Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the deadliest and most important infectious diseases worldwide. The sphingomyelinase/ceramide system, which has been shown several times to be a crucial factor in the internalization, processing and killing of diverse pathogens, also modulates the pro-inflammatory response and the state of mycobacteria in macrophages. Both acid and neutral sphingomyelinases are important in this activity. However, studies of the role of sphingomyelinases in TB are still at an early stage.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: GR 1697/2-1
Funding statement: Deutsche Forschungsgemeinschaft, Funder Id: 10.13039/501100001659, Grant Number: GR 1697/2-1.
References
Anes, E., Kühnel, M.P., Bos, E., Moniz-Péreira, J., Habermann, A., and Griffiths, G. (2003). Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria. Nat. Cell Biol. 5, 793–802.10.1038/ncb1036Suche in Google Scholar
Avota, E., Gulbins, E., and Schneider-Schaulies, S. (2011). DC-SIGN mediated sphingomyelinase-activation and ceramide generation is essential for enhancement of viral uptake in dendritic cells. PLoS Pathog. 7, e1001290.10.1371/journal.ppat.1001290Suche in Google Scholar
Becker, K.A., Henry, B., Ziobro, R., Tümmler, B., Gulbins, E., and Grassmé, H. (2012). Role of CD95 in pulmonary inflammation and infection in cystic fibrosis. J. Mol. Med. 90, 1011–1023.10.1007/s00109-012-0867-2Suche in Google Scholar
Beckmann, N., Sharma, D., Gulbins, E., Becker, K.A., and Edelmann, B. (2014). Inhibition of acid sphingomyelinase by tricyclic antidepressants and analogons. Front. Physiol. 5, 331.10.3389/fphys.2014.00331Suche in Google Scholar
Beiguelman, B. (1967). Leprosy and genetics. A review of past research with remarks concerning future investigations. Bull. World Health Org. 37, 461–476.Suche in Google Scholar
Carpinteiro, A., Becker, K.A., Japtok, L., Hessler, G., Keitsch, S., Požgajovà, M., Schmid, K.W., Adams, C., Müller, S., Kleuser, B., et al. (2015). Regulation of hematogenous tumor metastasis by acid sphingomyelinase. EMBO Mol. Med. 7, 714–734.10.15252/emmm.201404571Suche in Google Scholar
Cremesti, A.E., Goni, F.M., and Kolesnick, R. (2002). Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett. 531, 47–53.10.1016/S0014-5793(02)03489-0Suche in Google Scholar
Cronan, M.R., Beerman, R.W., Rosenberg, A.F., Saelens, J.W., Johnson, M.G., Öhlers, S.H., Sisk, D.M., Jurcic Smith, K.L., Medvitz, N.A., Miller, S.E., et al. (2016). Macrophage epithelial reprogramming underlies mycobacterial granuloma formation and promotes infection. Immunity 45, 861–876.10.1016/j.immuni.2016.09.014Suche in Google Scholar
da Veiga Pereira, L., Desnick, R.J., Adler, D.A., Disteche, C.M., and Schuchman, E.H. (1991). Regional assignment of the human acid sphingomyelinase gene (Smpd1) by PCR analysis of somatic cell hybrids and in situ hybridization to 11p15.1-p15.4. Genomics 9, 229–234.10.1016/0888-7543(91)90246-BSuche in Google Scholar
Davis, J.M. and Ramakrishnan, L. (2009). The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136, 37–49.10.1016/j.cell.2008.11.014Suche in Google Scholar PubMed PubMed Central
Dheda, K., Schwander, S.K., Zhu, B., van Zyl-Smit, R.N., and Zhang, Y. (2010). The immunology of tuberculosis: from bench to bedside. Respirology 15, 433–450.10.1111/j.1440-1843.2010.01739.xSuche in Google Scholar PubMed PubMed Central
Dreschers, S., Franz, P., Dumitru, C., Wilker, B., Jahnke, K., and Gulbins, E. (2007). Infections with human rhinovirus induce the formation of distinct functional membrane domains. Cell. Physiol. Biochem. 20, 241–254.10.1159/000104170Suche in Google Scholar
Duan, R.D. (2006). Alkaline sphingomyelinase: an old enzyme with novel implications. Biochim. Biophys. Acta 1761, 281–291.10.1016/j.bbalip.2006.03.007Suche in Google Scholar
Esen, M., Schreiner, B., Jendrossek, V., Lang, F., Fassbender, K., Grassmé, H., and Gulbins, E. (2001). Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis 6, 431–439.10.1023/A:1012445925628Suche in Google Scholar
