Abstract
The cyclic guanosine monophosphate (cGMP) signaling system is one of the most prominent regulators of a variety of physiological and pathophysiological processes in many mammalian and non-mammalian tissues. Targeting this pathway by increasing cGMP levels has been a very successful approach in pharmacology as shown for nitrates, phosphodiesterase (PDE) inhibitors and stimulators of nitric oxide-guanylyl cyclase (NO-GC) and particulate GC (pGC). This is an introductory review to the cGMP signaling system intended to introduce those readers to this system, who do not work in this area. This article does not intend an in-depth review of this system. Signal transduction by cGMP is controlled by the generating enzymes GCs, the degrading enzymes PDEs and the cGMP-regulated enzymes cyclic nucleotide-gated ion channels, cGMP-dependent protein kinases and cGMP-regulated PDEs. Part A gives a very concise introduction to the components. Part B gives a very concise introduction to the functions modulated by cGMP. The article cites many recent reviews for those who want a deeper insight.
References
Ahsan, M.K., Tchernychev, B., Kessler, M.M., Solinga, R.M., Arthur, D., Linde, C.I., Silos-Santiago, I., Hannig, G., and Ameen, N.A. (2017). Linaclotide activates guanylate cyclase-C/cGMP/protein kinase-II-dependent trafficking of CFTR in the intestine. Physiol. Rep. 5, e13299.10.14814/phy2.13299Suche in Google Scholar PubMed PubMed Central
Aicher, A., Heeschen, C., Feil, S., Hofmann, F., Mendelsohn, M.E., Feil, R., and Dimmeler, S. (2009). cGMP-dependent protein kinase I is crucial for angiogenesis and postnatal vasculogenesis. PLoS One 4, e4879.10.1371/journal.pone.0004879Suche in Google Scholar PubMed PubMed Central
Airhart, N., Yang, Y.F., Roberts Jr, C.T., and Silberbach, M. (2003). Atrial natriuretic peptide induces natriuretic peptide receptor-cGMP-dependent protein kinase interaction. J. Biol. Chem. 278, 38693–38698.10.1074/jbc.M304098200Suche in Google Scholar PubMed
Al-Salama, Z.T. and Syed, Y.Y. (2017). Plecanatide: first global approval. Drugs 77, 593–598.10.1007/s40265-017-0718-0Suche in Google Scholar PubMed
Alam, M.M., Solyakov, L., Bottrill, A.R., Flueck, C., Siddiqui, F.A., Singh, S., Mistry, S., Viskaduraki, M., Lee, K., Hopp, C.S., et al. (2015). Phosphoproteomics reveals malaria parasite Protein Kinase G as a signalling hub regulating egress and invasion. Nat. Commun. 6, 7285.10.1038/ncomms8285Suche in Google Scholar PubMed PubMed Central
Alam, M.M., Sanchez-Azqueta, A., Janha, O., Flannery, E.L., Mahindra, A., Mapesa, K., Char, A.B., Sriranganadane, D., Brancucci, N.M.B., Antonova-Koch, Y., et al. (2019). Validation of the protein kinase PfCLK3 as a multistage cross-species malarial drug target. Science 365, 6456 Aug 6430.10.1126/science.aau1682Suche in Google Scholar
Alioua, A., Tanaka, Y., Wallner, M., Hofmann, F., Ruth, P., Meera, P., and Toro, L. (1998). The large conductance, voltage-dependent, and calcium-sensitive K+ channel, Hslo, is a target of cGMP-dependent protein kinase phosphorylation in vivo. J. Biol. Chem. 273, 32950–32956.10.1074/jbc.273.49.32950Suche in Google Scholar PubMed
Allen, A.M., Anreiter, I., Neville, M.C., and Sokolowski, M.B. (2017). Feeding-related traits are affected by dosage of the foraging gene in Drosophila melanogaster. Genetics 205, 761–773.10.1534/genetics.116.197939Suche in Google Scholar PubMed PubMed Central
Ammendola, A., Geiselhoringer, A., Hofmann, F., and Schlossmann, J. (2001). Molecular determinants of the interaction between the inositol 1,4,5-trisphosphate receptor-associated cGMP kinase substrate (IRAG) and cGMP kinase Ibeta. J. Biol. Chem. 276, 24153–24159.10.1074/jbc.M101530200Suche in Google Scholar PubMed
Andersen, M.J., Ersboll, M., Axelsson, A., Gustafsson, F., Hassager, C., Kober, L., Borlaug, B.A., Boesgaard, S., Skovgaard, L.T., and Moller, J.E. (2013). Sildenafil and diastolic dysfunction after acute myocardial infarction in patients with preserved ejection fraction: the Sildenafil and Diastolic Dysfunction After Acute Myocardial Infarction (SIDAMI) trial. Circulation 127, 1200–1208.10.1161/CIRCULATIONAHA.112.000056Suche in Google Scholar PubMed
Angermeier, E., Domes, K., Lukowski, R., Schlossmann, J., Rathkolb, B., Angelis, M.H., and Hofmann, F. (2016). Iron deficiency anemia in cyclic GMP kinase knockout mice. Haematologica 101, e48–51.10.3324/haematol.2015.137026Suche in Google Scholar PubMed PubMed Central
Anreiter, I. and Sokolowski, M. (2019). The foraging gene and its behavioral effects: pleiotropy and plasticity. Annu. Rev. Genet. 53. Doi: 10.1146/annurev-genet-112618-043536.10.1146/annurev-genet-112618-043536Suche in Google Scholar PubMed
Antl, M., von Bruhl, M.L., Eiglsperger, C., Werner, M., Konrad, I., Kocher, T., Wilm, M., Hofmann, F., Massberg, S., and Schlossmann, J. (2007). IRAG mediates NO/cGMP-dependent inhibition of platelet aggregation and thrombus formation. Blood 109, 552–559.10.1182/blood-2005-10-026294Suche in Google Scholar PubMed
Arimoto, H. and Takahashi, D. (2017). 8-Nitro-cGMP: a novel protein-reactive cNMP and its emerging roles in autophagy. Handb. Exp. Pharmacol. 238, 253–268.10.1007/164_2016_5000Suche in Google Scholar PubMed
Baker, D.A., Drought, L.G., Flueck, C., Nofal, S.D., Patel, A., Penzo, M., and Walker, E.M. (2017a). Cyclic nucleotide signalling in malaria parasites. Open Biol. 7, 170213.10.1098/rsob.170213Suche in Google Scholar PubMed PubMed Central
Baker, D.A., Stewart, L.B., Large, J.M., Bowyer, P.W., Ansell, K.H., Jimenez-Diaz, M.B., El Bakkouri, M., Birchall, K., Dechering, K.J., Bouloc, N.S., et al. (2017b). A potent series targeting the malarial cGMP-dependent protein kinase clears infection and blocks transmission. Nat Commun. 8, 430.10.1038/s41467-017-00572-xSuche in Google Scholar PubMed PubMed Central
Balligand, J.L., Kelly, R.A., Marsden, P.A., Smith, T.W., and Michel, T. (1993). Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc. Natl. Acad. Sci. U.S.A. 90, 347–351.10.1073/pnas.90.1.347Suche in Google Scholar PubMed PubMed Central
Behrends, S. and Vehse, K. (2000). The beta(2) subunit of soluble guanylyl cyclase contains a human-specific frameshift and is expressed in gastric carcinoma. Biochem. Biophys. Res. Commun. 271, 64–69.10.1006/bbrc.2000.2596Suche in Google Scholar PubMed
Bice, J.S., Keim, Y., Stasch, J.P., and Baxter, G.F. (2014). NO-independent stimulation or activation of soluble guanylyl cyclase during early reperfusion limits infarct size. Cardiovasc Res. 101, 220–228.10.1093/cvr/cvt257Suche in Google Scholar PubMed PubMed Central
Biel, M. and Michalakis, S. (2009). Cyclic nucleotide-gated channels. Handb. Exp. Pharmacol. 191, 111–136.10.1007/978-3-540-68964-5_7Suche in Google Scholar PubMed
Bisio, H. and Soldati-Favre, D. (2019). Signaling cascades governing entry into and exit from host cells by Toxoplasma gondii. Annu. Rev. Microbiol. 73, 579–599.10.1146/annurev-micro-020518-120235Suche in Google Scholar PubMed
Blanton, R.M. (2019). cGMP signaling and modulation in heart failure. J. Cardiovasc. Pharmacol. Aug 27. [Epub ahead of print].10.1097/FJC.0000000000000749Suche in Google Scholar
Blanton, R.M., Takimoto, E., Lane, A.M., Aronovitz, M., Piotrowski, R., Karas, R.H., Kass, D.A., and Mendelsohn, M.E. (2012). Protein kinase g ialpha inhibits pressure overload-induced cardiac remodeling and is required for the cardioprotective effect of sildenafil in vivo. J. Am. Heart Assoc. 1, e003731.10.1161/JAHA.112.003731Suche in Google Scholar
Bradley, J., Reisert, J., and Frings, S. (2005). Regulation of cyclic nucleotide-gated channels. Curr. Opin. Neurobiol. 15, 343–349.10.1016/j.conb.2005.05.014Suche in Google Scholar
Browning, D.D., Kwon, I.K., and Wang, R. (2010). cGMP-dependent protein kinases as potential targets for colon cancer prevention and treatment. Future Medicinal. Chem. 2, 65–80.10.4155/fmc.09.142Suche in Google Scholar
Bryant, A.P., Busby, R.W., Bartolini, W.P., Cordero, E.A., Hannig, G., Kessler, M.M., Pierce, C.M., Solinga, R.M., Tobin, J.V., Mahajan-Miklos, S., et al. (2010). Linaclotide is a potent and selective guanylate cyclase C agonist that elicits pharmacological effects locally in the gastrointestinal tract. Life Sci. 86, 760–765.10.1016/j.lfs.2010.03.015Suche in Google Scholar
