Abstract
Accumulating studies highlight the critical role of long non-coding RNAs (lncRNAs) in the development of various human cancers. Extracellular leucine rich repeat and fibronectin type III domain containing 1-antisense RNA 1 (ELFN1-AS1) was shown to be a newly found lncRNA that abnormally expressed in human tumors. However, till now the specific function of this lncRNA in esophageal cancer (ESCA) remains unknown. In this study, we discovered that higher ELFN1-AS1 expression indicated shorter patient survival in pan-cancer, including ESCA, using online The Cancer Genome Atlas (TCGA) tools. The lncRNA ELFN1-AS1 was significantly up-regulated in ESCA tissues and cell lines when compared with the counterparts. Down-regulation of ELFN1-AS1 restrained cell proliferation, migration, and invasion of ESCA in vitro. In addition, we found that the expression of microRNA-183-3p (miR-183-3p) and ELFN1-AS1 or glutamine-fructose-6-phosphate transaminase 1 (GFPT1) were inversely correlated in ESCA. Both ELFN1-AS1 and GFPT1 are direct targets of miR-183-3p in ESCA. The effects of ELFN1-AS1 knockdown on ESCA progression were partially rescued by inhibition of miR-183-3p or over-expression of GFPT1. In summary, the results of this study suggest that the lncRNA ELFN1-AS1 facilitates the progression of ESCA by acting as a competing endogenous RNA (ceRNA) to promote GFPT1 expression via sponging miR-183-3p.
Funding source: Key Scientific Research Projects of Institutions of Higher Learning in Henan Province
Award Identifier / Grant number: 20A310018
Acknowledgments
We thank all members for their assistance for this study.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This study was supported by the Key Scientific Research Projects of Institutions of Higher Learning in Henan Province (20A310018).
Conflict of interest statement: No conflicts of interest exist.
References
Agarwal, V., Bell, G.W., Nam, J.W., and Bartel, D.P. (2015). Predicting effective microRNA target sites in mammalian mRNAs. eLife 4: e05005, https://doi.org/10.7554/elife.05005.Suche in Google Scholar
Anaya, J. (2016). OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. Peer J. Comput. Sci. 2: e67, https://doi.org/10.7717/peerj-cs.67.Suche in Google Scholar
Bai, T., Liu, Y., and Li, B. (2019). LncRNA LOXL1-AS1/miR-let-7a-5p/EGFR-related pathway regulates the doxorubicin resistance of prostate cancer DU-145 cells. IUBMB Life 71: 1537–1551, https://doi.org/10.1002/iub.2075.Suche in Google Scholar PubMed
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68: 394–424, https://doi.org/10.3322/caac.21492.Suche in Google Scholar PubMed
Cao, Z., Pan, X., Yang, Y., Huang, Y., and Shen, H.B. (2018). The lncLocator: a subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier. Bioinformatics 34: 2185–2194, https://doi.org/10.1093/bioinformatics/bty085.Suche in Google Scholar PubMed
Chen, D., Menon, H., Verma, V., Seyedin, S.N., Ajani, J.A., Hofstetter, W.L., Nguyen, Q.N., Chang, J.Y., Gomez, D.R., Amini, A., et al. (2019). Results of a phase 1/2 trial of chemoradiotherapy with simultaneous integrated boost of radiotherapy dose in unresectable locally advanced esophageal cancer. JAMA Oncol. 5: 1597–1604, https://doi.org/10.1001/jamaoncol.2019.2809.Suche in Google Scholar PubMed PubMed Central
Chen, W., Zheng, R., Baade, P.D., Zhang, S., Zeng, H., Bray, F., Jemal, A., Yu, X.Q., and He, J. (2016). Cancer statistics in China, 2015. CA Cancer J. Clin. 66: 115–132, https://doi.org/10.3322/caac.21338.Suche in Google Scholar PubMed