Falcone, S., Perrotta, C., De Palma, C., Pisconti, A., Sciorati, C., Capobianco, A., Rovere-Querini, P., Manfredi, A.A., and Clementi, E. (2004). Activation of acid sphingomyelinase and its inhibition by the nitric oxide/cyclic guanosine 3′,5′-monophosphate pathway: key events in Escherichia coli-elicited apoptosis of dendritic cells. J. Immunol. 173, 4452–4463.10.4049/jimmunol.173.7.4452Suche in Google Scholar
Faulstich, M., Hagen, F., Avota, E., Kozjak-Pavlovic, V., Winkler, A.C., Xian, Y., Schneider-Schaulies, S., and Rudel, T. (2015). Neutral sphingomyelinase 2 is a key factor for PorB-dependent invasion of Neisseria gonorrhoeae. Cell. Microbiol. 17, 241–253.10.1111/cmi.12361Suche in Google Scholar
Gassert, E., Avota, E., Harms, H., Krohne, G., Gulbins, E., and Schneider-Schaulies, S. (2009). Induction of membrane ceramides: a novel strategy to interfere with T lymphocyte cytoskeletal reorganisation in viral immunosuppression. PLoS Pathog. 5, e1000623.10.1371/journal.ppat.1000623Suche in Google Scholar
Gatt, S. (1963). Enzymic hydrolysis and synthesis of ceramides. J. Biol. Chem. 238, 3131–3133.10.1016/S0021-9258(18)51879-2Suche in Google Scholar
Goñi, F.M. and Alonso, A. (2002). Sphingomyelinases: enzymology and membrane activity. FEBS Lett. 531, 38–46.10.1016/S0014-5793(02)03482-8Suche in Google Scholar
Gorelik, A., Illes, K., Heinz, L.X., Superti-Furga, G., and Nagar, B. (2016). Crystal structure of mammalian acid sphingomyelinase. Nat. Commun. 7, 12196.10.1038/ncomms12196Suche in Google Scholar
Grassmé, H., Gulbins, E., Brenner, B., Ferlinz, K., Sandhoff, K., Harzer, K., Lang, F., and Meyer, T.F. (1997). Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell 91, 605–615.10.1016/S0092-8674(00)80448-1Suche in Google Scholar
Grassmé, H., Kirschnek, S., Riethmüller, J., Riehle, A., von Kürthy, G., Lang, F., Weller, M., and Gulbins, E. (2000). CD95/CD95 ligand interactions on epithelial cells in host defense to Pseudomonas aeruginosa. Science 290, 527–530.10.1126/science.290.5491.527Suche in Google Scholar PubMed
Grassmé, H., Jekle, A., Riehle, A., Schwarz, H., Berger, J., Sandhoff, K., Kolesnick, R., and Gulbins, E. (2001). CD95 signaling via ceramide-rich membrane rafts. J. Biol. Chem. 276, 20589–20596.10.1074/jbc.M101207200Suche in Google Scholar PubMed
Grassmé, H., Jendrossek, V., Riehle, A., von Kürthy, G., Berger, J., Schwarz, H., Weller, M., Kolesnick, R., and Gulbins, E. (2003). Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat. Med. 9, 322–330.10.1038/nm823Suche in Google Scholar PubMed
Grassmé, H., Riehle, A., Wilker, B., and Gulbins, E. (2005). Rhinoviruses infect human epithelial cells via ceramide-enriched membrane platforms. J. Biol. Chem. 280, 26256–26262.10.1074/jbc.M500835200Suche in Google Scholar PubMed
Grassmé, H., Riethmüller, J., and Gulbins, E. (2007). Biological aspects of ceramide-enriched membrane domains. Prog. Lipid Res. 46, 161–170.10.1016/j.plipres.2007.03.002Suche in Google Scholar PubMed
Grassmé, H., Henry, B., Ziobro, R., Becker, K.A., Riethmüller, J., Gardner, A., Seitz, A.P., Steinmann, J., Lang, S., Ward, C., et al. (2017). β1-Integrin accumulates in cystic fibrosis luminal airway epithelial membranes and decreases sphingosine, promoting bacterial infections. Cell Host Microbe 21, 707–718.10.1016/j.chom.2017.05.001Suche in Google Scholar PubMed PubMed Central
Gulbins, E. and Li, P.L. (2006). Physiological and pathophysiological aspects of ceramide. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R11–R26.10.1152/ajpregu.00416.2005Suche in Google Scholar PubMed
Gutierrez, M.G., Mishra, B.B., Jordao, L., Elliott, E., Anes, E., and Griffiths, G. (2008). NF-kappa B activation controls phagolysosome fusion-mediated killing of mycobacteria by macrophages. J. Immunol. 181, 2651–2663.10.4049/jimmunol.181.4.2651Suche in Google Scholar PubMed
Haimovitz-Friedman, A., Kan, C.C., Ehleiter, D., Persaud, R.S, McLoughlin, M., Fuks, Z., and Kolesnick, R.N. (1994). Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J. Exp. Med. 180, 525–535.10.1084/jem.180.2.525Suche in Google Scholar PubMed PubMed Central
Hannun, Y.A. and Obeid, L.M. (2008). Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell. Biol. 9, 139–150.10.1038/nrm2329Suche in Google Scholar PubMed