Bubb, K.J., Aubdool, A.A., Moyes, A.J., Lewis, S., Drayton, J.P., Tang, O., Mehta, V., Zachary, I.C., Abraham, D.J., Tsui, J., et al. (2019). Endothelial C-type natriuretic peptide is a critical regulator of angiogenesis and vascular remodeling. Circulation 139, 1612–1628.10.1161/CIRCULATIONAHA.118.036344Suche in Google Scholar
Burgoyne, J.R., Madhani, M., Cuello, F., Charles, R.L., Brennan, J.P., Schroder, E., Browning, D.D., and Eaton, P. (2007). Cysteine redox sensor in PKGIa enables oxidant-induced activation.Science 317, 1393–1397.10.1126/science.1144318Suche in Google Scholar
Buxton, I.L. and Duan, D. (2008). Cyclic GMP/protein kinase G phosphorylation of Smad3 blocks transforming growth factor-beta-induced nuclear Smad translocation: a key antifibrogenic mechanism of atrial natriuretic peptide. Circ. Res. 102, 151–153.10.1161/CIRCRESAHA.107.170217Suche in Google Scholar
Cahill, P.A. and Hassid, A. (1991). Clearance receptor-binding atrial natriuretic peptides inhibit mitogenesis and proliferation of rat aortic smooth-muscle cells. Biochem. Biophys. Res. Commun. 179, 1606–1613.10.1016/0006-291X(91)91758-5Suche in Google Scholar
Cawley, S.M., Kolodziej, S., Ichinose, F., Brouckaert, P., Buys, E.S., and Bloch, K.D. (2011). sGC{alpha}1 mediates the negative inotropic effects of NO in cardiac myocytes independent of changes in calcium handling. Am. J. Physiol. Heart Circ. Physiol. 301, H157–H163.10.1152/ajpheart.01273.2010Suche in Google Scholar PubMed PubMed Central
Chen, W., Oberwinkler, H., Werner, F., Ganer, B., Nakagawa, H., Feil, R., Hofmann, F., Schlossmann, J., Dietrich, A., Gudermann, T., et al. (2013). Atrial natriuretic peptide-mediated inhibition of microcirculatory endothelial Ca2+ and permeability response to histamine involves cGMP-dependent protein kinase I and TRPC6 channels. Arterioscler. Thromb. Vasc. Biol. 33, 2121–2129.10.1161/ATVBAHA.113.001974Suche in Google Scholar
Chen, T., Kocinsky, H.S., Cha, B.Y., Murtazina, R., Yang, J.B., Tse, C.M., Singh, V., Cole, R., Aronson, P.S., de Jonge, H., et al. (2015). Cyclic GMP kinase II (cGKII) inhibits NHE3 by altering its trafficking and phosphorylating NHE3 at three required sites identification of a multifunctional phosphorylation site. J. Biol. Chem. 290, 1952–1965.10.1074/jbc.M114.590174Suche in Google Scholar
Chen, Y., Harty, G.J., Huntley, B.K., Iyer, S.R., Heublein, D.M., Harders, G.E., Meems, L., Pan, S., Sangaralingham, S.J., Ichiki, T., et al. (2018). CRRL269: a novel designer and renal-enhancing pGC-A peptide activator. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314, R407–R414.10.1152/ajpregu.00286.2017Suche in Google Scholar
Chen, Y., Harty, G.J., Zheng, Y., Iyer, S.R., Sugihara, S., Sangaralingham, S.J., Ichiki, T., Grande, J.P., Lee, H.C., Wang, X., et al. (2019). Crrl269. Circ. Res. 124, 1462–1472.10.1161/CIRCRESAHA.118.314164Suche in Google Scholar
Conti, M. and Beavo, J. (2007). Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu. Rev. Biochem. 76, 481–511.10.1146/annurev.biochem.76.060305.150444Suche in Google Scholar
Dason, J.S., Cheung, A., Anreiter, I., Montemurri, V.A., Allen, A.M., and Sokolowski, M.B. (2019). Drosophila melanogaster foraging regulates a nociceptive-like escape behavior through a developmentally plastic sensory circuit. Proc. Natl. Acad. Sci. U.S.A. Doi: 10.1073/pnas.1820840116.10.1073/pnas.1820840116Suche in Google Scholar
Dazert, P., Meissner, K., Vogelgesang, S., Heydrich, B., Eckel, L., Bohm, M., Warzok, R., Kerb, R., Brinkmann, U., Schaeffeler, E., et al. (2003). Expression and localization of the multidrug resistance protein 5 (MRP5/ABCC5), a cellular export pump for cyclic nucleotides, in human heart. Am. J. Pathol. 163, 1567–1577.10.1016/S0002-9440(10)63513-4Suche in Google Scholar
Degen, C.V., Bishu, K., Zakeri, R., Ogut, O., Redfield, M.M., and Brozovich, F.V. (2015). The emperor’s new clothes: PDE5 and the heart. PLoS One 10, e0118664.10.1371/journal.pone.0118664Suche in Google Scholar PubMed PubMed Central
Desai, K.M., Zembowicz, A., Sessa, W.C., and Vane, J.R. (1991). Nitroxergic nerves mediate vagally induced relaxation in the isolated stomach of the guinea pig. Proc. Natl. Acad. Sci. U.S.A. 88, 11490–11494.10.1073/pnas.88.24.11490Suche in Google Scholar PubMed PubMed Central
Dryja, T.P., Finn, J.T., Peng, Y.W., McGee, T.L., Berson, E.L., and Yau, K.W. (1995). Mutations in the gene encoding the alpha subunit of the rod cGMP-gated channel in autosomal recessive retinitis pigmentosa. Proc. Natl. Acad. Sci. U.S.A. 92, 10177–10181.10.1073/pnas.92.22.10177Suche in Google Scholar PubMed PubMed Central
Dumoulin, A., Ter-Avetisyan, G., Schmidt, H., and Rathjen, F.G. (2018). Molecular analysis of sensory axon branching unraveled a cGMP-dependent signaling cascade. Int. J. Mol. Sci. 19, pii: E1266.10.3390/ijms19051266Suche in Google Scholar
Ecker, T., Gobel, C., Hullin, R., Rettig, R., Seitz, G., and Hofmann, F. (1989). Decreased cardiac concentration of cGMP kinase in hypertensive animals. An index for cardiac vascularization? Circ. Res. 65, 1361–1369.10.1161/01.RES.65.5.1361Suche in Google Scholar
Edmund, A.B., Walseth, T.F., Levinson, N.M., and Potter, L.R. (2019). The pseudokinase domains of guanylyl cyclase-A and -B allosterically increase the affinity of their catalytic domains for substrate. Sci. Signal. 12, pii: eaau5378.10.1126/scisignal.aau5378Suche in Google Scholar
El Bakkouri, M., Kouidmi, I., Wernimont, A.K., Amani, M., Hutchinson, A., Loppnau, P., Kim, J.J., Flueck, C., Walker, J.R., Seitova, A., et al. (2019). Structures of the cGMP-dependent protein kinase in malaria parasites reveal a unique structural relay mechanism for activation. Proc. Natl. Acad. Sci. U.S.A. 116, 14164–14173.10.1073/pnas.1905558116Suche in Google Scholar
Emdin, C.A., Khera, A.V., Klarin, D., Natarajan, P., Zekavat, S.M., Nomura, A., Haas, M., Aragam, K., Ardissino, D., Wilson, J.G., et al. (2018). Phenotypic consequences of a genetic predisposition to enhanced nitric oxide signaling. Circulation 137, 222–232.10.1161/CIRCULATIONAHA.117.028021Suche in Google Scholar
Erdmann, J., Stark, K., Esslinger, U.B., Rumpf, P.M., Koesling, D., de Wit, C., Kaiser, F.J., Braunholz, D., Medack, A., Fischer, M., et al. (2013). Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature 504, 432–6.10.1038/nature12722Suche in Google Scholar
Erdmann, J., Kessler, T., Munoz Venegas, L., and Schunkert, H. (2018). A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc. Res. 114, 1241–1257.10.1093/cvr/cvy084Suche in Google Scholar
Farber, D.B. and Danciger, M. (1997). Identification of genes causing photoreceptor degenerations leading to blindness. Curr. Opin. Neurobiol. 7, 666–673.10.1016/S0959-4388(97)80087-6Suche in Google Scholar
Feil, R., Hartmann, J., Luo, C., Wolfsgruber, W., Schilling, K., Feil, S., Barski, J.J., Meyer, M., Konnerth, A., De Zeeuw, C.I., et al. (2003). Impairment of LTD and cerebellar learning by Purkinje cell-specific ablation of cGMP-dependent protein kinase I. J. Cell Biol. 163, 295–302.10.1083/jcb.200306148Suche in Google Scholar PubMed PubMed Central
Feil, S., Zimmermann, P., Knorn, A., Brummer, S., Schlossmann, J., Hofmann, F., and Feil, R. (2005). Distribution of cGMP-dependent protein kinase type I and its isoforms in the mouse brain and retina. Neuroscience 135, 863–868.10.1016/j.neuroscience.2005.06.051Suche in Google Scholar PubMed
Francis, S.H. and Corbin, J.D. (2005). Phosphodiesterase-5 inhibition: the molecular biology of erectile function and dysfunction. Urol. Clin. North Am. 32, 419–29.10.1016/j.ucl.2005.08.001Suche in Google Scholar PubMed
Francis, S.H., Corbin, J.D., and Bischoff, E. (2009). Cyclic GMP-hydrolyzing phosphodiesterases. Handb. Exp. Pharmacol. 191, 367–408.10.1007/978-3-540-68964-5_16Suche in Google Scholar
Frankenreiter, S., Bednarczyk, P., Kniess, A., Bork, N.I., Straubinger, J., Koprowski, P., Wrzosek, A., Mohr, E., Logan, A., Murphy, M.P., et al. (2017). cGMP-elevating compounds and ischemic conditioning provide cardioprotection against ischemia and reperfusion injury via cardiomyocyte-specific BK channels. Circulation 136, 2337–2355.10.1161/CIRCULATIONAHA.117.028723Suche in Google Scholar
Frankenreiter, S., Groneberg, D., Kuret, A., Krieg, T., Ruth, P., Friebe, A., and Lukowski, R. (2018). Cardioprotection by ischemic postconditioning and cyclic guanosine monophosphate-elevating agents involves cardiomyocyte nitric oxide-sensitive guanylyl cyclase. Cardiovasc. Res. 114, 822–829.10.1093/cvr/cvy039Suche in Google Scholar
