Startseite Inhibition of JAK2/STAT3 signaling suppresses bone marrow stromal cells proliferation and osteogenic differentiation, and impairs bone defect healing
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Inhibition of JAK2/STAT3 signaling suppresses bone marrow stromal cells proliferation and osteogenic differentiation, and impairs bone defect healing

  • Xin Yu , Zhi Li , Qilong Wan , Xin Cheng , Jing Zhang , Janak L. Pathak EMAIL logo und Zubing Li EMAIL logo
Veröffentlicht/Copyright: 24. Juli 2018

Abstract

Mesenchymal stem cells (MSCs) undergo osteogenic differentiation during bone defect healing. However, the role of JAK2/STAT3 in the osteogenic differentiation of MSCs and bone defect healing is still not fully understood. In this study, we aimed to analyze the effect of AG490, a JAK2-specific inhibitor, on MSCs proliferation and osteogenic differentiation as well as in bone defect healing. We used AG490 to inhibit the JAK2/STAT3 signaling in a mice bone marrow stromal cells (BMSCs) culture. AG490 inhibited BMSCs proliferation and osteogenic differentiation markers, i.e. Col1α, Alp and Ocn expression in mRNA and protein levels. Inhibition of JAK2 reduced ALP activity and matrix mineralization in BMSCs culture. Inhibition of JAK2 reduced phosphorylation of STAT3, AKT, P38, and JNK phosphorylation. Immunohistochemistry showed high numbers of pJAK2, pSTAT3 and ALP positive cells and AG490 reduced this effect in vivo. Histology and μ-computed tomography (CT) data showed that AG490 treatment inhibits bone regeneration and bone defect healing. Our results clearly showed the inhibitory effect of AG490 on proliferation and osteogenic differentiation of BMSCs, bone regeneration and bone defect healing. Moreover, AG490 inhibited phosphorylation of STAT3, P38, JNK and AKT. This suggests the possible role of JAK2/STAT3 signaling in hypoxia-induced osteogenic differentiation of MSCs and bone defect healing.

Award Identifier / Grant number: 81470718

Award Identifier / Grant number: 81470724

Award Identifier / Grant number: 81100736

Award Identifier / Grant number: 81771051

Funding statement: This study was supported by the funds of National Natural Science Foundation of China (grant Nos: 81470718, 81470724, 81100736 and 81771051), Guangzhou Education Bureau (grant No: 1201610458), Guangzhou Science Technology and Innovation Commission (grant No: 201704030024), Department of Science and Technology of Guangdong Province (grant No: 2015B09092002), The National Key Research and Development Program of China (grant Nos: 2016YFC1102900, 2016YFC1102902), and Zhejiang Provincial Natural Science Foundation of China (grant No: Y17H140023).

References

Argetsinger, L.S., Campbell, G.S., Yang, X., Witthuhn, B.A., Silvennoinen, O., Ihle, J.N., and Carter-Su, C. (1993). Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell 74, 237–244.10.1016/0092-8674(93)90415-MSuche in Google Scholar

Brooks, A.J., Dai, W., O’Mara, M.L., Abankwa, D., Chhabra, Y., Pelekanos, R.A., Gardon, O., Tunny, K.A., Blucher, K.M., Morton, C.J., et al. (2014). Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Science 344, 1249783.10.1126/science.1249783Suche in Google Scholar

Carter-Su, C., Argetsinger, L.S., Campbell, G.S., Wang, X., Ihle, J., and Witthuhn, B. (1994). The identification of JAK2 tyrosine kinase as a signaling molecule for growth hormone. Proc. Soc. Exp. Biol. Med. 206, 210–215.10.3181/00379727-206-43744Suche in Google Scholar

Ceradini, D.J., Kulkarni, A.R., Callaghan, M.J., Tepper, O.M., Bastidas, N., Kleinman, M.E., Capla, J.M., Galiano, R.D., Levine, J.P., and Gurtner, G.C. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10, 858–864.10.1038/nm1075Suche in Google Scholar

El-Adawi, H., Deng, L., Tramontano, A., Smith, S., Mascareno, E., Ganguly, K., Castillo, R., and El-Sherif, N. (2003). The functional role of the JAK-STAT pathway in post-infarction remodeling. Cardiovasc. Res. 57, 129–138.10.1016/S0008-6363(02)00614-4Suche in Google Scholar

Gorogh, T., Quabius, E.S., Georgitsis, A., Hoffmann, M., and Lippross, S. (2017). Sequential activation of the AKT pathway in human osteoblasts treated with Oscarvit: a bioactive product with positive effect both on skeletal pain and mineralization in osteoblasts. BMC Musculoskelet. Disord. 18, 500.10.1186/s12891-017-1860-2Suche in Google Scholar

Hung, S.P., Ho, J.H., Shih, Y.R., Lo, T., and Lee, O.K. (2012). Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells. J. Orthop. Res. 30, 260–266.10.1002/jor.21517Suche in Google Scholar

