Startseite Aberrant mitochondrial bioenergetics in the cerebral cortex of the Fmr1 knockout mouse model of fragile X syndrome
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Aberrant mitochondrial bioenergetics in the cerebral cortex of the Fmr1 knockout mouse model of fragile X syndrome

  • Simona D’Antoni , Lidia de Bari , Daniela Valenti , Marina Borro , Carmela Maria Bonaccorso , Maurizio Simmaco , Rosa Anna Vacca EMAIL logo und Maria Vincenza Catania EMAIL logo
Veröffentlicht/Copyright: 8. November 2019

Abstract

Impaired energy metabolism may play a role in the pathogenesis of neurodevelopmental disorders including fragile X syndrome (FXS). We checked brain energy status and some aspects of cell bioenergetics, namely the activity of key glycolytic enzymes, glycerol-3-phosphate shuttle and mitochondrial respiratory chain (MRC) complexes, in the cerebral cortex of the Fmr1 knockout (KO) mouse model of FXS. We found that, despite a hyperactivation of MRC complexes, adenosine triphosphate (ATP) production via mitochondrial oxidative phosphorylation (OXPHOS) is compromised, resulting in brain energy impairment in juvenile and late-adult Fmr1 KO mice. Thus, an altered mitochondrial energy metabolism may contribute to neurological impairment in FXS.

Acknowledgements

This work was supported by CNR, Oasi Research Institute – IRCCS, Troina and TELETHON foundation (GGP07264). We thank Giuseppina Barrancotto (Oasi Research Institute – IRCCS, Troina) and Barbara De Marzo (IBIOM-CNR, Bari) for technical support.

  1. Conflict of interest statement: There are no conflicts of interest to declare.

References

Arrázola, M.S., Andraini, T., Szelechowski, M., Mouledous, L., Arnauné-Pelloquin, L., Davezac, N., Belenguer, P., Rampon, C., and Miquel, M.C. (2018). Mitochondria in developmental and adult neurogenesis. Neurotox. Res. 36, 257–267.10.1007/s12640-018-9942-ySuche in Google Scholar PubMed

Ascano Jr., M., Mukherjee, N., Bandaru, P., Miller, J.B., Nusbaum, J.D., Corcoran, D.L., Langlois, C., Munschauer, M., Dewell, S., Hafner, M., et al. (2012). FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 492, 382–386.10.1038/nature11737Suche in Google Scholar PubMed PubMed Central

Bakker, C.E., Verheij, C., Willemsen, R., der Helm, R., Oerlemans, F., Vermey, M., Bygrave, A., Hoogeveen, A.T., and Ben Oostra, A. (1994). Fmr1 knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian Fragile X Consortium. Cell 78, 23–33.10.1016/0092-8674(94)90569-XSuche in Google Scholar

Bechara, E.G., Didiot, M.C., Melko, M., Davidovic, L., Bensaid, M., Martin, P., Castets, M., Pognonec, P., Khandjian, E.W., Moine, H., et al. (2009). A novel function for fragile X mental retardation protein in translational activation. PLoS Biol. 7, e16.10.1371/journal.pbio.1000016Suche in Google Scholar PubMed PubMed Central

Bélanger, M., Allaman, I., and Magistretti, P.J. (2011). Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 14, 724–738.10.1016/j.cmet.2011.08.016Suche in Google Scholar PubMed

Bell, R.M. and Coleman, R.A. (1980). Enzymes of glycerolipid synthesis in eukaryotes. Annu. Rev. Biochem. 49, 459–487.10.1146/annurev.bi.49.070180.002331Suche in Google Scholar PubMed

Benard, G., Bellance, N., James, D., Parrone, P., Fernandez, H., Letellier, T., and Rossignol, R. (2007). Mitochondrial bioenergetics and structural network organization. J. Cell Sci. 120, 838–848.10.1242/jcs.03381Suche in Google Scholar PubMed

Benard, G., Bellance, N., Jose, C., Melser, S., Nouette-Gaulain, K., and Rossignol, R. (2010). Multi-site control and regulation of mitochondrial energy production. Biochim. Biophys. Acta 1797, 698–709.10.1016/j.bbabio.2010.02.030Suche in Google Scholar PubMed

