Startseite Lebenswissenschaften Redefining proteostasis transcription factors in organismal stress responses, development, metabolism, and health
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Redefining proteostasis transcription factors in organismal stress responses, development, metabolism, and health

  • Laura M. Jones , Yannic Chen und Patricija van Oosten-Hawle ORCID logo EMAIL logo
Veröffentlicht/Copyright: 9. April 2020

Abstract

Eukaryotic organisms have evolved complex and robust cellular stress response pathways to ensure maintenance of proteostasis and survival during fluctuating environmental conditions. Highly conserved stress response pathways can be triggered and coordinated at the cell-autonomous and cell-nonautonomous level by proteostasis transcription factors, including HSF1, SKN-1/NRF2, HIF1, and DAF-16/FOXO that combat proteotoxic stress caused by environmental challenges. While these transcription factors are often associated with a specific stress condition, they also direct “noncanonical” transcriptional programs that serve to integrate a multitude of physiological responses required for development, metabolism, and defense responses to pathogen infections. In this review, we outline the established function of these key proteostasis transcription factors at the cell-autonomous and cell-nonautonomous level and discuss a newly emerging stress responsive transcription factor, PQM-1, within the proteostasis network. We look beyond the canonical stress response roles of proteostasis transcription factors and highlight their function in integrating different physiological stimuli to maintain cytosolic organismal proteostasis.

Award Identifier / Grant number: NC/P001203/1

Funding statement: National Centre for the Replacement Refinement and Reduction of Animals in Research, Funder Id: http://dx.doi.org/10.13039/501100010757, NC3Rs Grant number: NC/P001203/1.

References

Accili, D. and Arden, K.C. (2004). FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421–426.10.1016/S0092-8674(04)00452-0Suche in Google Scholar

Ahn, S.G. and Thiele, D.J. (2003). Redox regulation of mammalian heat shock factor 1 is essential for HSP gene activation and protection from stress. Genes Dev. 17, 516–528.10.1101/gad.1044503Suche in Google Scholar PubMed PubMed Central

Akerfelt, M., Morimoto, R.I., and Sistonen, L. (2010). Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 11, 545–555.10.1038/nrm2938Suche in Google Scholar PubMed PubMed Central

Alic, N., Tullet, J.M., Niccoli, T., Broughton, S., Hoddinott, M.P., Slack, C., Gems, D., and Partridge, L. (2014). Cell-nonautonomous effects of dFOXO/DAF-16 in aging. Cell Rep. 6, 608–616.10.1016/j.celrep.2014.01.015Suche in Google Scholar PubMed PubMed Central

An, J.H. and Blackwell, T.K. (2003). SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev. 17, 1882–1893.10.1101/gad.1107803Suche in Google Scholar PubMed PubMed Central

Anckar, J. and Sistonen, L. (2011). Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu. Rev. Biochem. 80, 1089–1115.10.1146/annurev-biochem-060809-095203Suche in Google Scholar PubMed

Apfeld, J., O’Connor, G., McDonagh, T., DiStefano, P.S., and Curtis, R. (2004). The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev. 18, 3004–3009.10.1101/gad.1255404Suche in Google Scholar PubMed PubMed Central

Barna, J., Princz, A., Kosztelnik, M., Hargitai, B., Takacs-Vellai, K., and Vellai, T. (2012). Heat shock factor-1 intertwines insulin/IGF-1, TGF-β and cGMP signaling to control development and aging. BMC Dev. Biol. 12, 32.10.1186/1471-213X-12-32Suche in Google Scholar PubMed PubMed Central

Barna, J., Csermely, P., and Vellai, T. (2018). Roles of heat shock factor 1 beyond the heat shock response. Cell Mol. Life Sci. 75, 2897–2916.10.1007/s00018-018-2836-6Suche in Google Scholar PubMed

Blackwell, T.K., Steinbaugh, M.J., Hourihan, J.M., Ewald, C.Y., and Isik, M. (2015). SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radic. Biol. Med. 88, 290–301.10.1016/j.freeradbiomed.2015.06.008Suche in Google Scholar PubMed PubMed Central

Boulias, K. and Horvitz, H.R. (2012). The C. elegans microRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/FOXO. Cell Metab. 15, 439–450.10.1016/j.cmet.2012.02.014Suche in Google Scholar

Bowerman, B., Eaton, B.A., and Priess, J.R. (1992). skn-1, a maternally expressed gene required to specify the fate of ventral blastomeres in the early C. elegans embryo. Cell 68, 1061–1075.10.1016/0092-8674(92)90078-QSuche in Google Scholar

Bruick, R.K. and McKnight, S.L. (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337–1340.10.1126/science.1066373Suche in Google Scholar PubMed

Brunquell, J., Morris, S., Lu, Y., Cheng, F., and Westerheide, S.D. (2016). The genome-wide role of HSF-1 in the regulation of gene expression in Caenorhabditis elegans. BMC Genomics 17, 559.10.1186/s12864-016-2837-5Suche in Google Scholar PubMed PubMed Central