Chou, C.H., Shrestha, S., Yang, C.D., Chang, N.W., Lin, Y.L., Liao, K.W., Huang, W.C., Sun, T.H., Tu, S.J., Lee, W.H., et al. (2018). miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 46: D296–D302, https://doi.org/10.1093/nar/gkt1266.Suche in Google Scholar PubMed PubMed Central
Dykes, I.M. and Emanueli, C. (2017). Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinf. 15: 177–186, https://doi.org/10.1016/j.gpb.2016.12.005.Suche in Google Scholar PubMed PubMed Central
Huang, F.L. and Yu, S.J. (2018). Esophageal cancer: risk factors, genetic association, and treatment. Asian J. Surg. 41: 210–215, https://doi.org/10.1016/j.asjsur.2016.10.005.Suche in Google Scholar PubMed
Hu, M., Zhang, Q., Tian, X.H., Wang, J.L., Niu, Y.X., and Li, G. (2019). lncRNA CCAT1 is a biomarker for the proliferation and drug resistance of esophageal cancer via the miR-143/PLK1/BUBR1 axis. Mol. Carcinog. 58: 2207–2217, https://doi.org/10.1002/mc.23109.Suche in Google Scholar PubMed
Issop, Y., Hathazi, D., Khan, M.M., Rudolf, R., Weis, J., Spendiff, S., Slater, C.R., Roos, A., and Lochmüller, H. (2018). GFPT1 deficiency in muscle leads to myasthenia and myopathy in mice. Hum. Mol. Genet. 27: 3218–3232, https://doi.org/10.1093/hmg/ddy225.Suche in Google Scholar PubMed PubMed Central
Ji, J.H., Oh, Y.L., Hong, M., Yun, J.W., Lee, H.W., Kim, D., Ji, Y., Kim, D.H., Park, W.Y., Shin, H.T, et al. (2015). Identification of driving ALK fusion genes and genomic landscape of medullary thyroid cancer. PLoS Genet. 11: e1005467, https://doi.org/10.1371/journal.pgen.1005467.Suche in Google Scholar PubMed PubMed Central
Jin, L., Fu, H., Quan, J., Pan, X., He, T., Hu, J., Li, Y., Li, H., Yang, Y., Ye, J., et al. (2017). Over-expression of long non-coding RNA differentiation antagonizing non-protein coding RNA inhibits the proliferation, migration and invasion and promotes apoptosis of renal cell carcinoma. Mol. Med. Rep. 16: 4463–4468, https://doi.org/10.3892/mmr.2017.7135.Suche in Google Scholar PubMed
Liang, H., Zhang, C., Guan, H., Liu, J., Cui, Y. (2019). LncRNA DANCR promotes cervical cancer progression by up-regulating ROCK1 via sponging miR-335-5p. J. Cell. Physiol. 234: 7266–7278, https://doi.org/10.1002/jcp.27484.Suche in Google Scholar PubMed
Liang, Y., Chen, X., Wu, Y., Li, J., Zhang, S., Wang, K., Guan, X., Yang, K., and Bai, Y. (2018). LncRNA CASC9 promotes esophageal squamous cell carcinoma metastasis through upregulating LAMC2 expression by interacting with the CREB-binding protein. Cell. Death. Differ. 25: 1980–1995, https://doi.org/10.1038/s41418-018-0084-9.Suche in Google Scholar PubMed PubMed Central
Lian, H., Xie, P., Yin, N., Zhang, J., Zhang, X., Li, J., and Zhang, C. (2019). Linc00460 promotes osteosarcoma progression via miR-1224-5p/FADS1 axis. Life Sci. 233: 116757, https://doi.org/10.1016/j.lfs.2019.116757.Suche in Google Scholar PubMed
Li, J.H., Liu, S., Zhou, H., Qu, L.H., and Yang, J.H. (2014). starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42: D92–D97, https://doi.org/10.1093/nar/gkt1248.Suche in Google Scholar PubMed PubMed Central
Li, Y., He, S., Zhan, Y., He, A., Gong, Y., Ji, G., Huang, C., Peng, D., Guan, B., Li, X., et al. (2019). MicroRNA-183-3p inhibits progression of human prostate cancer by downregulating high-mobility group nucleosome binding domain 5. DNA Cell Biol. 38: 840–848, https://doi.org/10.1089/dna.2019.4642.Suche in Google Scholar PubMed