Bonaccorso, C.M., Spatuzza, M., Di Marco, B., Gloria, A., Barrancotto, G., Cupo, A., Musumeci, S.A., D’Antoni, S., Bardoni, B., Catania, M.V. (2015). Fragile X mental retardation protein (FMRP) interacting proteins exhibit different expression patterns during development. Int. J. Dev. Neurosci. 42, 15–23.10.1016/j.ijdevneu.2015.02.004Suche in Google Scholar PubMed

Castagnola, S., Delhaye, S., Folci, A., Paquet, A., Brau, F., Duprat, F., Jarjat, M., Grossi, M., Béal, M., Martin, S., et al. (2018). New insights into the role of Cav2 protein family in calcium flux deregulation in Fmr1-KO neurons. Front Mol. Neurosci. 11, 342.10.3389/fnmol.2018.00342Suche in Google Scholar PubMed PubMed Central

Castora, F.J. (2018). Mitochondrial function and abnormalities implicated in the pathogenesis of ASD. Prog. Neuropsychopharmacol. Biol. Psychiatry. 92, 83–108.10.1016/j.pnpbp.2018.12.015Suche in Google Scholar PubMed

Chowdhury, S.K., Gemin, A., and Singh, G. (2005). High activity of mitochondrial glycerophosphate dehydrogenase and glycerophosphate-dependent ROS production in prostate cancer cell lines. Biochem. Biophys. Res. Commun. 333, 1139–1145.10.1016/j.bbrc.2005.06.017Suche in Google Scholar PubMed

Comery, T.A., Harris, J.B., Willems, P.J., Oostra, B.A., Irwin, S.A., Weiler, I.J., and Greenough, W.T. (1997). Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc. Natl. Acad. Sci. U.S.A. 94, 5401–5404.10.1073/pnas.94.10.5401Suche in Google Scholar PubMed PubMed Central

Cui, H., Kong, Y., and Zhang, H. (2012). Oxidative stress, mitochondrial dysfunction, and aging. J. Signal Transduct. 2012, 646354.10.1155/2012/646354Suche in Google Scholar PubMed PubMed Central

Darnell, J.C., Van Driesche, S.J., Zhang, C., Hung, K.Y., Mele, A., Fraser, C.E., Stone, E.F., Chen, C., Fak, J.J., Chi, S.W., et al. (2011). FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261.10.1016/j.cell.2011.06.013Suche in Google Scholar PubMed PubMed Central

Davidovic, L., Navratil, V., Bonaccorso, C.M., Catania, M.V., Bardoni, B., and Dumas, M.E. (2011). A metabolomic and systems biology perspective on the brain of the fragile X syndrome mouse model. Genome Res. 21, 2190–2202.10.1101/gr.116764.110Suche in Google Scholar PubMed PubMed Central

de Bari, L., Atlante, A., Armeni, T., and Kalapos, M.P. (2019). Synthesis and metabolism of methylglyoxal, S-D-lactoylglutathione and D-lactate in cancer and Alzheimer’s disease. Exploring the crossroad of eternal youth and premature aging. Ageing Res. 53, 100915.10.1016/j.arr.2019.100915Suche in Google Scholar

de Diego-Otero, Y., Romero-Zerbo, Y., El Bekay, R., Decara, J., Sanchez, L., Rodriguez-de-Fonseca, F., and Del Arco-Herrera, I. (2009). Alpha-tocopherol protect against oxidative stress in the fragile X knockout mouse: an experimental therapeutic approach for the Fmr1 deficiency. Neuropsycopharmacology 34, 1011–1026.10.1038/npp.2008.152Suche in Google Scholar PubMed

De Felipe, J., Marco, P., Fairén, A., and Jones, E.G. (1997). Inhibitory synaptogenesis in mouse somatosensory cortex. Cereb. Cortex 7, 619–634.10.1093/cercor/7.7.619Suche in Google Scholar PubMed