Chavez, V., Mohri-Shiomi, A., Maadani, A., Vega, L.A., and Garsin, D.A. (2007). Oxidative stress enzymes are required for DAF-16–mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans. Genetics 176, 1567–1577.10.1534/genetics.107.072587Suche in Google Scholar PubMed PubMed Central

Chiang, W.C., Ching, T.T., Lee, H.C., Mousigian, C., and Hsu, A.L. (2012). HSF-1 regulators DDL-1/2 link insulin-like signaling to heat-shock responses and modulation of longevity. Cell 148, 322–334.10.1016/j.cell.2011.12.019Suche in Google Scholar PubMed PubMed Central

Chou, S.D., Prince, T., Gong, J.L., and Calderwood, S.K. (2012). mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PLoS One 7, e39679.10.1371/journal.pone.0039679Suche in Google Scholar PubMed PubMed Central

Ciocca, D.R., Frayssinet, P., and Cuello-Carrión, F.D. (2007). A pilot study with a therapeutic vaccine based on hydroxyapatite ceramic particles and self-antigens in cancer patients. Cell Stress Chaperones, 12, 33–43.10.1379/CSC-218R.1Suche in Google Scholar PubMed PubMed Central

Dowen, R.H. (2019). CEH-60/PBX and UNC-62/MEIS coordinate a metabolic switch that supports reproduction in C. elegans. Dev. Cell 49, 235–250.10.1016/j.devcel.2019.03.002Suche in Google Scholar PubMed

Dowen, R.H., Breen, P.C., Tullius, T., Conery, A.L., and Ruvkun, G. (2016). A microRNA program in the C. elegans hypodermis couples to intestinal mTORC2/PQM-1 signaling to modulate fat transport. Genes Dev. 30, 1515–1528.10.1101/gad.283895.116Suche in Google Scholar PubMed PubMed Central

Engelmann, I., Griffon, A., Tichit, L., Montanana-Sanchis, F., Wang, G.L., Reinke, V., Waterston, R.H., Hillier, L.W., and Ewbank, J.J. (2011). A comprehensive analysis of gene expression changes provoked by bacterial and fungal infection in C. elegans. PLoS One 6, e19055.10.1371/journal.pone.0019055Suche in Google Scholar

Fawcett, T.W., Sylvester, S.L., Sarge, K.D., Morimoto, R.I., and Holbrook, N.J. (1994). Effects of neurohormonal stress and aging on the activation of mammalian heat-shock factor-1. J. Biol. Chem. 269, 32272–32278.10.1016/S0021-9258(18)31631-4Suche in Google Scholar

Feder, M.E., Cartaño, N.V., Milos, L., Krebs, R.A., Lindquist, S.L. (1996). Effect of engineering HSP70 copy number on HSP70 expression and tolerance of relevant heat shock in larvae and pupae of Drosophila melanogaster. J. Exp. Biol. 199, 1837–1844.10.1242/jeb.199.8.1837Suche in Google Scholar PubMed

Fernandes, M., O’Brien, T., and Lis, J.T. (1994). Structure and regulation of heat shock gene promoters. In: The Biology of Heat Shock Proteins and Molecular Chaperones, R.I. Morimoto, A. Tissieres, and C. Georgopolis, eds. (Harbor, NY, USA: Cold Spring Harbor Laboratory Press, Cold Spring), pp. 375–393.Suche in Google Scholar

Fontana, L., Partridge, L., and Longo, V.D. (2010). Extending healthy life span – from yeast to humans. Science 328, 321–326.10.1126/science.1172539Suche in Google Scholar PubMed PubMed Central

Friling, R.S., Bensimon, A., Tichauer, Y., and Daniel, V. (1990). Xenobiotic-inducible expression of murine glutathione-S-transferase Ya-subunit gene is controlled by an electrophile-responsive element. Proc. Natl. Acad. Sci. USA 87, 6258–6262.10.1073/pnas.87.16.6258Suche in Google Scholar PubMed PubMed Central

Furuhashi, T. and Sakamoto, K. (2014). FoxO/Daf-16 restored thrashing movement reduced by heat stress in Caenorhabditis elegans. Comp. Biochem. Phys. B 170, 26–32.10.1016/j.cbpb.2014.01.004Suche in Google Scholar PubMed

Fuse, Y. and Kobayashi, M. (2017). Conservation of the Keap1-Nrf2 system: an evolutionary journey through stressful space and time. Molecules 22, E436.10.3390/molecules22030436Suche in Google Scholar PubMed PubMed Central

Gardner, B.M., Pincus, D., Gotthardt, K., Gallagher, C.M., and Walter, P. (2013). Endoplasmic reticulum stress sensing in the unfolded protein response. CSH Perspect. Biol. 5, a013169.10.1101/cshperspect.a013169Suche in Google Scholar PubMed PubMed Central