Franz, E., Knape, M.J., and Herberg, F.W. (2018). cGMP binding domain D mediates a unique activation mechanism in Plasmodium falciparum PKG. ACS Infect. Dis. 4, 415–423.10.1021/acsinfecdis.7b00222Suche in Google Scholar
Frolich, L., Wunderlich, G., Thamer, C., Roehrle, M., Garcia Jr, M., and Dubois, B. (2019). Evaluation of the efficacy, safety and tolerability of orally administered BI 409306, a novel phosphodiesterase type 9 inhibitor, in two randomised controlled phase II studies in patients with prodromal and mild Alzheimer’s disease. Alzheimers Res. Ther. 11, 18.10.1186/s13195-019-0467-2Suche in Google Scholar
Galie, N., Ghofrani, H.A., Torbicki, A., Barst, R.J., Rubin, L.J.,Badesch, D., Fleming, T., Parpia, T., Burgess, G., Branzi, A., et al. (2005). Sildenafil citrate therapy for pulmonary arterial hypertension. N. Engl. J. Med. 353, 2148–2157.10.1056/NEJMoa050010Suche in Google Scholar
Gambaryan, S., Wagner, C., Smolenski, A., Walter, U., Poller, W., Haase, W., Kurtz, A., and Lohmann, S.M. (1998). Endogenous or overexpressed cGMP-dependent protein kinases inhibit cAMP-dependent renin release from rat isolated perfused kidney, microdissected glomeruli, and isolated juxtaglomerular cells. Proc. Natl. Acad. Sci. U.S.A. 95, 9003–9008.10.1073/pnas.95.15.9003Suche in Google Scholar
Garbers, D.L., Koesling, D., and Schultz, G. (1994). Guanylyl cyclase receptors. Mol. Biol. Cell 5, 1–5.10.1091/mbc.5.1.1Suche in Google Scholar
Garthwaite, J., Southam, E., Boulton, C.L., Nielsen, E.B., Schmidt, K., and Mayer, B. (1995). Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Mol. Pharmacol. 48, 184–188.Suche in Google Scholar
Geiselhöringer, A., Gaisa, M., Hofmann, F., and Schlossmann, J. (2004). Distribution of IRAG and cGKI-isoforms in murine tissues. FEBS Lett. 575, 19–22.10.1016/j.febslet.2004.08.030Suche in Google Scholar
Gerzer, R., Bohme, E., Hofmann, F., and Schultz, G. (1981). Soluble guanylate cyclase purified from bovine lung contains heme and copper. FEBS Lett. 132, 71–74.10.1016/0014-5793(81)80429-2Suche in Google Scholar
Ghofrani, H.A., D’Armini, A.M., Grimminger, F., Hoeper, M.M., Jansa, P., Kim, N.H., Mayer, E., Simonneau, G., Wilkins, M.R., Fritsch, A., et al. (2013a). Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N. Engl. J. Med. 369, 319–329.10.1056/NEJMoa1209657Suche in Google Scholar PubMed
Ghofrani, H.A., Galie, N., Grimminger, F., Grunig, E., Humbert, M., Jing, Z.C., Keogh, A.M., Langleben, D., Kilama, M.O., Fritsch, A., et al. (2013b). Riociguat for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 369, 330–340.10.1056/NEJMoa1209655Suche in Google Scholar PubMed
Golombek, D.A., Agostino, P.V., Plano, S.A., and Ferreyra, G.A. (2004). Signaling in the mammalian circadian clock: the NO/cGMP pathway. Neurochem. Int. 45, 929–936.10.1016/j.neuint.2004.03.023Suche in Google Scholar PubMed
Gong, K., Xing, D., Li, P., Hilgers, R.H., Hage, F.G., Oparil, S., and Chen, Y.F. (2011). cGMP inhibits TGF-beta signaling by sequestering Smad3 with cytosolic beta2-tubulin in pulmonary artery smooth muscle cells. Mol. Endocrinol. 25, 1794–1803.10.1210/me.2011-1009Suche in Google Scholar PubMed PubMed Central
Gotz, K.R., Sprenger, J.U., Perera, R.K., Steinbrecher, J.H., Lehnart, S.E., Kuhn, M., Gorelik, J., Balligand, J.L., and Nikolaev, V.O. (2014). Transgenic mice for real-time visualization of cGMP in intact adult cardiomyocytes. Circ. Res. 114, 1235–1245.10.1161/CIRCRESAHA.114.302437Suche in Google Scholar PubMed
Groneberg, D., Lies, B., Konig, P., Jager, R., Seidler, B., Klein, S., Saur, D., and Friebe, A. (2013). Cell-specific deletion of nitric oxide-sensitive guanylyl cyclase reveals a dual pathway for nitrergic neuromuscular transmission in the murine fundus. Gastroenterology 145, 188–196.10.1053/j.gastro.2013.03.042Suche in Google Scholar PubMed
Guggino, W.B. and Stanton, B.A. (2006). New insights into cystic fibrosis: molecular switches that regulate CFTR. Nat. Rev. Mol. Cell. Biol. 7, 426–436.10.1038/nrm1949Suche in Google Scholar PubMed
Guo, D.C., Regalado, E., Casteel, D.E., Santos-Cortez, R.L., Gong, L., Kim, J.J., Dyack, S., Horne, S.G., Chang, G., Jondeau, G., et al. (2013). Recurrent gain-of-function mutation in PRKG1 causes thoracic aortic aneurysms and acute aortic dissections. Am. J. Hum. Genet. 93, 398–404.10.1016/j.ajhg.2013.06.019Suche in Google Scholar PubMed PubMed Central
Gyurko, R., Kuhlencordt, P., Fishman, M.C., and Huang, P.L. (2000). Modulation of mouse cardiac function in vivo by eNOS and ANP. Am. J. Physiol. Heart Circ. Physiol. 278, H971–H981.10.1152/ajpheart.2000.278.3.H971Suche in Google Scholar PubMed
Hassid, A., Cahill, P.A., and Patel, T.B. (1991). Inhibition of rat aortic smooth-muscle cell mitogenesis by atrial-natriuretic-peptide is mediated by a cyclic GMP-independent mechanism via the anf clearance receptor. FASEB J. 5, A1608.Suche in Google Scholar
Hedlund, P., Aszodi, A., Pfeifer, A., Alm, P., Hofmann, F., Ahmad, M., Fassler, R., and Andersson, K.E. (2000). Erectile dysfunction in cyclic CMP-dependent kinase I-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 97, 2349–2354.10.1073/pnas.030419997Suche in Google Scholar PubMed PubMed Central
Hemmrich, M., Distler, O., Allanore, Y., Denton, C., Kuwana, M., Matucci-Cerinic, M., Pope, J., de Oliveira Pena, J., Laapas, K., Yao, Z., et al. (2019). Efficacy and safety of riociguat in patients with early diffuse cutaneous systemic sclerosis: results from the RISE-SSc study, a randomized, double-blind, placebo-controlled phase IIb study. J. Transl. Med. 17, S1–03.10.1164/ajrccm-conference.2019.199.1_MeetingAbstracts.A4086Suche in Google Scholar
Higenbottam, T., Siddons, T., and Demoncheaux, E. (2000). A therapeutic role for chronic inhaled nitric oxide? Lancet 356, 446–447.10.1016/S0140-6736(00)02548-4Suche in Google Scholar
Hofmann, F. (2018). A concise discussion of the regulatory role of cGMP kinase I in cardiac physiology and pathology. Basic Res. Cardiol. 113, 31.10.1007/s00395-018-0690-1Suche in Google Scholar
Hofmann, F. and Sold, G. (1972). A protein kinase activity from rat cerebellum stimulated by guanosine-3′:5′-monophosphate. Biochem. Biophys. Res. Commun. 49, 1100–1107.10.1016/0006-291X(72)90326-9Suche in Google Scholar
Hofmann, F., Feil, R., Kleppisch, T., and Schlossmann, J. (2006). Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol. Rev. 86, 1–23.10.1152/physrev.00015.2005Suche in Google Scholar PubMed
Hofmann, F., Bernhard, D., Lukowski, R., and Weinmeister, P. (2009). cGMP regulated protein kinases (cGK). Handb. Exp. Pharmacol. 191, 137–162.10.1007/978-3-540-68964-5_8Suche in Google Scholar PubMed
Hollas, M.A., Ben Aissa, M., Lee, S.H., Gordon-Blake, J.M., and Thatcher, G.R.J. (2019). Pharmacological manipulation of cGMP and NO/cGMP in CNS drug discovery. Nitric Oxide 82, 59–74.10.1016/j.niox.2018.10.006Suche in Google Scholar PubMed PubMed Central
Horst, B.G. and Marletta, M.A. (2018). Physiological activation and deactivation of soluble guanylate cyclase. Nitric Oxide 77, 65–74.10.1016/j.niox.2018.04.011Suche in Google Scholar PubMed PubMed Central
Horst, B.G., Yokom, A.L., Rosenberg, D.J., Morris, K.L., Hammel, M., Hurley, J.H., and Marletta, M.A. (2019). Allosteric activation of the nitric oxide receptor soluble guanylate cyclase mapped by cryo-electron microscopy. eLife 8, pii: e50634.10.7554/eLife.50634.055Suche in Google Scholar
Huynh, P. and Chai, Z. (2019). Transforming growth factor beta (TGFbeta) and related molecules in chronic kidney disease (CKD). Clin. Sci. (Lond). 133, 287–313.10.1042/CS20180438Suche in Google Scholar PubMed
Inserte, J. and Garcia-Dorado, D. (2015). The cGMP/PKG pathway as a common mediator of cardioprotection: translatability and mechanism. Br. J. Pharmacol. 172, 1996–2009.10.1111/bph.12959Suche in Google Scholar PubMed PubMed Central
Irvine, J.C., Ganthavee, V., Love, J.E., Alexander, A.E., Horowitz, J.D., Stasch, J.P., Kemp-Harper, B.K., and Ritchie, R.H. (2012). The soluble guanylyl cyclase activator bay 58-2667 selectively limits cardiomyocyte hypertrophy. PLoS One 7, e44481.10.1371/journal.pone.0044481Suche in Google Scholar
Itoh, H., Pratt, R.E., and Dzau, V.J. (1990). Atrial natriuretic polypeptide inhibits hypertrophy of vascular smooth-muscle cells. J. Clin. Invest. 86, 1690–1697.10.1172/JCI114893Suche in Google Scholar