De Filippis, B., Valenti, D., de Bari, L., De Rasmo, D., Musto, M., Fabbri, A., Ricceri, L., Fiorentini, C., Laviola, G., and Vacca, R.A. (2015). Mitochondrial free radical overproduction due to respiratory chain impairment in the brain of a mouse model of Rett syndrome: protective effect of CNF1. Free Radic. Biol. Med. 83, 167–177.10.1016/j.freeradbiomed.2015.02.014Suche in Google Scholar PubMed

Dockendorff, T.C. and Labrador, M. (2019). The fragile X protein and genome function. Mol. Neurobiol. 56, 711–721.10.1007/s12035-018-1122-9Suche in Google Scholar PubMed

El Bekay, R., Romero-Zerbo, Y., Decara, J., Sanchez-Salido, L., Del Arco-Herrera, I., Rodríguez-de Fonseca, F., and de Diego-Otero, Y. (2007). Enhanced markers of oxidative stress, altered antioxidants and NADPH-oxidase activation in brains from Fragile X mental retardation 1-deficient mice, a pathological model for Fragile X syndrome. Eur. J. Neurosci. 26, 3169–3180.10.1111/j.1460-9568.2007.05939.xSuche in Google Scholar PubMed

Ferron, L. (2016). Fragile X mental retardation protein controls ion channel expression and activity. J. Physiol. 594, 5861–5867.10.1113/JP270675Suche in Google Scholar PubMed PubMed Central

Gholizadeh, S., Halder, S.K., and Hampson, D.R. (2015). Expression of fragile X mental retardation protein in neurons and glia of the developing and adult mouse brain. Brain Res. 1596, 22–30.10.1016/j.brainres.2014.11.023Suche in Google Scholar PubMed

Griffiths, K.K. and Levy, R.J. (2017). Evidence of mitochondrial dysfunction in autism: biochemical links, genetic-based associations, and non-energy-related mechanisms. Oxid. Med. Cell. Longev. 2017, 4314025.10.1155/2017/4314025Suche in Google Scholar PubMed PubMed Central

Grilli, M., Summa, M., Salamone, A., Olivero, G., Zappettini, S., Di Prisco, S., Feligioni, M., Usai, C., Pittaluga, A., and Marchi, M. (2012). In vitro exposure to nicotine induces endocytosis of presynaptic AMPA receptors modulating dopamine release in rat nucleus accumbens nerve terminals. Neuropharmacol. 63, 916–926.10.1016/j.neuropharm.2012.06.049Suche in Google Scholar PubMed

Hagerman, R.J., Berry-Kravis, E., Hazlett, H.C., Bailey Jr, D.B., Moine, H., Kooy, R.F., Tassone, F., Gantois, I., Sonenberg, N., Mandel, J.L., et al. (2017). Fragile X syndrome. Nat. Rev. Dis. Primers 3, 17065.10.1038/nrdp.2017.65Suche in Google Scholar PubMed

Hroudová, J. and Fišar, Z. (2013). Control mechanisms in mitochondrial oxidative phosphorylation. Neural Regen Res. 8, 363–375.Suche in Google Scholar

Huber, K.M., Gallagher, S.M., Warren, S.T., and Bear, M.F. (2002). Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc. Natl. Acad. Sci. U.S.A. 99, 7746–7750.10.1073/pnas.122205699Suche in Google Scholar PubMed PubMed Central

Khalfallah, O., Jarjat, M., Davidovic, L., Nottet, N., Cestèle, S., Mantegazza, M., and Bardoni, B. (2017). Depletion of the fragile X mental retardation protein in embryonic stem cells alters the kinetics of neurogenesis. Stem Cells 35, 374–385.10.1002/stem.2505Suche in Google Scholar PubMed

Manente, A.G., Valenti, D., Pinton, G., Jithesh, P.V., Daga, A., Rossi, L., Gray, S.G., O’Byrne, K.J., Fennell, D.A., Vacca, R.A., et al. (2013). Estrogen receptor β activation impairs mitochondrial oxidative metabolism and affects malignant mesothelioma cell growth in vitro and in vivo. Oncogenesis 2, e72.10.1038/oncsis.2013.32Suche in Google Scholar PubMed PubMed Central