Garsin, D.A., Villanueva, J.M., Begun, J., Kim, D.H., Sifri, C.D., Calderwood, S.B., Ruvkun, G., and Ausubel, F.M. (2003). Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 300, 1921–1921.10.1126/science.1080147Suche in Google Scholar PubMed

Goh, G.Y.S., Martelli, K.L., Parhar, K.S., Kwong, A.W.L., Wong, M.A., Mah, A., Hou, N.S., and Taubert, S. (2014). The conserved mediator subunit MDT-15 is required for oxidative stress responses in Caenorhabditis elegans. Aging Cell 13, 70–79.10.1111/acel.12154Suche in Google Scholar PubMed PubMed Central

Gonzalez, F.J., Xie, C., and Jiang, C.T. (2018). The role of hypoxia-inducible factors in metabolic diseases. Nat. Rev. Endocrinol. 15, 21–32.10.1038/s41574-018-0096-zSuche in Google Scholar PubMed PubMed Central

Greer, E.L., Dowlatshahi, D., Banko, M.R., Villen, J., Hoang, K., Blanchard, D., Gygi, S.P., and Brunet, A. (2007). An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr. Biol. 17, 1646–1656.10.1016/j.cub.2007.08.047Suche in Google Scholar PubMed PubMed Central

Hayashi, A., Suzuki, H., Itoh, K., Yamamoto, M., and Sugiyama, Y. (2003). Transcription factor Nrf2 is required for the constitutive and inducible expression of multidrug resistance–associated protein 1 in mouse embryo fibroblasts. Biochem. Biophys. Res. Commun. 310, 824–829.10.1016/j.bbrc.2003.09.086Suche in Google Scholar PubMed

Hayes, J.D. and Dinkova-Kostova, A.T. (2014). The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 39, 199–218.10.1016/j.tibs.2014.02.002Suche in Google Scholar PubMed

Hipp, M.S., Kasturi, P., and Hartl, F.U. (2019). The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell. Biol. 20, 421–435.10.1038/s41580-019-0101-ySuche in Google Scholar PubMed

Honda, Y. and Honda, S. (1999). The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J. 13, 1385–1393.10.1096/fasebj.13.11.1385Suche in Google Scholar

Hotchkiss, R., Nunnally, I., Lindquist, S., Taulien, J., Perdrizet, G., and Karl, I. (1993). Hyperthermia protects mice against the lethal effects of endotoxin. Am. J. Physiol. 265, R1447–R1457.10.1152/ajpregu.1993.265.6.R1447Suche in Google Scholar PubMed

Hsu, A.L., Murphy, C.T., and Kenyon, C. (2003). Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300, 1142–1145.10.1126/science.1083701Suche in Google Scholar PubMed

Huang, L.E., Gu, J., Schau, M., and Bunn, H.F. (1998). Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA 95, 7987–7992.10.1073/pnas.95.14.7987Suche in Google Scholar PubMed PubMed Central

Hwangbo, D.S., Gersham, B., Tu, M.P., Palmer, M., and Tatar, M. (2004). Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429, 562–566.10.1038/nature02549Suche in Google Scholar PubMed

Iser, W.B., Wilson, M.A., Wood, W.H., Becker, K., and Wolkow, C.A. (2011). Co-regulation of the DAF-16 target gene, cyp-35B1/dod-13, by HSF-1 in C. elegans dauer larvae and daf-2 insulin pathway mutants. PLoS One 6, e17369.10.1371/journal.pone.0017369Suche in Google Scholar

Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., et al. (1997). An Nrf2 small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313–322.10.1006/bbrc.1997.6943Suche in Google Scholar

Jeong, H.J., Chung, H.S., Lee, B.R., Kim, S.J., Yoo, S.J., Hong, S.H., and Kim, H.M. (2003). Expression of proinflammatory cytokines via HIF-1 alpha and NF-kappa B activation on desferrioxamine-stimulated HMC-1 cells. Biochem. Biophys. Res. Commun. 306, 805–811.10.1016/S0006-291X(03)01073-8Suche in Google Scholar

Jones, D. and Candido, E.P.M. (1999). Feeding is inhibited by sublethal concentrations of toxicants and by heat stress in the nematode Caenorhabditis elegans: relationship to the cellular stress response. J. Exp. Zool. 284, 147–157.10.1002/(SICI)1097-010X(19990701)284:2<147::AID-JEZ4>3.0.CO;2-ZSuche in Google Scholar

Kaplan, R.E.W., Maxwell, C.S., Codd, N.K., and Baugh, L.R. (2019). Pervasive positive and negative feedback regulation of insulin-like signaling in Caenorhabditis elegans. Genetics 211, 349–361.10.1534/genetics.118.301702Suche in Google Scholar

Kenyon, C.J. (2010). The genetics of ageing. Nature 464, 504–512.10.1038/nature08980Suche in Google Scholar

Kim, S. and Sieburth, D. (2018). Sphingosine kinase regulates neuropeptide secretion during the oxidative stress-response through intertissue signaling. J. Neurosci. 38, 8160–8176.10.1523/JNEUROSCI.0536-18.2018Suche in Google Scholar