Lin, Y., Totsuka, Y., Shan, B., Wang, C., Wei, W., Qiao, Y., Kikuchi, S., Inoue, M., Tanaka, H., et al. (2017). Esophageal cancer in high-risk areas of China: research progress and challenges. Ann. Epidemiol. 27: 215–221, https://doi.org/10.1016/j.annepidem.2016.11.004.Suche in Google Scholar PubMed
Liu, D., Wu, K., Yang, Y., Zhu, D., Zhang, C., and Zhao, S. (2019). Long noncoding RNA ADAMTS9-AS2 suppresses the progression of esophageal cancer by mediating CDH3 promoter methylation. Mol. Carcinog. 59: 32–44, https://doi.org/10.1002/mc.23126.Suche in Google Scholar PubMed
Liu, J.X., Li, W., Li, J.T., Liu, F., and Zhou, L. (2018). Screening key long non-coding RNAs in early-stage colon adenocarcinoma by RNA-sequencing. Epigenomics 10: 1215–1228, https://doi.org/10.2217/epi-2017-0155.Suche in Google Scholar PubMed
Nagy, A., Lánczky, A., Menyhárt, O., and Győrffy, B. (2018). Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci. Rep. 8: 9227, https://doi.org/10.1038/s41598-018-29514-3.Suche in Google Scholar PubMed PubMed Central
Paraskevopoulou, M.D., Vlachos, I.S., Karagkouni, D., Georgakilas, G., Kanellos, I., Vergoulis, T., Zagganas, K., Tsanakas, P., Floros, E., Dalamagas, T., et al. (2016). DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res. 44: D231-D238, https://doi.org/10.1093/nar/gkv1270.Suche in Google Scholar PubMed PubMed Central
Polev, D.E., Karnaukhova, I.K., Krukovskaya, L.L., and Kozlov, A.P. (2014). ELFN1-AS1: a novel primate gene with possible microRNA function expressed predominantly in human tumors. Biomed. Res. Int. 2014: 1–10, https://doi.org/10.1155/2014/398097.Suche in Google Scholar PubMed PubMed Central
Rossi, T., Pistoni, M., Sancisi, V., Gobbi, G., Torricelli, F., Donati, B., Ribisi, S., Gugnoni, M., and Ciarrocchi, A. (2019). RAIN is a novel enhancer-associated LncRNA that controls RUNX2 expression and promotes breast and thyroid cancer. Mol. Cancer. Res. 18: 140–152, https://doi.org/10.1158/1541-7786.mcr-19-0564.Suche in Google Scholar
Shi, H., Shi, J., Zhang, Y., Guan, C., Zhu, J., Wang, F., Xu, M., Ju, Q., Fang, S., and Jiang, M. (2018). Long non-coding RNA DANCR promotes cell proliferation, migration, invasion and resistance to apoptosis in esophageal cancer. J. Thorac. Dis. 10: 2573–2582, https://doi.org/10.21037/jtd.2018.04.109.Suche in Google Scholar PubMed PubMed Central
Smyth, E.C., Lagergren, J., Fitzgerald, R.C., Lordick, F., Shah, M.A., Lagergren, P., and Cunningham, D. (2017). Oesophageal cancer. Nat. Rev. Dis. Primers 3: 17048, https://doi.org/10.1038/nrdp.2017.48.Suche in Google Scholar PubMed PubMed Central
Sticht, C., De La Torre, C., Parveen, A., and Gretz, N. (2018). miRWalk: an online resource for prediction of microRNA binding sites. PLoS One 13: e0206239, https://doi.org/10.1371/journal.pone.0206239.Suche in Google Scholar PubMed PubMed Central
Tang, Z., Li, C., Kang, B., Gao, G., Li, C., and Zhang, Z. (2017). GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45: W98–W102, https://doi.org/10.1093/nar/gkx247.Suche in Google Scholar PubMed PubMed Central
Thrumurthy, S.G., Chaudry, M.A., Thrumurthy, S.S.D., and Mughal, M. (2019). Oesophageal cancer: risks, prevention, and diagnosis. Br. Med. J. 366: 14373, https://doi.org/10.1136/bmj.l4373.Suche in Google Scholar PubMed
Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet-Tieulent, J., and Jemal, A. (2015). Global cancer statistics, 2012. CA Cancer J. Clin. 65: 87–108, https://doi.org/10.3322/caac.21262.Suche in Google Scholar PubMed