Maurin, T., Zongaro, S., and Bardoni, B. (2014). Fragile X Syndrome: from molecular pathology to therapy. Neurosci. Biobehav. Rev. 46, 242–255.10.1016/j.neubiorev.2014.01.006Suche in Google Scholar PubMed

Maurin, T., Lebrigand, K., Castagnola, S., Paquet, A., Jarjat, M., Popa, A., Grossi, M., Rage, F., and Bardoni, B. (2018). HITS-CLIP in various brain areas reveals new targets and new modalities of RNA binding by fragile X mental retardation protein. Nucleic Acids Res. 46, 6344–6355.10.1093/nar/gky267Suche in Google Scholar PubMed PubMed Central

Mrácek, T., Pecinová, A., Vrbacký, M., Drahota, Z., and Houstek, J. (2009). High efficiency of ROS production by glycerophosphate dehydrogenase in mammalian mitochondria. Arch. Biochem. Biophys. 481, 30–36.10.1016/j.abb.2008.10.011Suche in Google Scholar

Mráček, T., Drahota, Z., and Houštěk, J. (2013). The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochim. Biophys. Acta. 1827, 401–410.10.1016/j.bbabio.2012.11.014Suche in Google Scholar

Musumeci, S.A., Bosco, P., Calabrese, G., Bakker, C., De Sarro, G.B., Elia, M., Ferri, R., and Oostra, B.A. (2000). Audiogenic seizures susceptibility in transgenic mice with fragile X syndrome. Epilepsia 41, 19–23.10.1111/j.1528-1157.2000.tb01499.xSuche in Google Scholar

Orlando, R., Borro, M., Motolese, M., Molinaro, G., Scaccianoce, S., Caruso, A., di Nuzzo, L., Caraci, F., Matrisciano, F., Pittaluga, A., et al. (2014). Levels of the Rab GDP dissociation inhibitor (GDI) are altered in the prenatal restrain stress mouse model of schizophrenia and are differentially regulated by the mGlu2/3 receptor agonists, LY379268 and LY354740. Neuropharmacology 86, 133–144.10.1016/j.neuropharm.2014.07.009Suche in Google Scholar

Pieretti, M., Zhang, F., Fu, Y.H., Warren, S.T., Oostra, B.A., Caskey, C.T., and Nelson, D.L. (1991). Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66, 817–822.10.1016/0092-8674(91)90125-ISuche in Google Scholar

Qin, M., Kang, J., and Smith, C.B. (2002). Increased rates of cerebral glucose metabolism in a mouse model of fragile X mental retardation. Proc. Natl. Acad. Sci. U.S.A. 99, 15758–15763.10.1073/pnas.242377399Suche in Google Scholar PubMed PubMed Central

Richter, J.D. and Coller, J. (2015). Pausing on polyribosomes: make way for elongation in translational control. Cell 163, 292–300.10.1016/j.cell.2015.09.041Suche in Google Scholar PubMed PubMed Central

Rose, S., Bennuri, S.C., Wynne, R., Melnyk, S., James, S.J., and Frye, R.E. (2017). Mitochondrial and redox abnormalities in autism lymphoblastoid cells: a sibling control study. FASEB J. 31, 904–909.10.1096/fj.201601004RSuche in Google Scholar PubMed PubMed Central

Santos, A.R., Kanellopoulos, A.K., and Bagni, C. (2014). Learning and behavioral deficits associated with the absence of the fragile X mental retardation protein: what a fly and mouse model can teach us. Learn Mem. 21, 543–555.10.1101/lm.035956.114Suche in Google Scholar PubMed PubMed Central

Shen, M., Wang, F., Li, M., Sah, N., Stockton, M.E., Tidei, J.J., Gao, Y., Korabelnikov, T., Kannan, S., Vevea, J.D., et al. (2019). Reduced mitochondrial fusion and Huntingtin levels contribute to impaired dendritic maturation and behavioral deficits in Fmr1-mutant mice. Nat. Neurosci. 2, 386–400.10.1038/s41593-019-0338-ySuche in Google Scholar PubMed PubMed Central