Jaumann, M., Dettling, J., Gubelt, M., Zimmermann, U., Gerling, A., Paquet-Durand, F., Feil, S., Wolpert, S., Franz, C., Varakina, K., et al. (2012). cGMP-Prkg1 signaling and Pde5 inhibition shelter cochlear hair cells and hearing function. Nat. Med. 18, 252–259.10.1038/nm.2634Suche in Google Scholar
Jin, J.G., Murthy, K.S., Grider, J.R., and Makhlouf, G.M. (1996). Stoichiometry of neurally induced VIP release, NO formation, and relaxation in rabbit and rat gastric muscle. Am. J. Physiol. 271, G357–G369.10.1152/ajpgi.1996.271.2.G357Suche in Google Scholar
Juilfs, D.M., Fulle, H.J., Zhao, A.Z., Houslay, M.D., Garbers, D.L., and Beavo, J.A. (1997). A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proc. Natl. Acad. Sci. U.S.A. 94, 3388–3395.10.1073/pnas.94.7.3388Suche in Google Scholar
Kalderon, D. and Rubin, G.M. (1989). cGMP-dependent protein kinase genes in Drosophila. J. Biol. Chem. 264, 10738–10748.10.1016/S0021-9258(18)81684-2Suche in Google Scholar
Kalyanaraman, H., Zhuang, S., Pilz, R.B., and Casteel, D.E. (2017). The activity of cGMP-dependent protein kinase Ialpha is not directly regulated by oxidation-induced disulfide formation at cysteine 43. J. Biol. Chem. 292, 8262–8268.10.1074/jbc.C117.787358Suche in Google Scholar PubMed PubMed Central
Kang, Y., Liu, R., Wu, J.X., and Chen, L. (2019). Structural insights into the mechanism of human soluble guanylate cyclase. Nature 574, 206–210.10.1038/s41586-019-1584-6Suche in Google Scholar PubMed
Kaupp, U.B. and Seifert, R. (2002). Cyclic nucleotide-gated ion channels. Physiol. Rev. 82, 769–824.10.1152/physrev.00008.2002Suche in Google Scholar PubMed
Kawasaki, Y., Kugimiya, F., Chikuda, H., Kamekura, S., Ikeda, T., Kawamura, N., Saito, T., Shinoda, Y., Higashikawa, A., Yano, F., et al. (2008). Phosphorylation of GSK-3 beta by cGMP-dependent protein kinase II promotes hypertrophic differentiation of murine chondrocytes (vol 118, pg 2506, 2008). J. Clin. Invest. 118, 2986–2986.10.1172/JCI35243E1Suche in Google Scholar
Kemp-Harper, B. and Schmidt, H.H. (2009). cGMP in the vasculature. Handb. Exp. Pharmacol. 191, 447–467.10.1007/978-3-540-68964-5_19Suche in Google Scholar PubMed
Kessler, T., Wolf, B., Eriksson, N., Kofink, D., Mahmoodi, B.K., Rai, H., Tragante, V., Akerblom, A., Becker, R.C., Bernlochner, I., et al. (2019). Association of the coronary artery disease risk gene GUCY1A3 with ischaemic events after coronary intervention. Cardiovasc. Res. 115, 1512–1518.10.1093/cvr/cvz015Suche in Google Scholar PubMed
Khalil, H., Kanisicak, O., Prasad, V., Correll, R.N., Fu, X., Schips, T., Vagnozzi, R.J., Liu, R., Huynh, T., Lee, S.J., et al. (2017). Fibroblast-specific TGF-beta-Smad2/3 signaling underlies cardiac fibrosis. J. Clin. Invest. 127, 3770–3783.10.1172/JCI94753Suche in Google Scholar PubMed PubMed Central
Khavandi, K., Baylie, R.A., Sugden, S.A., Ahmed, M., Csato, V., Eaton, P., Hill-Eubanks, D.C., Bonev, A.D., Nelson, M.T., and Greenstein, A.S. (2016). Pressure-induced oxidative activation of PKG enables vasoregulation by Ca2+ sparks and BK channels. Sci. Signal. 9, ra100.10.1126/scisignal.aaf6625Suche in Google Scholar PubMed PubMed Central
Kim, S., Titcombe, R.F., Zhang, H., Khatri, L., Girma, H.K., Hofmann, F., Arancio, O., and Ziff, E.B. (2015). Network compensation of cyclic GMP-dependent protein kinase II knockout in the hippocampus by Ca2+-permeable AMPA receptors. Proc. Natl. Acad. Sci. U.S.A. 112, 3122–3127.10.1073/pnas.1417498112Suche in Google Scholar PubMed PubMed Central
Kim, C., Sarma, R., and Casteel, D. (2019). Crystal structure of PKG Ib holoenzyme reveals a trans-inhibiting dimer assembly. J. Transl. Med. 17, S2–06.10.1186/s12967-019-02198-7Suche in Google Scholar
Kleppisch, T. (2009). Phosphodiesterases in the central nervous system. Handb. Exp. Pharmacol. 191, 71–92.10.1007/978-3-540-68964-5_5Suche in Google Scholar PubMed
Kleppisch, T. and Feil, R. (2009). cGMP signalling in the mammalian brain: role in synaptic plasticity and behaviour. Handb. Exp. Pharmacol. 191, 549–579.10.1007/978-3-540-68964-5_24Suche in Google Scholar PubMed
Kleppisch, T., Pfeifer, A., Klatt, P., Ruth, P., Montkowski, A., Fassler, R., and Hofmann, F. (1999). Long-term potentiation in the hippocampal CA1 region of mice lacking cGMP-dependent kinases is normal and susceptible to inhibition of nitric oxide synthase. J. Neurosci. 19, 48–55.10.1523/JNEUROSCI.19-01-00048.1999Suche in Google Scholar
Koesling, D., Bohme, E., and Schultz, G. (1991). Guanylyl cyclases, a growing family of signal-transducing enzymes. FASEB J. 5, 2785–2791.10.1096/fasebj.5.13.1680765Suche in Google Scholar PubMed
Koesling, D., Mergia, E., and Russwurm, M. (2016). Physiological functions of NO-sensitive guanylyl cyclase isoforms. Curr. Med. Chem. 23, 2653–2665.10.2174/0929867323666160812145050Suche in Google Scholar PubMed
Kokkonen, K. and Kass, D.A. (2017). Nanodomain regulation of cardiac cyclic nucleotide signaling by phosphodiesterases. Annu. Rev. Pharmacol. Toxicol. 57, 455–479.10.1146/annurev-pharmtox-010716-104756Suche in Google Scholar
Krawutschke, C., Koesling, D., and Russwurm, M. (2015). Cyclic GMP in vascular relaxation: export is of similar importance as degradation. Arterioscler. Thromb. Vasc. Biol. 35, 2011–2019.10.1161/ATVBAHA.115.306133Suche in Google Scholar
Kuhn, M. (2003). Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ. Res. 93, 700–709.10.1161/01.RES.0000094745.28948.4DSuche in Google Scholar
Kuhn, M. (2016). Molecular physiology of membrane guanylyl cyclase receptors. Physiol. Rev. 96, 751–804.10.1152/physrev.00022.2015Suche in Google Scholar
Kumar, R., Joyner, R.W., Komalavilas, P., and Lincoln, T.M. (1999). Analysis of expression of cGMP-dependent protein kinase in rabbit heart cells. J. Pharmacol. Exp. Ther. 291, 967–975.Suche in Google Scholar
Kurtz, A., Gotz, K.H., Hamann, M., and Wagner, C. (1998). Stimulation of renin secretion by nitric oxide is mediated by phosphodiesterase 3. Proc. Natl. Acad. Sci. U.S.A. 95, 4743–4747.10.1073/pnas.95.8.4743Suche in Google Scholar
Landgraf, W., Regulla, S., Meyer, H.E., and Hofmann, F. (1991). Oxidation of cysteines activates cGMP-dependent protein kinase. J. Biol. Chem. 266, 16305–16311.10.1016/S0021-9258(18)55297-2Suche in Google Scholar
Landgraf, W., Ruth, P., Keilbach, A., May, B., Welling, A., and Hofmann, F. (1992). Cyclic GMP-dependent protein kinase and smooth muscle relaxation. J. Cardiovasc. Pharmacol. 20(Suppl 1), S18–22.10.1097/00005344-199212001-00005Suche in Google Scholar
Legeai-Mallet, L. (2016). C-type natriuretic peptide analog as therapy for achondroplasia. Adv. Ther. Pediatr. Endocrinol. Diabetol. 30, 98–105.10.1159/000439334Suche in Google Scholar PubMed
Leinders-Zufall, T., Cockerham, R.E., Michalakis, S., Biel, M., Garbers, D.L., Reed, R.R., Zufall, F., and Munger, S.D. (2007). Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc. Natl. Acad. Sci. U.S.A. 104, 14507–14512.10.1073/pnas.0704965104Suche in Google Scholar PubMed PubMed Central
Lembo, A.J., Schneier, H.A., Shiff, S.J., Kurtz, C.B., MacDougall, J.E., Jia, X.D., Shao, J.Z., Lavins, B.J., Currie, M.G., Fitch, D.A., et al. (2011). Two randomized trials of linaclotide for chronic constipation. N. Engl. J. Med. 365, 527–536.10.1056/NEJMoa1010863Suche in Google Scholar PubMed
Lev-Ram, V., Makings, L.R., Keitz, P.F., Kao, J.P., and Tsien, R.Y. (1995). Long-term depression in cerebellar Purkinje neurons results from coincidence of nitric oxide and depolarization-induced Ca2+ transients. Neuron 15, 407–415.10.1016/0896-6273(95)90044-6Suche in Google Scholar
Lev-Ram, V., Nebyelul, Z., Ellisman, M.H., Huang, P.L., and Tsien, R.Y. (1997). Absence of cerebellar long-term depression in mice lacking neuronal nitric oxide synthase. Learn. Mem. 4, 169–177.10.1101/lm.4.1.169Suche in Google Scholar PubMed
Lewin, M.R. and Walters, E.T. (1999). Cyclic GMP pathway is critical for inducing long-term sensitization of nociceptive sensory neurons. Nat. Neurosci. 2, 18–23.10.1038/4520Suche in Google Scholar PubMed
Lodish, H., Berk, A., Kaiser, C., Krieger, M., Bretscher, A., Ploegh, H., Amon, A., and Martin, K.C.M. (2016). Molecular Cell Biology, 8th ed. (New York, NY, USA: Macmillan).Suche in Google Scholar