King, C.D., Singh, D., Holden, K., Govan, A.B., Keith, S.A., Ghazi, A., and Robinson, R.A.S. (2018). Proteomic identification of virulence-related factors in young and aging C. elegans infected with Pseudomonas aeruginosa. J. Proteomics. 181, 92–103.10.1016/j.jprot.2018.04.006Suche in Google Scholar

Komatsu, M., Kurokawa, H., Waguri, S., Taguchi, K., Kobayashi, A., Ichimura, Y., Sou, Y.S., Ueno, I., Sakamoto, A., Tong, K.I., et al. (2010). The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213–U217.10.1038/ncb2021Suche in Google Scholar

Kumar, M. and Mitra, D. (2005). Heat shock protein 40 is necessary for human immunodeficiency virus-1 Nef-mediated enhancement of viral gene expression and replication. J. Biol. Chem. 280, 40041–40050.10.1074/jbc.M508904200Suche in Google Scholar

Kumsta, C., Chang, J.T., Schmalz, J., and Hansen, M. (2017). Hormetic heat stress and HSF-1 induce autophagy to improve survival and proteostasis in C. elegans. Nat. Commun. 8, 14337.10.1038/ncomms14337Suche in Google Scholar

Kwak, M.K., Wakabayashi, N., Greenlaw, J.L., Yamamoto, M., and Kensler, T.W. (2003a). Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol. Cell Biol. 23, 8786–8794.10.1128/MCB.23.23.8786-8794.2003Suche in Google Scholar

Kwak, M.K., Wakabayashi, N., Itoh, K., Motohashi, H., Yamamoto, M., and Kensler, T.W. (2003b). Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway – identification of novel gene clusters for cell survival. J. Biol. Chem. 278, 8135–8145.10.1074/jbc.M211898200Suche in Google Scholar

Labbadia, J. and Morimoto, R.I. (2015a). The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84, 435–464.10.1146/annurev-biochem-060614-033955Suche in Google Scholar

Labbadia, J. and Morimoto, R.I. (2015b). Repression of the heat shock response is a programmed event at the onset of reproduction. Mol. Cell 59, 639–650.10.1016/j.molcel.2015.06.027Suche in Google Scholar

Le Masson, F., Razak, Z., Kaigo, M., Audouard, C., Charry, C., Cooke, H., Westwood, J.T., Christians, E.S. (2011). Identification of heat shock factor 1 molecular and cellular targets during embryonic and adult female meiosis. Mol. Cell Biol. 31, 3410–3423.10.1128/MCB.05237-11Suche in Google Scholar

Leiser, S.F., Miller, H., Rossner, R., Fletcher, M., Leonard, A., Primitivo, M., Rintala, N., Fresnida, J.R., Ramos, F.J., Miller, D.L., et al. (2015). Cell non-autonomous activation of flavin-containing monooxygenase promotes longevity and healthspan. Science 350, 1375–1378.10.1126/science.aac9257Suche in Google Scholar

Li, J., Chauve, L., Phelps, G., Brielmann, R.M., and Morimoto, R.I. (2016). E2F coregulates an essential HSF developmental program that is distinct from the heat-shock response. Genes Dev. 30, 2062–2075.10.1101/gad.283317.116Suche in Google Scholar

Li, J., Labbadia, J., and Morimoto, R.I. (2017). Rethinking HSF1 in stress, development, and organismal health. Trends Cell Biol. 27, 895–905.10.1016/j.tcb.2017.08.002Suche in Google Scholar

Libina, N., Berman, J.R., and Kenyon, C. (2003). Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115, 489–502.10.1016/S0092-8674(03)00889-4Suche in Google Scholar

Lin, X.X., Sen, I., Janssens, G.E., Zhou, X., Fonslow, B.R., Edgar, D., Stroustrup, N., Swoboda, P., Yates, I.I.I., Ruvkun, G., et al. (2018). DAF-16/FOXO and HLH-30/TFEB function as combinatorial transcription factors to promote stress resistance and longevity. Nat. Commun. 9, 4400.10.1038/s41467-018-06624-0Suche in Google Scholar PubMed PubMed Central

Lindquist, S. (1986). The heat-shock response. Annu. Rev. Biochem. 55, 1151–1191.10.1146/annurev.bi.55.070186.005443Suche in Google Scholar PubMed

Link, W. and Fernandez-Marcos, P.J. (2017). FOXO transcription factors at the interface of metabolism and cancer. Int. J. Cancer 141, 2379–2391.10.1002/ijc.30840Suche in Google Scholar PubMed

Liu, Y., Kaval, K.G., van Hoof, A., and Garsin, D.A. (2019). Heme peroxidase HPX-2 protects Caenorhabditis elegans from pathogens. PLoS Genet. 15, e1007944.10.1371/journal.pgen.1007944Suche in Google Scholar PubMed PubMed Central