Ishihara, K. and Hirano, T. (2002). Molecular basis of the cell specificity of cytokine action. Biochim. Biophys. Acta Mol. Cell. Res. 1592, 281–296.10.1016/S0167-4889(02)00321-XSuche in Google Scholar

Itoh, S., Udagawa, N., Takahashi, N., Yoshitake, F., Narita, H., Ebisu, S., and Ishihara, K. (2006). A critical role for interleukin-6 family-mediated Stat3 activation in osteoblast differentiation and bone formation. Bone 39, 505–512.10.1016/j.bone.2006.02.074Suche in Google Scholar

Keramaris, N.C., Calori, G.M., Nikolaou, V.S., Schemitsch, E.H., and Giannoudis, P.V. (2008). Fracture vascularity and bone healing: a systematic review of the role of VEGF. Injury 39 (Suppl. 2), S45–57.10.1016/S0020-1383(08)70015-9Suche in Google Scholar

Kitaori, T., Ito, H., Schwarz, E.A., Tsutsumi, R., Yoshitomi, H., Oishi, S., Nakano, M., Fujii, N., Nagasawa, T., and Nakamura, T. (2009). Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum. 60, 813–823.10.1002/art.24330Suche in Google Scholar

Kolar, P., Gaber, T., Perka, C., Duda, G.N., and Buttgereit, F. (2011). Human early fracture hematoma is characterized by inflammation and hypoxia. Clin. Orthop. Relat. Res. 469, 3118–3126.10.1007/s11999-011-1865-3Suche in Google Scholar

Kozawa, O., Otsuka, T., and Uematsu, T. (2002). Leukemia inhibitory factor enhances bFGF-induced IL-6 synthesis in osteoblasts: involvement of JAK2/STAT3. Cell Signal. 14, 311–315.10.1016/S0898-6568(01)00248-0Suche in Google Scholar

Levitzki, A. (1990). Tyrphostins – potential antiproliferative agents and novel molecular tools. Biochem. Pharmacol. 40, 913–918.10.1016/0006-2952(90)90474-YSuche in Google Scholar

Li, C.H., Zhao, J.X., Sun, L., Yao, Z.Q., Deng, X.L., Liu, R., and Liu, X.Y. (2013). AG490 inhibits NFATc1 expression and STAT3 activation during RANKL induced osteoclastogenesis. Biochem. Biophys. Res. Commun. 435, 533–539.10.1016/j.bbrc.2013.04.084Suche in Google Scholar PubMed

Li, D.Q., Wan, Q.L., Pathak, J.L., and Li, Z.B. (2017a). Platelet-derived growth factor BB enhances osteoclast formation and osteoclast precursor cell chemotaxis. J. Bone Miner. Metab. 35, 355–365.10.1007/s00774-016-0773-8Suche in Google Scholar PubMed

Li, K., Bao, H., Zhang, P., and Chen, L. (2017b). Inhibitory effect of AG490 on STAT3 signal transduction pathway in nasopharyngeal carcinoma cells. J. Coll. Physicians Surg. Pak. 27, 699–702.Suche in Google Scholar

Liu, K., Li, D., Huang, X., Lv, K., Ongodia, D., Zhu, L., Zhou, L., and Li, Z. (2013). A murine femoral segmental defect model for bone tissue engineering using a novel rigid internal fixation system. J. Surg. Res. 183, 493–502.10.1016/j.jss.2013.02.041Suche in Google Scholar PubMed

Maes, C., Coenegrachts, L., Stockmans, I., Daci, E., Luttun, A., Petryk, A., Gopalakrishnan, R., Moermans, K., Smets, N., Verfaillie, C.M., et al. (2006). Placental growth factor mediates mesenchymal cell development, cartilage turnover, and bone remodeling during fracture repair. J. Clin. Invest. 116, 1230–1242.10.1172/JCI26772Suche in Google Scholar PubMed PubMed Central

Manning, G., Whyte, D.B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science 298, 1912–1934.10.1126/science.1075762Suche in Google Scholar PubMed

Marsell, R. and Einhorn, T.A. (2011). The biology of fracture healing. Injury 42, 551–555.10.1016/j.injury.2011.03.031Suche in Google Scholar PubMed PubMed Central

Matsuguchi, T., Chiba, N., Bandow, K., Kakimoto, K., Masuda, A., and Ohnishi, T. (2009). JNK activity is essential for Atf4 expression and late-stage osteoblast differentiation. J. Bone Miner. Res. 24, 398–410.10.1359/jbmr.081107Suche in Google Scholar PubMed

Meydan, N., Grunberger, T., Dadi, H., Shahar, M., Arpaia, E., Lapidot, Z., Leeder, J.S., Freedman, M., Cohen, A., Gazit, A., et al. (1996). Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 379, 645–648.10.1038/379645a0Suche in Google Scholar PubMed