Shul, J.A. and Warren, S.T. (2015). Single-nucleotide mutations in FMR1 reveal novel functions and regulatory mechanisms of the fragile X syndrome protein FMRP. J. Exp. Neurosci. 9(Suppl. 2), 35–41.10.4137/JEN.S25524Suche in Google Scholar

Tabet, R., Moutin, E., Becker, J.A., Heintz, D., Fouillen, L., Flatter, E., Krężel, W., Alunni, V., Koebel, P., Dembélé, D., et al. (2016). Fragile X Mental Retardation Protein (FMRP) controls diacylglycerol kinase activity in neurons. Proc. Natl. Acad. Sci. U.S.A. 113, E3619–E3628.10.1073/pnas.1522631113Suche in Google Scholar PubMed PubMed Central

Tang, B., Wang, T., Wan, H., Han, L., Qin, X., Zhang, Y., Wang, J., Yu, C., Berton, F., Francesconi, W., et al. (2015). Fmr1 deficiency promotes age-dependent alterations in the cortical synaptic proteome. Proc. Natl. Acad. Sci. U.S.A. 112, 4697–4706.10.1073/pnas.1502258112Suche in Google Scholar PubMed PubMed Central

Till, S.M. (2010). The developmental roles of FMRP. Biochem. Soc. Trans. 38, 507–510.10.1042/BST0380507Suche in Google Scholar PubMed

Vacca, R.A., Bawari, S., Valenti, D., Tewari, D., Nabavi, S.F., Shirooie, S., Sah, A.N., Volpicella, M., Braidy, N., Nabavi, S.M. (2019). Down syndrome: neurobiological alterations and therapeutic targets. Neurosci. Biobehav. Rev. 98, 234–255.10.1016/j.neubiorev.2019.01.001Suche in Google Scholar PubMed

Valenti, D., de Bari, L., De Filippis, B., Henrion-Caude, A., and Vacca, R.A. (2014a). Mitochondrial dysfunction as a central actor in intellectual disability-related diseases: an overview of Down syndrome, autism, Fragile X and Rett syndrome. Neurosci. Biobehav. Rev. 46, 202–217.10.1016/j.neubiorev.2014.01.012Suche in Google Scholar PubMed

Valenti, D., de Bari, L., De Filippis, B., Ricceri, L., and Vacca, R.A. (2014b). Preservation of mitochondrial functional integrity in mitochondria isolated from small cryopreserved mouse brain areas. Anal. Biochem. 444, 25–31.10.1016/j.ab.2013.08.030Suche in Google Scholar PubMed

Valenti, D., Vacca, R.A., and de Bari, L. (2015). 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system. J. Bioenerg. Biomembr. 47, 493–506.10.1007/s10863-015-9631-ySuche in Google Scholar PubMed

Valenti, D., Rossi, L., Marzulli, D., Bellomo, F., De Rasmo, D., Signorile, A., and Vacca, R.A. (2017). Inhibition of Drp1-mediated mitochondrial fission improves mitochondrial dynamics and bioenergetics stimulating neurogenesis in hippocampal progenitor cells from a Down syndrome mouse model. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 3117–3127.10.1016/j.bbadis.2017.09.014Suche in Google Scholar PubMed

Weisz, E.D., Towheed, A., Monyak, R.E., Toth, M.S., Wallace, D.C., and Jongens, T.A. (2018). Loss of Drosophila FMRP leads to alterations in energy metabolism and mitochondrial function. Hum. Mol. Genet. 27, 95–106.10.1093/hmg/ddx387Suche in Google Scholar PubMed PubMed Central

Yin, F., Boveris, A., and Cadenas, E. (2014). Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid. Redox Signal. 20, 353–371.10.1089/ars.2012.4774Suche in Google Scholar PubMed PubMed Central

Received: 2019-04-12
Accepted: 2019-10-14
Published Online: 2019-11-08
Published in Print: 2020-03-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2019-0221/html
Button zum nach oben scrollen