Luo, T., Fu, J., Xu, A., Su, B., Ren, Y., Li, N., Zhu, J., Zhao, X., Dai, R., Cao, J., et al. (2016). PSMD10/gankyrin induces autophagy to promote tumor progression through cytoplasmic interaction with ATG7 and nuclear transactivation of ATG7 expression. Autophagy 12, 1355–1371.10.1080/15548627.2015.1034405Suche in Google Scholar PubMed PubMed Central

Masser, A.E., Kang, W., Roy, J., Kaimal, J.M., Quintana-Cordero, J., Friedländer, M.R., and Andréasson, C. (2019). Cytoplasmic protein misfolding titrates HSP70 to activate nuclear Hsf1. eLife 8, e47791.10.7554/eLife.47791Suche in Google Scholar PubMed PubMed Central

Mendillo, M.L., Santagata, S., Koeva, M., Bell, G.W., Hu, R., Tamimi, R.M., Fraenkel, E., Ince, T.A., Whitesell, L., and Lindquist, S. (2012). HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150, 549–562.10.1016/j.cell.2012.06.031Suche in Google Scholar PubMed PubMed Central

Meng, F.X., Sun, L.M., Shi, B., Qin, X., Yang, Y., and Cao, Y. (2012). Heat shock factor 1 regulates the expression of the TRPV1 gene in the rat preoptic-anterior hypothalamus area during lipopolysaccharide-induced fever. Exp. Physiol. 97, 730–740.10.1113/expphysiol.2011.064204Suche in Google Scholar PubMed

Miao, W.M., Hu, L.G., Scrivens, P.J., and Batist, G. (2005). Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway – direct cross-talk between phase I and II drug-metabolizing enzymes. J. Biol. Chem. 280, 20340–20348.10.1074/jbc.M412081200Suche in Google Scholar PubMed

Morley, J.F. and Morimoto, R.I. (2004). Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol. Biol. Cell 15, 657–664.10.1091/mbc.e03-07-0532Suche in Google Scholar PubMed PubMed Central

Murphy, C.T., McCarroll, S.A., Bargmann, C.I., Fraser, A., Kamath, R.S., Ahringer, J., Li, H., and Kenyon, C. (2003). Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277–284.10.1038/nature01789Suche in Google Scholar PubMed

Murphy, C.T., Lee, S.J., and Kenyon, C. (2007). Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 104, 19046–19050.10.1073/pnas.0709613104Suche in Google Scholar PubMed PubMed Central

Naidu, S.D., Kostov, R.V., and Dinkova-Kostova, A.T. (2015). Transcription factors Hsf1 and Nrf2 engage in crosstalk for cytoprotection. Trends Pharmacol. Sci. 36, 6–14.10.1016/j.tips.2014.10.011Suche in Google Scholar PubMed

Naji, A., Houston Iv, J., Skalley Rog, C., Al Hatem, A., Rizvi, S., and van der Hoeven, R. (2018). The activation of the oxidative stress response transcription factor SKN-1 in Caenorhabditis elegans by mitis group streptococci. PLoS One 13, e0202233.10.1371/journal.pone.0202233Suche in Google Scholar PubMed PubMed Central

Nizet, V. and Johnson, R.S. (2009). Interdependence of hypoxic and innate immune responses. Nat. Rev. Immunol. 9, 609–617.10.1038/nri2607Suche in Google Scholar PubMed PubMed Central

O’Brien, D., Jones, L.M., Good, S., Miles, J., Vijayabaskar, M.S., Aston, R., Smith, C.E., Westhead, D.R., and van Oosten-Hawle, P. (2018). A PQM-1–mediated response triggers transcellular chaperone signaling and regulates organismal proteostasis. Cell Rep. 23, 3905–3919.10.1016/j.celrep.2018.05.093Suche in Google Scholar PubMed PubMed Central

Ooi, F.K. and Prahlad, V. (2017). Olfactory experience primes the heat shock transcription factor HSF-1 to enhance the expression of molecular chaperones in C. elegans. Sci. Signal, 10, pii: eaan4893.10.1126/scisignal.aan4893Suche in Google Scholar PubMed PubMed Central

Park, S.K., Tedesco, P.M., and Johnson, T.E. (2009). Oxidative stress and longevity in Caenorhabditis elegans as mediated by SKN-1. Aging. Cell 8, 258–269.10.1111/j.1474-9726.2009.00473.xSuche in Google Scholar PubMed PubMed Central

Pellegrino, M.W., Nargund, A.M., and Haynes, C.M. (2013). Signaling the mitochondrial unfolded protein response. Biochim Biophys Acta. Mol. Cell. Res. 1833, 410–416.10.1016/j.bbamcr.2012.02.019Suche in Google Scholar PubMed PubMed Central

Prahlad, V., Cornelius, T., and Morimoto, R.I. (2008). Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science 320, 811–814.10.1126/science.1156093Suche in Google Scholar PubMed PubMed Central