Nicolaidou, V., Wong, M.M., Redpath, A.N., Ersek, A., Baban, D.F., Williams, L.M., Cope, A.P., and Horwood, N.J. (2012). Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation. PLoS One 7, e39871.10.1371/journal.pone.0039871Suche in Google Scholar PubMed PubMed Central

Ohlsson, C., Bengtsson, B.A., Isaksson, O.G., Andreassen, T.T., and Slootweg, M.C. (1998). Growth hormone and bone. Endocr. Rev. 19, 55–79.10.1210/edrv.19.1.0324Suche in Google Scholar PubMed

Ortuno, M.J., Ruiz-Gaspa, S., Rodriguez-Carballo, E., Susperregui, A.R., Bartrons, R., Rosa, J.L., and Ventura, F. (2010). p38 regulates expression of osteoblast-specific genes by phosphorylation of osterix. J. Biol. Chem. 285, 31985–31994.10.1074/jbc.M110.123612Suche in Google Scholar PubMed PubMed Central

Ouyang, N., Zhang, P., Fu, R., Shen, G., Jiang, L., and Fang, B. (2018). Mechanical strain promotes osteogenic differentiation of bone mesenchymal stem cells from ovariectomized rats via the phosphoinositide 3kinase/Akt signaling pathway. Mol. Med. Rep. 17, 1855–1862.10.3892/mmr.2017.8030Suche in Google Scholar

Park, J.S., Lee, J., Lim, M.A., Kim, E.K., Kim, S.M., Ryu, J.G., Lee, J.H., Kwok, S.K., Park, K.S., Kim, H.Y., et al. (2014). JAK2-STAT3 blockade by AG490 suppresses autoimmune arthritis in mice via reciprocal regulation of regulatory T Cells and Th17 cells. J. Immunol. 192, 4417–4424.10.4049/jimmunol.1300514Suche in Google Scholar PubMed

Schipani, E., Maes, C., Carmeliet, G., and Semenza, G.L. (2009). Regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF. J. Bone Miner. Res. 24, 1347–1353.10.1359/jbmr.090602Suche in Google Scholar PubMed PubMed Central

Wan, Q.L., Schoenmaker, T., Jansen, I.D.C., Bian, Z.A., de Vries, T.J., and Everts, V. (2016). Osteoblasts of calvaria induce higher numbers of osteoclasts than osteoblasts from long bone. Bone 86, 10–21.10.1016/j.bone.2016.02.010Suche in Google Scholar PubMed

Wang, X., Wang, Y., Gou, W., Lu, Q., Peng, J., and Lu, S. (2013). Role of mesenchymal stem cells in bone regeneration and fracture repair: a review. Int. Orthop. 37, 2491–2498.10.1007/s00264-013-2059-2Suche in Google Scholar PubMed PubMed Central

Xiao, G.Z., Jiang, D., Thomas, P., Benson, M.D., Guan, K.L., Karsenty, G., and Franceschi, R.T. (2000). MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J. Biol. Chem. 275, 4453–4459.10.1074/jbc.275.6.4453Suche in Google Scholar PubMed

Yu, X., Wan, Q., Cheng, G., Cheng, X., Zhang, J., Pathak, J.L., and Li, Z. (2018). CoCl2, a mimic of hypoxia, enhances bone marrow mesenchymal stem cells migration and osteogenic differentiation via STAT3 signaling pathway. Cell. Biol. Int. [Epub ahead of print]. doi: 10.1002/cbin.11017.10.1002/cbin.11017Suche in Google Scholar PubMed

Yue, R., Zhou, B.O., Shimada, I.S., Zhao, Z., and Morrison, S.J. (2016). Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell 18, 782–796.10.1016/j.stem.2016.02.015Suche in Google Scholar PubMed

Zhang, Q.B., Zhang, Z.Q., Fang, S.L., Liu, Y.R., Jiang, G., and Li, K.F. (2014). Effects of hypoxia on proliferation and osteogenic differentiation of periodontal ligament stem cells: an in vitro and in vivo study. Genet. Mol. Res. 13, 10204–10214.10.4238/2014.December.4.15Suche in Google Scholar PubMed

Zhao, Y., Song, T., Wang, W., Wang, J., He, J., Wu, N., Tang, M., He, B., and Luo, J. (2012). P38 and ERK1/2 MAPKs act in opposition to regulate BMP9-induced osteogenic differentiation of mesenchymal progenitor cells. PLoS One 7, e43383.10.1371/journal.pone.0043383Suche in Google Scholar PubMed PubMed Central


Supplementary Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2018-0253).


Received: 2018-05-15
Accepted: 2018-07-12
Published Online: 2018-07-24
Published in Print: 2018-10-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2018-0253/pdf
Button zum nach oben scrollen