in Google Scholar

Saarikangas, J. and Barral, Y. (2011). The emerging functions of septins in metazoans. EMBO Rep. 12, 1118–1126.10.1038/embor.2011.193Suche in Google Scholar PubMed PubMed Central

Sakchaisri, K., Asano, S., Yu, L.R., Shulewitz, M.J., Park, C.J., Park, J.E., Cho, Y.W., Veenstra, T.D., Thorner, J., and Lee, K.S. (2004). Coupling morphogenesis to mitotic entry. Proc. Natl. Acad. Sci. USA 101, 4124–4129.10.1073/pnas.0400641101Suche in Google Scholar PubMed PubMed Central

Sadian, Y., Gatsogiannis, C., Patasi, C., Hofnagel, O., Goody, R.S., Farkasovsky, M., and Raunser, S. (2013). The role of Cdc42 and Gic1 in the regulation of septin filament formation and dissociation. eLife 2, e01085.10.7554/eLife.01085Suche in Google Scholar PubMed PubMed Central

Sala, F.A., Valadares, N.F., Macedo, J.N., Borges, J.C., and Garratt, R.C. (2016). Heterotypic coiled-coil formation is essential for the correct assembly of the septin heterofilament. Biophys. J. 111, 2608–2619.10.1016/j.bpj.2016.10.032Suche in Google Scholar PubMed PubMed Central

Sandrock, K., Bartsch, I., Blaser, S., Busse, A., Busse, E., and Zieger, B. (2011). Characterization of human septin interactions. Biol. Chem. 392, 751–761.10.1515/BC.2011.081Suche in Google Scholar PubMed

Schneider, C., Grois, J., Renz, C., Gronemeyer, T., and Johnsson, N. (2013). Septin rings act as a template for myosin higher-order structures and inhibit redundant polarity establishment. J. Cell Sci. 126, 3390–3400.10.1242/jcs.125302Suche in Google Scholar PubMed

Sekiya-Kawasaki, M., Abe, M., Saka, A., Watanabe, D., Kono, K., Minemura-Asakawa, M., Ishihara, S., Watanabe, T., and Ohya, Y. (2002). Dissection of upstream regulatory components of the Rho1p effector, 1,3-beta-glucan synthase, in Saccharomyces cerevisiae. Genetics 162, 663–676.10.1093/genetics/162.2.663Suche in Google Scholar PubMed PubMed Central

Sellin, M.E., Stenmark, S., and Gullberg, M. (2014). Cell type-specific expression of SEPT3-homology subgroup members controls the subunit number of heteromeric septin complexes. Mol. Biol. Cell 25, 1594–1607.10.1091/mbc.e13-09-0553Suche in Google Scholar

Serrão, V.H., Alessandro, F., Caldas, V.E., Marçal, R.L., Pereira, H.D., Thiemann, O.H., and Garratt, R.C. (2011). Promiscuous interactions of human septins: the GTP binding domain of SEPT7 forms filaments within the crystal. FEBS Lett. 585, 3868–3873.10.1016/j.febslet.2011.10.043Suche in Google Scholar PubMed

Shulewitz, M.J., Inouye, C.J., and Thorner, J. (1999). Hsl7 localizes to a septin ring and serves as an adapter in a regulatory pathway that relieves tyrosine phosphorylation of Cdc28 protein kinase in Saccharomyces cerevisiae. Mol.Cell. Biol. 19, 7123–7137.10.1128/MCB.19.10.7123Suche in Google Scholar PubMed PubMed Central

Sirajuddin, M., Farkasovsky, M., Hauer, F., Kühlmann, D., Macara, I.G., Weyand, M., Stark, H., and Wittinghofer, A. (2007). Structural insight into filament formation by mammalian septins. Nature 449, 311–315.10.1038/nature06052Suche in Google Scholar PubMed

Sirajuddin, M., Farkasovsky, M., Zent, E., and Wittinghofer, A. (2009). GTP induced conformational changes in septins and implications for function. Proc. Natl. Acad. Sci. USA 106, 16592–16597.10.1073/pnas.0902858106Suche in Google Scholar PubMed PubMed Central