Lohmann, S.M., Walter, U., Miller, P.E., Greengard, P., and De Camilli, P. (1981). Immunohistochemical localization of cyclic GMP-dependent protein kinase in mammalian brain. Proc. Natl. Acad. Sci. U.S.A. 78, 653–657.10.1073/pnas.78.1.653Suche in Google Scholar PubMed PubMed Central
Loscalzo, J. (2001). Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ. Res. 88, 756–762.10.1161/hh0801.089861Suche in Google Scholar PubMed
Lukowski, R., Weinmeister, P., Bernhard, D., Feil, S., Gotthardt, M., Herz, J., Massberg, S., Zernecke, A., Weber, C., Hofmann, F., et al. (2008). Role of smooth muscle cGMP/cGKI signaling in murine vascular restenosis. Arterioscler. Thromb. Vasc. Biol. 28, 1244–1250.10.1161/ATVBAHA.108.166405Suche in Google Scholar PubMed PubMed Central
Lukowski, R., Rybalkin, S.D., Loga, F., Leiss, V., Beavo, J.A., and Hofmann, F. (2010). Cardiac hypertrophy is not amplified by deletion of cGMP-dependent protein kinase I in cardiomyocytes. Proc. Natl. Acad. Sci. U.S.A. 107, 5646–5651.10.1073/pnas.1001360107Suche in Google Scholar PubMed PubMed Central
Lukowski, R., Krieg, T., Rybalkin, S.D., Beavo, J., and Hofmann, F. (2014). Turning on cGMP-dependent pathways to treat cardiac dysfunctions: boom, bust, and beyond. Trends Pharmacol. Sci. 35, 404–413.10.1016/j.tips.2014.05.003Suche in Google Scholar PubMed
Luo, C., Gangadharan, V., Bali, K.K., Xie, R.G., Agarwal, N., Kurejova, M., Tappe-Theodor, A., Tegeder, I., Feil, S., Lewin, G., et al. (2012). Presynaptically localized cyclic GMP-dependent protein kinase 1 is a key determinant of spinal synaptic potentiation and pain hypersensitivity. PLoS Biol. 10, e1001283.10.1371/journal.pbio.1001283Suche in Google Scholar PubMed PubMed Central
Makhoul, S., Walter, E., Pagel, O., Walter, U., Sickmann, A., Gambaryan, S., Smolenski, A., Zahedi, R.P., and Jurk, K. (2018). Effects of the NO/soluble guanylate cyclase/cGMP system on the functions of human platelets. Nitric Oxide 76, 71–80.10.1016/j.niox.2018.03.008Suche in Google Scholar PubMed
Markert, T., Vaandrager, A.B., Gambaryan, S., Pohler, D., Hausler, C., Walter, U., De Jonge, H.R., Jarchau, T., and Lohmann, S.M. (1995). Endogenous expression of type II cGMP-dependent protein kinase mRNA and protein in rat intestine. Implications for cystic fibrosis transmembrane conductance regulator. J. Clin. Invest. 96, 822–830.10.1172/JCI118128Suche in Google Scholar
Massberg, S., Sausbier, M., Klatt, P., Bauer, M., Pfeifer, A., Siess, W., Fassler, R., Ruth, P., Krombach, F., and Hofmann, F. (1999). Increased adhesion and aggregation of platelets lacking cyclic guanosine 3′,5′-monophosphate kinase I. J. Exp. Med. 189, 1255–1264.10.1084/jem.189.8.1255Suche in Google Scholar
Matei, A.E., Beyer, C., Gyorfi, A.H., Soare, A., Chen, C.W., Dees, C., Bergmann, C., Ramming, A., Friebe, A., Hofmann, F., et al. (2018). Protein kinases G are essential downstream mediators of the antifibrotic effects of sGC stimulators. Ann. Rheum. Dis. 77, 459.10.1136/annrheumdis-2017-212489Suche in Google Scholar
Matsue, Y., Kagiyama, N., Yoshida, K., Kume, T., Okura, H., Suzuki, M., Matsumura, A., Yoshida, K., and Hashimoto, Y. (2015). Carperitide is associated with increased in-hospital mortality in acute heart failure: a propensity score-matched analysis. J. Card. Fail. 21, 859–864.10.1016/j.cardfail.2015.05.007Suche in Google Scholar
McMurray, J.J., Packer, M., Desai, A.S., Gong, J., Lefkowitz, M.P., Rizkala, A.R., Rouleau, J.L., Shi, V.C., Solomon, S.D., Swedberg, K., et al. (2014). Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371, 993–1004.10.1056/NEJMoa1409077Suche in Google Scholar
Meng, X.M., Nikolic-Paterson, D.J., and Lan, H.Y. (2016). TGF-beta: the master regulator of fibrosis. Nat. Rev. Nephrol. 12, 325–338.10.1038/nrneph.2016.48Suche in Google Scholar
Menges, L., Krawutschke, C., Fuchtbauer, E.M., Fuchtbauer, A., Sandner, P., Koesling, D., and Russwurm, M. (2019). Mind the gap [junction]: NO-induced cGMP in cardiac myocytes originates from fibroblasts. Br J Pharmacol. Doi: 10.1111/bph.14835.10.1111/bph.14835Suche in Google Scholar
Menniti, F.S., Faraci, W.S., and Schmidt, C.J. (2006). Phosphodiesterases in the CNS: targets for drug development. Nat. Rev. Drug Discov. 5, 660–670.10.1038/nrd2058Suche in Google Scholar
Mergia, E., Russwurm, M., Zoidl, G., and Koesling, D. (2003). Major occurrence of the new alpha2beta1 isoform of NO-sensitive guanylyl cyclase in brain. Cell Signal. 15, 189–195.10.1016/S0898-6568(02)00078-5Suche in Google Scholar
Methner, C., Buonincontri, G., Hu, C.H., Vujic, A., Kretschmer, A., Sawiak, S., Carpenter, A., Stasch, J.P., and Krieg, T. (2013). Riociguat reduces infarct size and post-infarct heart failure in mouse hearts: insights from MRI/PET imaging. PLoS One 8, e83910.10.1371/journal.pone.0083910Suche in Google Scholar PubMed PubMed Central
Michalakis, S., Becirovic, E., and Biel, M. (2018). Retinal cyclic nucleotide-gated channels: from pathophysiology to therapy. Int. J. Mol. Sci. 19.10.3390/ijms19030749Suche in Google Scholar
Milewicz, D. and Regalado, E. (2017). Heritable thoracic aortic disease overview. GeneReviews® [Internet]. Book.Suche in Google Scholar
Milewicz, D.M., Guo, D.C., Tran-Fadulu, V., Lafont, A.L., Papke, C.L., Inamoto, S., Kwartler, C.S., and Pannu, H. (2008). Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction. Annu. Rev. Genomics Hum. Genet. 9, 283–302.10.1146/annurev.genom.8.080706.092303Suche in Google Scholar
Moyes, A.J., Khambata, R.S., Villar, I., Bubb, K.J., Baliga, R.S., Lumsden, N.G., Xiao, F., Gane, P.J., Rebstock, A.S., Worthington, R.J., et al. (2014). Endothelial C-type natriuretic peptide maintains vascular homeostasis. J. Clin. Invest. 124, 4039–4051.10.1172/JCI74281Suche in Google Scholar
Murrel, W. (1879). Nitro-glycerin as a remedy for angina pectoris. Lancet 113, 80–81.10.1016/S0140-6736(02)46032-1Suche in Google Scholar
Neitz, A., Mergia, E., Eysel, U.T., Koesling, D., and Mittmann, T. (2011). Presynaptic nitric oxide/cGMP facilitates glutamate release via hyperpolarization-activated cyclic nucleotide-gated channels in the hippocampus. Eur. J. Neurosci. 33, 1611–1621.10.1111/j.1460-9568.2011.07654.xSuche in Google Scholar PubMed
Neitz, A., Mergia, E., Imbrosci, B., Petrasch-Parwez, E., Eysel, U.T., Koesling, D., and Mittmann, T. (2014). Postsynaptic NO/cGMP increases NMDA receptor currents via hyperpolarization-activated cyclic nucleotide-gated channels in the hippocampus. Cereb Cortex. 24, 1923–1936.10.1093/cercor/bht048Suche in Google Scholar PubMed
Neitz, A., Mergia, E., Neubacher, U., Koesling, D., and Mittmann, T. (2015). NO regulates the strength of synaptic inputs onto hippocampal CA1 neurons via NO-GC1/cGMP signalling. Pflüger’s Arch. 467, 1383–1394.10.1007/s00424-014-1571-6Suche in Google Scholar PubMed
Nishida, M., Nishimura, A., Matsunaga, T., Motohashi, H., Kasamatsu, S., and Akaike, T. (2017). Redox regulation of electrophilic signaling by reactive persulfides in cardiac cells. Free Radic. Biol. Med. 109, 132–140.10.1016/j.freeradbiomed.2017.01.024Suche in Google Scholar PubMed
O’Connor, C.M., Starling, R.C., Hernandez, A.F., Armstrong, P.W., Dickstein, K., Hasselblad, V., Heizer, G.M., Komajda, M., Massie, B.M., McMurray, J.J., et al. (2011). Effect of nesiritide in patients with acute decompensated heart failure. N. Engl. J. Med. 365, 32–43.10.1056/NEJMoa1100171Suche in Google Scholar PubMed
O’Dell, T.J., Hawkins, R.D., Kandel, E.R., and Arancio, O. (1991). Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc. Natl. Acad. Sci. U.S.A. 88, 11285–11289.10.1073/pnas.88.24.11285Suche in Google Scholar PubMed PubMed Central
Oldenburg, O., Qin, Q., Krieg, T., Yang, X.M., Philipp, S., Critz, S.D., Cohen, M.V., and Downey, J.M. (2004). Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection. Am. J. Physiol. Heart Circ. Physiol. 286, H468–H476.10.1152/ajpheart.00360.2003Suche in Google Scholar
Osborne, K.A., Robichon, A., Burgess, E., Butland, S., Shaw, R.A., Coulthard, A., Pereira, H.S., Greenspan, R.J., and Sokolowski, M.B. (1997). Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila. Science 277, 834–836.10.1126/science.277.5327.834Suche in Google Scholar
Osborne, B.W., Wu, J., McFarland, C.J., Nickl, C.K., Sankaran, B., Casteel, D.E., Woods, V.L., Jr., Kornev, A.P., Taylor, S.S., and Dostmann, W.R. (2011). Crystal structure of cGMP-dependent protein kinase reveals novel site of interchain communication. Structure 19, 1317–1327.10.1016/j.str.2011.06.012Suche in Google Scholar