Wang, W., Wei, C., Li, P., Wang, L., Li, W., Chen, K., Zhang, J., Zhang, W., and Jiang, G. (2018). Integrative analysis of mRNA and lncRNA profiles identified pathogenetic lncRNAs in esophageal squamous cell carcinoma. Gene 661: 169–175, https://doi.org/10.1016/j.gene.2018.03.066.Suche in Google Scholar PubMed
Wu, Y., Hu, L., Liang, Y., Li, J., Wang, K., Chen, X., Meng, H., Guan, X., Yang, K., and Bai, Y. (2017). Up-regulation of lncRNA CASC9 promotes esophageal squamous cell carcinoma growth by negatively regulating PDCD4 expression through EZH2. Mol. Cancer, 16: 150, https://doi.org/10.1186/s12943-017-0715-7.Suche in Google Scholar PubMed PubMed Central
Zhang, C., Xie, L., Liang, H., and Cui, Y. (2019). LncRNA MIAT facilitates osteosarcoma progression by regulating miR-128-3p/VEGFC axis. IUBMB Life 71: 845–853, https://doi.org/10.1002/iub.2001.Suche in Google Scholar PubMed
Supplementary material
The online version of this article offers supplementary material https://doi.org/10.1515/hsz-2019-0430.
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- Redefining proteostasis transcription factors in organismal stress responses, development, metabolism, and health
- Proteostasis in thermogenesis and obesity
- Research Articles/Short Communications
- Protein Structure and Function
- Citrate synthase desuccinylation by SIRT5 promotes colon cancer cell proliferation and migration
- Membranes, Lipids, Glycobiology
- Core 1 O-N-acetylgalactosamine (O-GalNAc) glycosylation in the human cell nucleus
- Cell Biology and Signaling
- LncRNA ELFN1-AS1 promotes esophageal cancer progression by up-regulating GFPT1 via sponging miR-183-3p
- Vemurafenib downmodulates aggressiveness mediators of colorectal cancer (CRC): Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP), Protein Tyrosine Phosphatase 1B (PTP1B) and Transforming Growth Factor β (TGFβ)
- Osteopontin enhances the migration of lung fibroblasts via upregulation of interleukin-6 through the extracellular signal-regulated kinase (ERK) pathway
- A role of heparan sulphate proteoglycan in the cellular uptake of lipocalins ß-lactoglobulin and allergen Fel d 4
- A progesterone receptor membrane component 1 antagonist induces large vesicles independent of progesterone receptor membrane component 1 expression
Artikel in diesem Heft
- Frontmatter
- Reviews
- Redefining proteostasis transcription factors in organismal stress responses, development, metabolism, and health
- Proteostasis in thermogenesis and obesity
- Research Articles/Short Communications
- Protein Structure and Function
- Citrate synthase desuccinylation by SIRT5 promotes colon cancer cell proliferation and migration
- Membranes, Lipids, Glycobiology
- Core 1 O-N-acetylgalactosamine (O-GalNAc) glycosylation in the human cell nucleus
- Cell Biology and Signaling
- LncRNA ELFN1-AS1 promotes esophageal cancer progression by up-regulating GFPT1 via sponging miR-183-3p
- Vemurafenib downmodulates aggressiveness mediators of colorectal cancer (CRC): Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP), Protein Tyrosine Phosphatase 1B (PTP1B) and Transforming Growth Factor β (TGFβ)
- Osteopontin enhances the migration of lung fibroblasts via upregulation of interleukin-6 through the extracellular signal-regulated kinase (ERK) pathway
- A role of heparan sulphate proteoglycan in the cellular uptake of lipocalins ß-lactoglobulin and allergen Fel d 4
- A progesterone receptor membrane component 1 antagonist induces large vesicles independent of progesterone receptor membrane component 1 expression