Sopko, R., Huang, D., Smith, J.C., Figeys, D., and Andrews, B.J. (2007). Activation of the Cdc42p GTPase by cyclin-dependent protein kinases in budding yeast. EMBO J. 26, 4487–4500.10.1038/sj.emboj.7601847Suche in Google Scholar PubMed PubMed Central

Sreenivasan, A. and Kellogg, D. (1999). The elm1 kinase functions in a mitotic signaling network in budding yeast. Mol. Cell Biol. 19, 7983–7994.10.1128/MCB.19.12.7983Suche in Google Scholar PubMed PubMed Central

Stimpson, H.E., Toret, C.P., Cheng, A.T., Pauly, B.S., and Drubin, D.G. (2009). Early-arriving Syp1p and Ede1p function in endocytic site placement and formation in budding yeast. Mol. Biol. Cell 20, 4640–4651.10.1091/mbc.e09-05-0429Suche in Google Scholar PubMed PubMed Central

Szkotnicki, L., Crutchley, J.M., Zyla, T.R., Bardes, E.S., and Lew, D.J. (2008). The check point kinase Hsl1p is activated by Elm1p-dependent phosphorylation. Mol. Biol. Cell 19, 4675–4686.10.1091/mbc.e08-06-0663Suche in Google Scholar

Tamborrini, D., Juanes, M.A., Ibanes, S., Rancati, G., and Piatti, S. (2018). Recruitment of the mitotic exit network to yeast centrosomes couples septin displacement to actomyosin constriction. Nat. Commun. 9, 4308.10.1038/s41467-018-06767-0Suche in Google Scholar

Tanaka-Takiguchi, Y., Kinoshita, M., and Takiguchi, K. (2009). Septin-mediated uniform bracing of phospholipid membranes. Curr. Biol. 19, 140–145.10.1016/j.cub.2008.12.030Suche in Google Scholar

Tang, C.S. and Reed, S.I. (2002). Phosphorylation of the septin Cdc3 in G1 by the Cdc28 kinase is essential for efficient septin ring disassembly. Cell Cycle 1, 42–49.10.4161/cc.1.1.99Suche in Google Scholar

TerBush, D.R., Maurice, T., Roth, D., and Novick, P. (1996). The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15, 6483–6494.10.1002/j.1460-2075.1996.tb01039.xSuche in Google Scholar

Tolliday, N., VerPlank, L., and Li, R. (2002). Rho1 directs formin-mediated actin ring assembly during budding yeast cytokinesis. Curr. Biol. 12, 1864–1870.10.1016/S0960-9822(02)01238-1Suche in Google Scholar

Tong, Z., Gao, X.D., Howell, A.S., Bose, I., Lew, D.J., and Bi, E. (2007). Adjacent positioning of cellular structures enabled by a Cdc42 GTPase-activating protein-mediated zone of inhibition. J. Cell Biol. 179, 1375–1384.10.1083/jcb.200705160Suche in Google Scholar PubMed PubMed Central

Ubersax, J.A., Woodbury, E.L., Quang, P.N., Paraz, M., Blethrow, J.D., Shah, K., Shokat, K.M., and Morgan, D.O. (2003). Targets of the cyclin-dependent kinase Cdk1. Nature 425, 859–864.10.1038/nature02062Suche in Google Scholar PubMed

Versele, M. and Thorner, J. (2004). Septin collar formation in budding yeast requires GTP binding and direct phosphorylation by the PAK, Cla4. J Cell Biol. 164, 701–715.10.1083/jcb.200312070Suche in Google Scholar PubMed PubMed Central

Versele, M. and Thorner, J. (2005). Some assembly required: yeast septins provide the instruction manual. Trends Cell Biol. 15, 414–424.10.1016/j.tcb.2005.06.007Suche in Google Scholar PubMed PubMed Central