Pukkila-Worley, R., Ausubel, F.M., and Mylonakis, E. (2011). Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses. PLoS Pathog 7, e1002074.10.1371/journal.ppat.1002074Suche in Google Scholar

Pukkila-Worley, R., Feinbaum, R.L., McEwan, D.L., Conery, A.L., and Ausubel, F.M. (2014). The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification. PLoS Pathog 10, e1004143.10.1371/journal.ppat.1004143Suche in Google Scholar

Qiu, Y., Li, P., and Ji, C.Y. (2015). Cell death conversion under hypoxic condition in tumor development and therapy. Int. J. Mol. Sci. 16, 25536–25551.10.3390/ijms161025536Suche in Google Scholar

Rawat, P. and Mitra, D. (2011). Cellular heat shock factor 1 positively regulates human immunodeficiency virus-1 gene expression and replication by two distinct pathways. Nucleic Acids Res. 39, 5879–5892.10.1093/nar/gkr198Suche in Google Scholar

Raychaudhuri, S., Loew, C., Korner, R., Pinkert, S., Theis, M., Hayer-Hartl, M., Buchholz, F., and Hartl, F.U. (2014). Interplay of acetyltransferase EP300 and the proteasome system in regulating heat shock transcription factor 1. Cell 156, 975–985.10.1016/j.cell.2014.01.055Suche in Google Scholar

Rossi, A., Coccia, M., Trotta, E., Angelini, M., and Santoro, M.G. (2012). Regulation of cyclooxygenase-2 expression by heat: a novel aspect of heat shock factor 1 function in human cells. PLoS One 7, e31304.10.1371/journal.pone.0031304Suche in Google Scholar

Rushmore, T.H. and Pickett, C.B. (1990). Transcriptional regulation of the rat glutathione S-transferase–Ya subunit gene – characterization of a xenobiotic-responsive element controlling inducible expression by phenolic antioxidants. J. Biol. Chem. 265, 14648–14653.10.1016/S0021-9258(18)77351-1Suche in Google Scholar

Samarasinghe, B., Wales, C.T.K., Taylor, F.R., and Jacobs, A.T. (2014). Heat shock factor 1 confers resistance to HSP90 inhibitors through p62/SQSTM1 expression and promotion of autophagic flux. Biochem. Pharmacol. 87, 445–455.10.1016/j.bcp.2013.11.014Suche in Google Scholar PubMed PubMed Central

Sasaki, H., Sato, T., Yamauchi, N., Okamoto, T., Kobayashi, D., Iyama, S., Kato, J., Matsunaga, T., Takimoto, R., Takayama, T., et al. (2002). Induction of heat shock protein 47 synthesis by TGF-b and IL-1b via enhancement of the heat shock element binding activity of heat shock transcription factor 1. J. Immunol. 168, 5178–5183.10.4049/jimmunol.168.10.5178Suche in Google Scholar PubMed

Scherz-Shouval, R., Santagata, S., Mendillo, M.L., Sholl, L.M., Ben-Aharon, I., Beck, A.H., Dias-Santagata, D., Koeva, M., Stemmer, S.M., Whitesell, L., et al. (2014). The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell 158, 564–578.10.1016/j.cell.2014.05.045Suche in Google Scholar PubMed PubMed Central

Schleit, J., Wall, V.Z., Simko, M., and Kaeberlein, M. (2011). The MDT-15 subunit of mediator interacts with dietary restriction to modulate longevity and fluoranthene toxicity in Caenorhabditis elegans. PLoS One 6, e28036.10.1371/journal.pone.0028036Suche in Google Scholar

Schuster, E., McElwee, J.J., Tullet, J.M.A., Doonan, R., Matthijssens, F., Reece-Hoyes, J.S., Hope, I.A., Vanfleteren, J.R., Thornton, J.M., and Gems, D. (2010). DamID in C. elegans reveals longevity-associated targets of DAF-16/FoxO. Mol. Syst. Biol. 6, 399.10.1038/msb.2010.54Suche in Google Scholar

Semenza, G.L. (1998). Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr. Opin. Genet. Dev. 8, 588–594.10.1016/S0959-437X(98)80016-6Suche in Google Scholar

Semenza, G.L. and Wang, G.L. (1992). A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell Biol. 12, 5447–5454.Suche in Google Scholar

Semenza, G.L. (2010). HIF-1: upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev. 20, 51–56.10.1016/j.gde.2009.10.009Suche in Google Scholar PubMed PubMed Central

Shapira, M., Hamlin, B.J., Rong, J.M., Chen, K., Ronen, M., and Tan, M.W. (2006). A conserved role for a GATA transcription factor in regulating epithelial innate immune responses. Proc. Natl. Acad. Sci. USA 103, 14086–14091.10.1073/pnas.0603424103Suche in Google Scholar PubMed PubMed Central

Shemesh, N., Shai, N., and Ben-Zvi, A. (2013). Germline stem cell arrest inhibits the collapse of somatic proteostasis early in Caenorhabditis elegans adulthood. Aging Cell 12, 814–822.10.1111/acel.12110Suche in Google Scholar PubMed