Oster, H., Werner, C., Magnone, M.C., Mayser, H., Feil, R., Seeliger, M.W., Hofmann, F., and Albrecht, U. (2003). cGMP-dependent protein kinase II modulates mPer1 and mPer2 gene induction and influences phase shifts of the circadian clock. Curr. Biol. 13, 725–733.10.1016/S0960-9822(03)00252-5Suche in Google Scholar
Patrucco, E., Domes, K., Sbroggio, M., Blaich, A., Schlossmann, J., Desch, M., Rybalkin, S.D., Beavo, J.A., Lukowski, R., and Hofmann, F. (2014). Roles of cGMP-dependent protein kinase I (cGKI) and PDE5 in the regulation of Ang II-induced cardiac hypertrophy and fibrosis. Proc. Natl. Acad. Sci. U.S.A. 111, 12925–12929.10.1073/pnas.1414364111Suche in Google Scholar PubMed PubMed Central
Penzo, M., de Las Heras-Duena, L., Mata-Cantero, L., Diaz-Hernandez, B., Vazquez-Muniz, M.J., Ghidelli-Disse, S., Drewes, G., Fernandez-Alvaro, E., and Baker, D.A. (2019). High-throughput screening of the Plasmodium falciparum cGMP-dependent protein kinase identified a thiazole scaffold which kills erythrocytic and sexual stage parasites. Sci. Rep. 9, 7005.10.1038/s41598-019-42801-xSuche in Google Scholar PubMed PubMed Central
Pfeifer, A., Aszodi, A., Seidler, U., Ruth, P., Hofmann, F., and Fassler, R. (1996). Intestinal secretory defects and dwarfism in mice lacking cGMP-dependent protein kinase II. Science 274, 2082–2086.10.1126/science.274.5295.2082Suche in Google Scholar PubMed
Pfeifer, A., Klatt, P., Massberg, S., Ny, L., Sausbier, M., Hirneiss, C., Wang, G.X., Korth, M., Aszodi, A., Andersson, K.E., et al. (1998). Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J. 17, 3045–3051.10.1093/emboj/17.11.3045Suche in Google Scholar PubMed PubMed Central
Polimanti, R., Kaufman, J., Zhao, H., Kranzler, H.R., Ursano, R.J., Kessler, R.C., Gelernter, J., and Stein, M.B. (2018). A genome-wide gene-by-trauma interaction study of alcohol misuse in two independent cohorts identifies PRKG1 as a risk locus. Mol. Psychiatry. 23, 154–160.10.1038/mp.2017.24Suche in Google Scholar PubMed PubMed Central
Potter, L.R. (2011). Guanylyl cyclase structure, function and regulation. Cell Signal. 23, 1921–1926.10.1016/j.cellsig.2011.09.001Suche in Google Scholar PubMed PubMed Central
Potter, L.R. and Garbers, D.L. (1992). Dephosphorylation of the guanylyl cyclase-A receptor causes desensitization. J. Biol. Chem. 267, 14531–14534.10.1016/S0021-9258(18)42069-8Suche in Google Scholar
Potter, L.R. and Hunter, T. (1998). Phosphorylation of the kinase homology domain is essential for activation of the A-type natriuretic peptide receptor. Mol. Cell. Biol. 18, 2164–2172.10.1128/MCB.18.4.2164Suche in Google Scholar PubMed PubMed Central
Potter, L.R., Abbey-Hosch, S., and Dickey, D.M. (2006). Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr. Rev. 27, 47–72.10.1210/er.2005-0014Suche in Google Scholar PubMed
Power, M., Das, S., Schutze, K., Marigo, V., Ekstrom, P., and Paquet-Durand, F. (2019). Cellular mechanisms of hereditary photoreceptor degeneration – focus on cGMP. Prog. Retin. Eye Res. 100772. Doi: 10.1016/j.preteyeres.2019.07.005. [Epub ahead of print]10.1016/j.preteyeres.2019.07.005Suche in Google Scholar PubMed
Prysyazhna, O., Rudyk, O., and Eaton, P. (2012). Single atom substitution in mouse protein kinase G eliminates oxidant sensing to cause hypertension. Nat. Med. 18, 286–290.10.1038/nm.2603Suche in Google Scholar PubMed PubMed Central
Rainer, P.P. and Kass, D.A. (2016). Old dog, new tricks: novel cardiac targets and stress regulation by protein kinase G. Cardiovasc. Res. 111, 154-162.10.1093/cvr/cvw107Suche in Google Scholar PubMed PubMed Central
Rainer, P.P., Hao, S., Vanhoutte, D., Lee, D.I., Koitabashi, N., Molkentin, J.D., and Kass, D.A. (2014). Cardiomyocyte-specific transforming growth factor beta suppression blocks neutrophil infiltration, augments multiple cytoprotective cascades, and reduces early mortality after myocardial infarction. Circ. Res. 114, 1246–1257.10.1161/CIRCRESAHA.114.302653Suche in Google Scholar PubMed PubMed Central
Rappaport, J.A. and Waldman, S.A. (2018). The guanylate cyclase C-cGMP signaling axis opposes intestinal epithelial injury and neoplasia. Front. Oncol. 8, 299.10.3389/fonc.2018.00299Suche in Google Scholar PubMed PubMed Central
Reaume, C.J. and Sokolowski, M.B. (2009). cGMP-dependent protein kinase as a modifier of behaviour. Handb. Exp. Pharmacol. 191, 423–443.10.1007/978-3-540-68964-5_18Suche in Google Scholar PubMed
Redfield, M.M., Chen, H.H., Borlaug, B.A., Semigran, M.J., Lee, K.L., Lewis, G., LeWinter, M.M., Rouleau, J.L., Bull, D.A., Mann, D.L., et al. (2013). Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. J. Am. Med. Assoc. 309, 1268–1277.10.1001/jama.2013.2024Suche in Google Scholar PubMed PubMed Central
Reinke, Y., Gross, S., Eckerle, L.G., Hertrich, I., Busch, M., Busch, R., Riad, A., Rauch, B.H., Stasch, J.P., Dorr, M., et al. (2015). The soluble guanylate cyclase stimulator riociguat and the soluble guanylate cyclase activator cinaciguat exert no direct effects on contractility and relaxation of cardiac myocytes from normal rats. Eur. J. Pharmacol. 767, 1–9.10.1016/j.ejphar.2015.09.022Suche in Google Scholar PubMed
Rosenwasser, A.M. and Turek, F.W. (2015). Neurobiology of circadian rhythm regulation. Sleep Med. Clin. 10, 403–412.10.1016/j.jsmc.2015.08.003Suche in Google Scholar PubMed
Rothstein, R.D. and Friedenberg, F.K. (2013). Linaclotide: a novel compound for the treatment of irritable bowel syndrome with constipation. Expert Opin. Pharmacother. 14, 2125–2132.10.1517/14656566.2013.833605Suche in Google Scholar PubMed
Ruth, P., Pfeifer, A., Kamm, S., Klatt, P., Dostmann, W.R., and Hofmann, F. (1997). Identification of the amino acid sequences responsible for high affinity activation of cGMP kinase Ialpha. J. Biol. Chem. 272, 10522–10528.10.1074/jbc.272.16.10522Suche in Google Scholar PubMed
Rybalkin, S.D., Rybalkina, I.G., Feil, R., Hofmann, F., and Beavo, J.A. (2002). Regulation of cGMP-specific phosphodiesterase (PDE5) phosphorylation in smooth muscle cells. J. Biol. Chem. 277, 3310–3317.10.1074/jbc.M106562200Suche in Google Scholar PubMed
Sanders, K.M. and Ward, S.M. (1992). Nitric-oxide as a mediator of nonadrenergic noncholinergic neurotransmission. Am. J. Physiol. 262, G379–G392.10.1152/ajpgi.1992.262.3.G379Suche in Google Scholar PubMed
Sandner, P. (2018). From molecules to patients: exploring the therapeutic role of soluble guanylate cyclase stimulators. Biol. Chem. 399, 679–690.10.1515/hsz-2018-0155Suche in Google Scholar PubMed
Sandner, P. and Stasch, J.P. (2017). Anti-fibrotic effects of soluble guanylate cyclase stimulators and activators: a review of the preclinical evidence. Respir. Med. 122(Suppl 1), S1–S9.10.1016/j.rmed.2016.08.022Suche in Google Scholar PubMed
Sandner, P., Zimmer, D.P., Milne, G.T., Follmann, M., Hobbs, A., and Stasch, J.-P. (2019). Soluble guanylate cyclase stimulators and activators. Handb Exp Pharmacol. Doi: 10.1007/164_2019_249.10.1007/164_2019_249Suche in Google Scholar PubMed
Sausbier, M., Schubert, R., Voigt, V., Hirneiss, C., Pfeifer, A., Korth, M., Kleppisch, T., Ruth, P., and Hofmann, F. (2000). Mechanisms of NO/cGMP-dependent vasorelaxation. Circ. Res. 87, 825–830.10.1161/01.RES.87.9.825Suche in Google Scholar PubMed
Savarirayan, R., Irving, M., Bacino, C.A., Bostwick, B., Charrow, J., Cormier-Daire, V., Le Quan Sang, K.H., Dickson, P., Harmatz, P., Phillips, J., et al. (2019). C-type natriuretic peptide analogue therapy in children with achondroplasia. N. Engl. J. Med. 381, 25–35.10.1056/NEJMoa1813446Suche in Google Scholar PubMed
Schermuly, R.T., Ghofrani, H.A., Wilkins, M.R., and Grimminger, F. (2011). Mechanisms of disease: pulmonary arterial hypertension. Nat. Rev. Cardiol. 8, 443–455.10.1038/nrcardio.2011.87Suche in Google Scholar PubMed PubMed Central
Schinner, E., Wetzl, V., Schramm, A., Kees, F., Sandner, P., Stasch, J.P., Hofmann, F., and Schlossmann, J. (2017). Inhibition of the TGFbeta signalling pathway by cGMP and cGMP-dependent kinase I in renal fibrosis. FEBS Open Bio. 7, 550–561.10.1002/2211-5463.12202Suche in Google Scholar PubMed PubMed Central
Schlossmann, J., Ammendola, A., Ashman, K., Zong, X., Huber, A., Neubauer, G., Wang, G.X., Allescher, H.D., Korth, M., Wilm, M., et al. (2000). Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta. Nature 404, 197–201.10.1038/35004606Suche in Google Scholar PubMed