Versele, M., Gullbrand, B., Shulewitz, M.J., Cid, V.J., Bahmanyar, S., Chen, R.E., Barth, P., Alber, T., and Thorner, J. (2004). Protein-protein interactions governing septin heteropentamer assembly and septin filament organization in Saccharomyces cerevisiae. Mol. Biol. Cell 15, 4568–4583.10.1091/mbc.e04-04-0330Suche in Google Scholar PubMed PubMed Central

Vrabioiu, A.M. and Mitchison, T.J. (2006). Structural insights into yeast septin organization from polarized fluorescence microscopy. Nature 443, 466–469.10.1038/nature05109Suche in Google Scholar

Vrabioiu, A.M. and Mitchison, T.J. (2007). Symmetry of septin hourglass and ring structures. J. Mol. Biol. 372, 37–49.10.1016/j.jmb.2007.05.100Suche in Google Scholar

Vrabioiu, A.M., Gerber, S.A., Gygi, S.P., Field, C.M., and Mitchison, T.J. (2004). The majority of the Saccharomyces cerevisiae septin complexes do not exchange guanine nucleotides. J. Biol. Chem. 279, 3111–3118.10.1074/jbc.M310941200Suche in Google Scholar

Weems, A. and McMurray, M. (2017). The step-wise pathway of septin hetero-octamer assembly in budding yeast. eLife 6, e23689.10.7554/eLife.23689Suche in Google Scholar

Witte, K.L., Strickland, D., and Glotzer, M. (2017). Cell cycle entry triggers a switch between two modes of Cdc42 activation during yeast polarization. eLife 6, e26722.10.7554/eLife.26722.049Suche in Google Scholar

Wittinghofer, A. and Vetter, I.R. (2011). Structure-function relationships of the G domain, a canonical switch motif. Annu. Rev. Biochem. 80, 943–971.10.1146/annurev-biochem-062708-134043Suche in Google Scholar

Wloka, C., Nishihama, R., Onishi, M., Oh, Y., Hanna, J., Pringle, J.R., Krauß, M., and Bi, E. (2011). Evidence that a septin diffusion barrier is dispensable for cytokinesis in budding yeast. Biol. Chem. 392, 813–829.10.1515/BC.2011.083Suche in Google Scholar

Yoshida, S., Kono, K., Lowery, D.M., Bartolini, S., Yaffe, M.B., Ohya, Y., and Pellman, D. (2006). Polo-like kinase Cdc5 controls the local activation of Rho1 to promote cytokinesis. Science 313, 108–111.10.1126/science.1126747Suche in Google Scholar

Zent, E., Vetter, I., and Wittinghofer, A. (2011). Structural and biochemical properties of Sept7, a unique septin required for filament formation. Biol. Chem. 392, 791–797.10.1515/BC.2011.082Suche in Google Scholar

Zhang, J., Kong, C., Xie, H., McPherson, P.S., Grinstein, S., and Trimble, W.S. (1999). Phosphatidylinositol polyphosphate binding to the mammalian septin H5 is modulated by GTP. Curr. Biol. 9, 1458–1467.10.1016/S0960-9822(00)80115-3Suche in Google Scholar

Zhao, H., Michelot, A., Koskela, E.V., Tkach, V., Stamou, D., Drubin, D.G., and Lappalainen, P. (2013). Membrane-sculpting BAR domains generate stable lipid microdomains. Cell Rep. 4, 1213–1223.10.1016/j.celrep.2013.08.024Suche in Google Scholar PubMed PubMed Central

Zheng, Y., Bender, A., and Cerione, R.A. (1995). Interactions among proteins involved in bud-site selection and bud-site assembly in Saccharomyces cerevisiae. J. Biol. Chem. 270, 626–630.10.1074/jbc.270.2.626Suche in Google Scholar PubMed

Received: 2019-10-24
Accepted: 2019-12-28
Published Online: 2020-02-06
Published in Print: 2020-07-28

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2019-0401/pdf
Button zum nach oben scrollen