Shen, C., Nettleton, D., Jiang, M., Kim, S.K., and Powell-Coffman, J.A. (2005). Roles of the HIF-1 hypoxia-inducible factor during hypoxia response in Caenorhabditis elegans. J. Biol. Chem. 280, 20580–20588.10.1074/jbc.M501894200Suche in Google Scholar PubMed

Shin, S., Wakabayashi, N., Misra, V., Biswal, S., Lee, G.H., Agoston, E.S., Yamamoto, M., and Kensler, T.W. (2007). NRF2 modulates aryl hydrocarbon receptor signaling: influence on adipogenesis. Mol. Cell Biol. 27, 7188–7197.10.1128/MCB.00915-07Suche in Google Scholar PubMed PubMed Central

Shpigel, N., Shemesh, N., Kishner, M., and Ben-Zvi, A. (2019). Dietary restriction and gonadal signaling differentially regulate post-development quality control functions in Caenorhabditis elegans. Aging Cell 18, e12891.10.1111/acel.12891Suche in Google Scholar PubMed PubMed Central

Singh, V. and Aballay, A. (2006). Heat-shock transcription factor (HSF)-1 pathway required for Caenorhabditis elegans immunity. Proc. Natl. Acad. Sci. USA 103, 13092–13097.10.1073/pnas.0604050103Suche in Google Scholar PubMed PubMed Central

Staab, T.A., Griffen, T.C., Corcoran, C., Evgrafov, O., Knowles, J.A., and Sieburth, D. (2013). The conserved SKN-1/Nrf2 stress response pathway regulates synaptic function in Caenorhabditis elegans. PLoS Genet 9, e1003354.10.1371/journal.pgen.1003354Suche in Google Scholar PubMed PubMed Central

Staab, T.A., Egrafov, O., Knowles, J.A., and Sieburth, D. (2014). Regulation of synaptic nlg-1/neuroligin abundance by the skn-1/Nrf stress response pathway protects against oxidative stress. PLoS Genet 10, e1004100.10.1371/journal.pgen.1004100Suche in Google Scholar PubMed PubMed Central

Sugi, T., Nishida, Y., and Mori, I. (2011). Regulation of behavioral plasticity by systemic temperature signaling in Caenorhabditis elegans. Nat. Neurosci. 14, 984–U969.10.1038/nn.2854Suche in Google Scholar PubMed

Sykiotis, G.P. and Bohmann, D. (2008). Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev. Cell 14, 76–85.10.1016/j.devcel.2007.12.002Suche in Google Scholar PubMed PubMed Central

Takii, R., Inouye, S., Fujimoto, M., Nakamura, T., Shinkawa, T., Prakasam, R., Tan, K., Hayashida, N., Ichikawa, H., Hai, T., et al. (2010). Heat shock transcription factor 1 inhibits expression of IL-6 through activating transcription factor 3. J. Immunol. 184, 1041–1048.10.4049/jimmunol.0902579Suche in Google Scholar PubMed

Tang, Z.J., Dai, S.Y., He, Y.S., Doty, R.A., Shultz, L.D., Sampson, S.B., and Dai, C.K. (2015). MEK guards proteome stability and inhibits tumor-suppressive amyloidogenesis via HSF1. Cell 160, 729–744.10.1016/j.cell.2015.01.028Suche in Google Scholar PubMed PubMed Central

Tatar, M., Bartke, A., and Antebi, A. (2003). The endocrine regulation of aging by insulin-like signals. Science 299, 1346–1351.10.1126/science.1081447Suche in Google Scholar PubMed

Tatum, M.C., Ooi, F.K., Chikka, M.R., Chauve, L., Martinez-Velazquez, L.A., Steinbusch, H.W.M., Morimoto, R.I., and Prahlad, V. (2015). Neuronal serotonin release triggers the heat shock response in C. elegans in the absence of temperature increase. Curr. Biol. 25, 163–174.10.1016/j.cub.2014.11.040Suche in Google Scholar PubMed PubMed Central

Tawe, W.N., Eschbach, M.L., Walter, R.D., and Henkle-Duhrsen, K. (1998). Identification of stress-responsive genes in Caenorhabditis elegans using RT-PCR differential display. Nucleic Acids. Res. 26, 1621–1627.10.1093/nar/26.7.1621Suche in Google Scholar PubMed PubMed Central

Tepper, R.G., Ashraf, J., Kaletsky, R., Kleemann, G., Murphy, C.T., and Bussemaker, H.J. (2013). PQM-1 complements DAF-16 as a key transcriptional regulator of DAF-2–mediated development and longevity. Cell 154, 676–690.10.1016/j.cell.2013.07.006Suche in Google Scholar PubMed PubMed Central