Schmidt, H., Werner, M., Heppenstall, P.A., Henning, M., More, M.I., Kuhbandner, S., Lewin, G.R., Hofmann, F., Feil, R., and Rathjen, F.G. (2002). cGMP-mediated signaling via cGKIalpha is required for the guidance and connectivity of sensory axons. J. Cell. Biol. 159, 489–498.10.1083/jcb.200207058Suche in Google Scholar PubMed PubMed Central
Schmidt, H., Stonkute, A., Juttner, R., Koesling, D., Friebe, A., and Rathjen, F.G. (2009). C-type natriuretic peptide (CNP) is a bifurcation factor for sensory neurons. Proc. Natl. Acad. Sci. U.S.A. 106, 16847–16852.10.1073/pnas.0906571106Suche in Google Scholar PubMed PubMed Central
Schmidtko, A., Tegeder, I., and Geisslinger, G. (2009). No NO, no pain? The role of nitric oxide and cGMP in spinal pain processing. Trends Neurosci. 32, 339–346.10.1016/j.tins.2009.01.010Suche in Google Scholar PubMed
Schon, C., Biel, M., and Michalakis, S. (2013). Gene replacement therapy for retinal CNG channelopathies. Mol. Genet. Genomics 288, 459–467.10.1007/s00438-013-0766-4Suche in Google Scholar PubMed
Schramm, A., Schweda, F., Sequeira-Lopez, M.L.S., Hofmann, F., Sandner, P., and Schlossmann, J. (2019). Protein kinase G is involved in acute but not in long-term regulation of renin secretion. Front. Pharmacol. 10, 800.10.3389/fphar.2019.00800Suche in Google Scholar PubMed PubMed Central
Schrammel, A., Behrends, S., Schmidt, K., Koesling, D., and Mayer, B. (1996). Characterization of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one as a heme-site inhibitor of nitric oxide-sensitive guanylyl cyclase. Mol. Pharmacol. 50, 1–5.Suche in Google Scholar
Schulz, S., Wedel, B.J., Matthews, A., and Garbers, D.L. (1998). The cloning and expression of a new guanylyl cyclase orphan receptor. J. Biol. Chem. 273, 1032–1037.10.1074/jbc.273.2.1032Suche in Google Scholar PubMed
Seftel, A.D. (2004). Phosphodiesterase type 5 inhibitor differentiation based on selectivity, pharmacokinetic, and efficacy profiles. Clin. Cardiol. 27, I14–I19.10.1002/clc.4960271305Suche in Google Scholar PubMed PubMed Central
Serulle, Y., Zhang, S., Ninan, I., Puzzo, D., McCarthy, M., Khatri, L., Arancio, O., and Ziff, E.B. (2007). A GluR1-cGKII interaction regulates AMPA receptor trafficking. Neuron 56, 670–688.10.1016/j.neuron.2007.09.016Suche in Google Scholar PubMed PubMed Central
Sheehe, J.L., Bonev, A.D., Schmoker, A.M., Ballif, B.A., Nelson, M.T., Moon, T.M., and Dostmann, W.R. (2018). Oxidation of cysteine 117 stimulates constitutive activation of the type I alpha cGMP-dependent protein kinase. J. Biol. Chem. 293, 16791–16802.10.1074/jbc.RA118.004363Suche in Google Scholar PubMed PubMed Central
Singh, A.K., Spiessberger, B., Zheng, W., Xiao, F., Lukowski, R., Wegener, J.W., Weinmeister, P., Saur, D., Klein, S., Schemann, M., et al. (2012). Neuronal cGMP kinase I is essential for stimulation of duodenal bicarbonate secretion by luminal acid. FASEB J. 26, 1745–1754.10.1096/fj.11-200394Suche in Google Scholar PubMed
Somlyo, A.P. and Somlyo, A.V. (2003). Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325–1358.10.1152/physrev.00023.2003Suche in Google Scholar PubMed
Stasch, J.P., Becker, E.M., Alonso-Alija, C., Apeler, H., Dembowsky, K., Feurer, A., Gerzer, R., Minuth, T., Perzborn, E., Pleiss, U., et al. (2001). NO-independent regulatory site on soluble guanylate cyclase. Nature 410, 212–215.10.1038/35065611Suche in Google Scholar PubMed
Stasch, J.P., Schlossmann, J., and Hocher, B. (2015). Renal effects of soluble guanylate cyclase stimulators and activators: a review of the preclinical evidence. Curr. Opin. Pharmacol. 21, 95–104.10.1016/j.coph.2014.12.014Suche in Google Scholar PubMed
Struk, A.A., Mugon, J., Huston, A., Scholer, A.A., Stadler, G., Higgins, E.T., Sokolowski, M.B., and Danckert, J. (2019). Self-regulation and the foraging gene (PRKG1) in humans. Proc. Natl. Acad. Sci. U.S.A. 116, 4434–4439.10.1073/pnas.1809924116Suche in Google Scholar PubMed PubMed Central
Su, T., Zhang, T., Xie, S., Yan, J., Wu, Y., Li, X., Huang, L., and Luo, H.B. (2016). Discovery of novel PDE9 inhibitors capable of inhibiting Abeta aggregation as potential candidates for the treatment of Alzheimer’s disease. Sci. Rep. 6, 21826.10.1038/srep21826Suche in Google Scholar PubMed PubMed Central
Suda, M., Ogawa, Y., Tanaka, K., Tamura, N., Yasoda, A., Takigawa, T., Uehira, M., Nishimoto, H., Itoh, H., Saito, Y., et al. (1998). Skeletal overgrowth in transgenic mice that overexpress brain natriuretic peptide. Proc. Natl. Acad. Sci. U.S.A. 95, 2337–2342.10.1073/pnas.95.5.2337Suche in Google Scholar PubMed PubMed Central
Surks, H.K., Mochizuki, N., Kasai, Y., Georgescu, S.P., Tang, K.M., Ito, M., Lincoln, T.M., and Mendelsohn, M.E. (1999). Regulation of myosin phosphatase by a specific interaction with cGMP- dependent protein kinase Ialpha. Science 286, 1583–1587.10.1126/science.286.5444.1583Suche in Google Scholar
Takimoto, E. (2012). Cyclic GMP-dependent signaling in cardiac myocytes. Circ. J. 76, 1819–1825.10.1253/circj.CJ-12-0664Suche in Google Scholar
Takimoto, E., Champion, H.C., Li, M., Belardi, D., Ren, S., Rodriguez, E.R., Bedja, D., Gabrielson, K.L., Wang, Y., and Kass, D.A. (2005). Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat. Med. 11, 214–222.10.1038/nm1175Suche in Google Scholar
Tamura, N., Ogawa, Y., Chusho, H., Nakamura, K., Nakao, K., Suda, M., Kasahara, M., Hashimoto, R., Katsuura, G., Mukoyama, M., et al. (2000). Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc. Natl. Acad. Sci. U.S.A. 97, 4239–4244.10.1073/pnas.070371497Suche in Google Scholar
Tang, K.M., Wang, G.R., Lu, P., Karas, R.H., Aronovitz, M., Heximer, S.P., Kaltenbronn, K.M., Blumer, K.J., Siderovski, D.P., Zhu, Y., et al. (2003). Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat. Med. 9, 1506–1512.10.1038/nm958Suche in Google Scholar
Tegeder, I., Del Turco, D., Schmidtko, A., Sausbier, M., Feil, R., Hofmann, F., Deller, T., Ruth, P., and Geisslinger, G. (2004). Reduced inflammatory hyperalgesia with preservation of acute thermal nociception in mice lacking cGMP-dependent protein kinase I. Proc. Natl. Acad. Sci. U.S.A. 101, 3253–3257.10.1073/pnas.0304076101Suche in Google Scholar
Thomas, M.K., Francis, S.H., and Corbin, J.D. (1990). Substrate- and kinase-directed regulation of phosphorylation of a cGMP-binding phosphodiesterase by cGMP. J. Biol. Chem. 265, 14971–14978.10.1016/S0021-9258(18)77211-6Suche in Google Scholar
Thunemann, M., Wen, L., Hillenbrand, M., Vachaviolos, A., Feil, S., Ott, T., Han, X., Fukumura, D., Jain, R.K., Russwurm, M., et al. (2013). Transgenic mice for cGMP imaging. Circ. Res. 113, 365–371.10.1161/CIRCRESAHA.113.301063Suche in Google Scholar PubMed PubMed Central
Tischkau, S.A., Weber, E.T., Abbott, S.M., Mitchell, J.W., and Gillette, M.U. (2003). Circadian clock-controlled regulation of cGMP-protein kinase G in the nocturnal domain. J. Neurosci. 23, 7543–7550.10.1523/JNEUROSCI.23-20-07543.2003Suche in Google Scholar
Turunen, T. and Koskolainen, A. (2019). Determination of basal phosphodiesterase activity in mouse rod photoreceptors with cGMP clamp. Sci. Rep. 9, 1183.10.1038/s41598-018-37661-wSuche in Google Scholar PubMed PubMed Central
Uckert, S. and Oelke, M. (2011). Phosphodiesterase (PDE) inhibitors in the treatment of lower urinary tract dysfunction. Br. J. Clin. Pharmacol. 72, 197–204.10.1111/j.1365-2125.2010.03828.xSuche in Google Scholar PubMed PubMed Central
Vaandrager, A.B., Smolenski, A., Tilly, B.C., Houtsmuller, A.B., Ehlert, E.M., Bot, A.G., Edixhoven, M., Boomaars, W.E., Lohmann, S.M., and de Jonge, H.R. (1998). Membrane targeting of cGMP-dependent protein kinase is required for cystic fibrosis transmembrane conductance regulator Cl- channel activation. Proc. Natl. Acad. Sci. U.S.A. 95, 1466–1471.10.1073/pnas.95.4.1466Suche in Google Scholar PubMed PubMed Central
Vandecasteele, G., Eschenhagen, T., Scholz, H., Stein, B., Verde, I., and Fischmeister, R. (1999). Muscarinic and beta-adrenergic regulation of heart rate, force of contraction and calcium current is preserved in mice lacking endothelial nitric oxide synthase. Nat. Med. 5, 331–334.10.1038/6553Suche in Google Scholar PubMed
von Euler, U. and Liljestrand, G. (1946). Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol. Scand. 12, 301–320.10.1111/j.1748-1716.1946.tb00389.xSuche in Google Scholar