Tullet, J.M., Hertweck, M., An, J.H., Baker, J., Hwang, J.Y., Liu, S., Oliveira, R.P., Baumeister, R., Blackwell, T.K. (2008). Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132, 1025–1038.10.1016/j.cell.2008.01.030Suche in Google Scholar PubMed PubMed Central

Tullet, J.M.A., Green, J.W., Au, C., Benedetto, A., Thompson, M.A., Clark, E., Gilliat, A.F., Young, A., Schmeisser, K., and Gems, D. (2017). The SKN-1/Nrf2 transcription factor can protect against oxidative stress and increase lifespan in C. elegans by distinct mechanisms. Aging Cell 16, 1191–1194.10.1111/acel.12627Suche in Google Scholar PubMed PubMed Central

VanDuyn, N., Settivari, R., Wong, G., and Nass, R. (2010). SKN-1/Nrf2 inhibits dopamine neuron degeneration in a Caenorhabditis elegans model of methylmercury toxicity. Toxicol. Sci. 118, 613–624.10.1093/toxsci/kfq285Suche in Google Scholar PubMed PubMed Central

van Oosten-Hawle, P., Porter, R.S., and Morimoto, R.I. (2013). Regulation of organismal proteostasis by transcellular chaperone signaling. Cell 153, 1366–1378.10.1016/j.cell.2013.05.015Suche in Google Scholar PubMed PubMed Central

Vellai, T., Takacs-Vellai, K., Zhang, Y., Kovacs, A.L., Orosz, L., and Muller, F. (2003). Genetics – influence of TOR kinase on lifespan in C. elegans. Nature 426, 620–620.10.1038/426620aSuche in Google Scholar PubMed

Vihervaara, A., Sergelius, C., Vasara, J., Blom, M.A.H., Elsing, A.N., Roos-Mattjus, P., and Sistonen, L. (2013). Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Proc. Natl. Acad. Sci. USA 110, E3388–E3397.10.1073/pnas.1305275110Suche in Google Scholar PubMed PubMed Central

Vollrath, V., Wielandt, A.M., Iruretagoyena, M., and Chianale, J. (2006). Role of Nrf2 in the regulation of the Mrp2 (ABCC2) gene. Biochem. J. 395, 599–609.10.1042/BJ20051518Suche in Google Scholar PubMed PubMed Central

Walker, G.A., Thompson, F.J., Brawley, A., Scanlon, T., and Devaney, E. (2003). Heat shock factor functions at the convergence of the stress response and developmental pathways in Caenorhabditis elegans. Faseb J. 17, 1960–1962.10.1096/fj.03-0164fjeSuche in Google Scholar PubMed

Walmsley, S.R., Print, C., Farahi, N., Peyssonnaux, C., Johnson, R.S., Cramer, T., Sobolewski, A., Condliffe, A.M., Cowburn, A.S., Johnson, N., et al. (2005). Hypoxia-induced neutrophil survival is mediated by HIF-1 alpha-dependent NF-kappa B activity. J. Exp. Med. 201, 105–115.10.1084/jem.20040624Suche in Google Scholar PubMed PubMed Central

Westerheide, S.D., Anckar, J., Stevens, S.M., Sistonen, L., and Morimoto, R.I. (2009). Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323, 1063–1066.10.1126/science.1165946Suche in Google Scholar PubMed PubMed Central

Wu, C. (1995). Heat shock transcription factors: structure and regulation. Annu. Rev. Cell. Dev. Biol. 11, 441–469.10.1146/annurev.cb.11.110195.002301Suche in Google Scholar

Yamamoto, A., Ueda, J., Yamamoto, N., Hashikawa, N., and Sakurai, H. (2007). Role of heat shock transcription factor in Saccharomyces cerevisiae oxidative stress response. Eukaryot. Cell 6, 1373–1379.10.1128/EC.00098-07Suche in Google Scholar

Zhang, Y., Shao, Z.Y., Zhai, Z.W., Shen, C., and Powell-Coffman, J.A. (2009). The HIF-1 hypoxia-inducible factor modulates lifespan in C. elegans. PLoS One 4, e6348.10.1371/journal.pone.0006348Suche in Google Scholar

Zhang, P.C., Judy, M., Lee, S.J., and Kenyon, C. (2013). Direct and indirect gene regulation by a life-extending FOXO protein in C. elegans: roles for GATA factors and lipid gene regulators. Cell Metab. 17, 85–100.10.1016/j.cmet.2012.12.013Suche in Google Scholar

Zhou, J., Schmid, T., Schnitzer, S., and Brune, B. (2006). Tumor hypoxia and cancer progression. Cancer Lett. 237, 10–21.10.1016/j.canlet.2005.05.028Suche in Google Scholar

Zou, J.Y., Guo, Y.L., Guettouche, T., Smith, D.F., and Voellmy, R. (1998). Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94, 471–480.10.1016/S0092-8674(00)81588-3Suche in Google Scholar

Received: 2019-10-01
Accepted: 2020-02-26
Published Online: 2020-04-09
Published in Print: 2020-08-27

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2019-0385/pdf
Button zum nach oben scrollen