Wagner, C., Pfeifer, A., Ruth, P., Hofmann, F., and Kurtz, A. (1998). Role of cGMP-kinase II in the control of renin secretion and renin expression. J. Clin. Invest. 102, 1576–1582.10.1172/JCI4044Suche in Google Scholar PubMed PubMed Central
Walter, U. and Gambaryan, S. (2009). cGMP and cGMP-dependent protein kinase in platelets and blood cells. Handb. Exp. Pharmacol. 191, 533–548.10.1007/978-3-540-68964-5_23Suche in Google Scholar PubMed
Wang, R., Kwon, I.K., Thangaraju, M., Singh, N., Liu, K., Jay, P., Hofmann, F., Ganapathy, V., and Browning, D.D. (2012). Type 2 cGMP-dependent protein kinase regulates proliferation and differentiation in the colonic mucosa. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G209–219.10.1152/ajpgi.00500.2011Suche in Google Scholar PubMed
Wang, R., Kwon, I.K., Singh, N., Islam, B., Liu, K., Sridhar, S., Hofmann, F., and Browning, D.D. (2014). Type 2 cGMP-dependent protein kinase regulates homeostasis by blocking c-Jun N-terminal kinase in the colon epithelium. Cell Death Differ. 21, 427–437.10.1038/cdd.2013.163Suche in Google Scholar PubMed PubMed Central
Weber, S., Bernhard, D., Lukowski, R., Weinmeister, P., Worner, R., Wegener, J.W., Valtcheva, N., Feil, S., Schlossmann, J., Hofmann, F., et al. (2007). Rescue of cGMP kinase I knockout mice by smooth muscle specific expression of either isozyme. Circ. Res. 101, 1096–1103.10.1161/CIRCRESAHA.107.154351Suche in Google Scholar PubMed
Weber, S., Zeller, M., Guan, K., Wunder, F., Wagner, M., and El-Armouche, A. (2017). PDE2 at the crossway between cAMP and cGMP signalling in the heart. Cell Signal. 38, 76–84.10.1016/j.cellsig.2017.06.020Suche in Google Scholar PubMed
Wedel, B., Humbert, P., Harteneck, C., Foerster, J., Malkewitz, J., Bohme, E., Schultz, G., and Koesling, D. (1994). Mutation of His-105 in the beta 1 subunit yields a nitric oxide-insensitive form of soluble guanylyl cyclase. Proc. Natl. Acad. Sci. U.S.A. 91, 2592–2596.10.1073/pnas.91.7.2592Suche in Google Scholar PubMed PubMed Central
Wegener, J.W., Schulla, V., Koller, A., Klugbauer, N., Feil, R., and Hofmann, F. (2006). Control of intestinal motility by the Ca(v)1.2 L-type calcium channel in mice. FASEB J. 20, 1260–1262.10.1096/fj.05-5292fjeSuche in Google Scholar PubMed
Wei, F., Wang, W., and Liu, Q. (2013). Protein kinases of Toxoplasma gondii: functions and drug targets. Parasitol. Res. 112, 2121–2129.10.1007/s00436-013-3451-ySuche in Google Scholar PubMed
Wen, X.H., Dizhoor, A.M., and Makino, C.L. (2014). Membrane guanylyl cyclase complexes shape the photoresponses of retinal rods and cones. Front. Mol. Neurosci. 7, 45.10.3389/fnmol.2014.00045Suche in Google Scholar PubMed PubMed Central
Wen, L., Feil, S., Wolters, M., Thunemann, M., Regler, F., Schmidt, K., Friebe, A., Olbrich, M., Langer, H., Gawaz, M., et al. (2018). A shear-dependent NO-cGMP-cGKI cascade in platelets acts as an auto-regulatory brake of thrombosis. Nat. Commun. 9, 4301.10.1038/s41467-018-06638-8Suche in Google Scholar PubMed PubMed Central
Wincott, C.M., Abera, S., Vunck, S.A., Tirko, N., Choi, Y., Titcombe, R.F., Antoine, S.O., Tukey, D.S., DeVito, L.M., Hofmann, F., et al. (2014). cGMP-dependent protein kinase type II knockout mice exhibit working memory impairments, decreased repetitive behavior, and increased anxiety-like traits. Neurobiol. Learn. Mem. 114, 32–39.10.1016/j.nlm.2014.04.007Suche in Google Scholar PubMed PubMed Central
Wobst, J., Schunkert, H., and Kessler, T. (2018). Genetic alterations in the NO-cGMP pathway and cardiovascular risk. Nitric Oxide 76, 105–112.10.1016/j.niox.2018.03.019Suche in Google Scholar PubMed
Wu, Y., Cai, Q., Li, W., Cai, Z., Liu, Y., Li, H., Pang, J., and Chen, Y. (2019). Active PKG II inhibited the growth and migration of ovarian cancer cells through blocking Raf/MEK and PI3K/Akt signaling pathways. Biosci. Rep. 39, pii: BSR20190405.10.1042/BSR20190405Suche in Google Scholar PubMed PubMed Central
Yamahara, K., Itoh, H., Chun, T.H., Ogawa, Y., Yamashita, J., Sawada, N., Fukunaga, Y., Sone, M., Yurugi-Kobayashi, T., Miyashita, K., et al. (2003). Significance and therapeutic potential of the natriuretic peptides/cGMP/cGMP-dependent protein kinase pathway in vascular regeneration. Proc. Natl. Acad. Sci. U.S.A. 100, 3404–3409.10.1073/pnas.0538059100Suche in Google Scholar PubMed PubMed Central
Yang, H.M., Jin, S., Jang, H., Kim, J.Y., Lee, J.E., Kim, J., and Kim, H.S. (2019). Sildenafil reduces neointimal hyperplasia after angioplasty and inhibits platelet aggregation via activation of cGMP-dependent protein kinase. Sci Rep. 9, 7769.10.1038/s41598-019-44190-7Suche in Google Scholar PubMed PubMed Central
Yasoda, A. and Nakao, K. (2010). Translational research of C-type natriuretic peptide (CNP) into skeletal dysplasias. Endocr. J. 57, 659–666.10.1507/endocrj.K10E-164Suche in Google Scholar
Zaccolo, M. and Movsesian, M.A. (2007). cAMP and cGMP signaling cross-talk: role of phosphodiesterases and implications for cardiac pathophysiology. Circ. Res. 100, 1569–1578.10.1161/CIRCRESAHA.106.144501Suche in Google Scholar PubMed
Zamanillo, D., Sprengel, R., Hvalby, O., Jensen, V., Burnashev, N., Rozov, A., Kaiser, K.M., Koster, H.J., Borchardt, T., Worley, P., et al. (1999). Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284, 1805–1811.10.1126/science.284.5421.1805Suche in Google Scholar PubMed
Zhang, Y.E. (2009). Non-Smad pathways in TGF-beta signaling. Cell Res. 19, 128–139.10.1038/cr.2008.328Suche in Google Scholar PubMed PubMed Central
Zhang, L., Lukowski, R., Gaertner, F., Lorenz, M., Legate, K.R., Domes, K., Angermeier, E., Hofmann, F., and Massberg, S. (2013). Thrombocytosis as a response to high interleukin-6 levels in cGMP-dependent protein kinase I mutant mice. Arterioscler. Thromb. Vasc. Biol. 33, 1820–1828.10.1161/ATVBAHA.113.301507Suche in Google Scholar PubMed
Zhuo, M., Hu, Y., Schultz, C., Kandel, E.R., and Hawkins, R.D. (1994). Role of guanylyl cyclase and cGMP-dependent protein kinase in long-term potentiation. Nature 368, 635–639.10.1038/368635a0Suche in Google Scholar PubMed
©2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- Aha-type co-chaperones: the alpha or the omega of the Hsp90 ATPase cycle?
- Developments in anticancer vaccination: budding new adjuvants
- The cGMP system: components and function
- Minireview
- Platelets as a ‘natural factory’ for growth factor production that sustains normal (and pathological) cell biology
- Research Articles/Short Communications
- Genes And Nucleic Acids
- Hsa-miR-6165 downregulates insulin-like growth factor-1 receptor (IGF-1R) expression and enhances apoptosis in SW480 cells
- Circular RNA hsa_circ_0001178 facilitates the invasion and metastasis of colorectal cancer through upregulating ZEB1 via sponging multiple miRNAs
- Molecular Medicine
- Aberrant mitochondrial bioenergetics in the cerebral cortex of the Fmr1 knockout mouse model of fragile X syndrome
- Cell Biology and Signaling
- Bone marrow-derived mesenchymal stem cells utilize the notch signaling pathway to induce apoptosis of hepatic stellate cells via NF-κB sensor
- Different signaling and functionality of Rac1 and Rac1b in the progression of lung adenocarcinoma
Artikel in diesem Heft
- Frontmatter
- Reviews
- Aha-type co-chaperones: the alpha or the omega of the Hsp90 ATPase cycle?
- Developments in anticancer vaccination: budding new adjuvants
- The cGMP system: components and function
- Minireview
- Platelets as a ‘natural factory’ for growth factor production that sustains normal (and pathological) cell biology
- Research Articles/Short Communications
- Genes And Nucleic Acids
- Hsa-miR-6165 downregulates insulin-like growth factor-1 receptor (IGF-1R) expression and enhances apoptosis in SW480 cells
- Circular RNA hsa_circ_0001178 facilitates the invasion and metastasis of colorectal cancer through upregulating ZEB1 via sponging multiple miRNAs
- Molecular Medicine
- Aberrant mitochondrial bioenergetics in the cerebral cortex of the Fmr1 knockout mouse model of fragile X syndrome
- Cell Biology and Signaling
- Bone marrow-derived mesenchymal stem cells utilize the notch signaling pathway to induce apoptosis of hepatic stellate cells via NF-κB sensor
- Different signaling and functionality of Rac1 and Rac1b in the progression of lung adenocarcinoma