Hauck, C.R., Grassmé, H., Bock, J., Jendrossek, V., Ferlinz, K., Meyer, T.F., and Gulbins, E. (2000). Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of Neisseria gonorrhoeae. FEBS Lett. 478, 260–266.10.1016/S0014-5793(00)01851-2Suche in Google Scholar
Hedlund, M., Duan, R.D., Nilsson, A., and Svanborg, C. (1998). Sphingomyelin, glycosphingolipids and ceramide signalling in cells exposed to P-fimbriated Escherichia coli. Mol. Microbiol. 29, 1297–1306.10.1046/j.1365-2958.1998.01017.xSuche in Google Scholar PubMed
Hofmann, K., Tomiuk, S., Wolff, G., and Stoffel, W. (2000). Cloning and characterization of the mammalian brain-specific, Mg2+-dependent neutral sphingomyelinase. Proc. Natl. Acad. Sci. USA 97, 5895–5900.10.1073/pnas.97.11.5895Suche in Google Scholar PubMed PubMed Central
Hwang, J.A., Kim, S., Jo, K.W., and Shim, T.S. (2017). Natural history of Mycobacterium avium complex lung disease in untreated patients with stable course. Eur. Resp. J. 49.10.1183/13993003.00537-2016Suche in Google Scholar
Jenkins, R.W., Canals, D., and Hannun, Y.A. (2009). Roles and regulation of secretory and lysosomal acid sphingomyelinase. Cell. Signal. 21, 836–846.10.1016/j.cellsig.2009.01.026Suche in Google Scholar PubMed PubMed Central
Koch, R. (1882). The etiology of tuberculosis. Berl. Klin. Wochenschr. 15, 221–230 [in German].10.1093/clinids/4.6.1270Suche in Google Scholar
Kolesnick, R.N., Haimovitz-Friedman, A., and Fuks, Z. (1994). The sphingomyelin signal transduction pathway mediates apoptosis for tumor necrosis factor, Fas, and ionizing radiation. Biochem. Cell. Biol. 72, 471–474.10.1139/o94-063Suche in Google Scholar PubMed
Kozinn, W.P., Damsker, B., and Bottone, E.J. (1980). Mycobacterium avium complex: significance of isolation from bone marrow culture. J. Clin. Microbiol. 11, 245–248.10.1128/jcm.11.3.245-248.1980Suche in Google Scholar PubMed PubMed Central
Li, C., Peng, H., Japtok, L., Seitz, A., Riehle, A., Wilker, B., Soddemann, M., Kleuser, B., Edwards, M., Lammas, D., et al. (2016). Inhibition of neutral sphingomyelinase protects mice against systemic tuberculosis. Front. Biosci. (Elite Ed.) 8, 311–325.10.2741/769Suche in Google Scholar
Li, C., Wu, Y., Riehle, A., Orian-Rousseau, V., Zhang, Y., Gulbins, E., and Grassmé, H. (2017). Regulation of Staphylococcus aureus infection of macrophages by CD44, reactive oxygen species, and acid sphingomyelinase. Antioxid. Redox Signal. 29.10.1089/ars.2017.6994Suche in Google Scholar PubMed
Luciani, A., Villella, V.R., Esposito, S., Brunetti-Pierri, N., Medina, D., Settembre, C., Gavina, M., Pulze, L., Giardino, I., Pettoello-Mantovani, M., et al. (2010). Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat. Cell Biol. 12, 863–875.10.1038/ncb2090Suche in Google Scholar PubMed
Luisoni, S., Suomalainen, M., Boucke, K., Tanner, L.B., Wenk, M.R., Guan, X.L., Grzybek, M., Coskun, U., and Greber, U.F. (2015). Co-option of membrane wounding enables virus penetration into cells. Cell Host Microbe. 18, 75–85.10.1016/j.chom.2015.06.006Suche in Google Scholar PubMed
Ma, J., Gulbins, E., Edwards, M.J., Caldwell, C.C., Fraunholz, M., and Becker, K.A. (2017). Staphylococcus aureus α-toxin induces inflammatory cytokines via lysosomal acid sphingomyelinase and ceramides. Cell. Physiol. Biochem. 43, 2170–2184.10.1159/000484296Suche in Google Scholar PubMed
Majumder, S., Dey, R., Bhattacharjee, S., Rub, A., Gupta, G., Bhattacharyya Majumdar, S., Saha, B., and Majumdar, S. (2012). Leishmania-induced biphasic ceramide generation in macrophages is crucial for uptake and survival of the parasite. J. Infect. Dis. 205, 1607–1616.10.1093/infdis/jis229Suche in Google Scholar PubMed
McCollister, B.D., Myers, J.T., Jones-Carson, J., Völker, D.R., and Vázquez-Torres, A. (2007). Constitutive acid sphingomyelinase enhances early and late macrophage killing of Salmonella enterica serovar Typhimurium. Infect. Immun. 75, 5346–5352.10.1128/IAI.00689-07Suche in Google Scholar PubMed PubMed Central
Miller, M.E., Adhikary, S., Kolokoltsov, A.A., and Davey, R.A. (2012). Ebolavirus requires acid sphingomyelinase activity and plasma membrane sphingomyelin for infection. J. Virol. 86, 7473–7483.10.1128/JVI.00136-12Suche in Google Scholar PubMed PubMed Central
Münzner, P., Bachmann, V., Zimmermann, W., Hentschel, J., and Hauck, C.R. (2010). Human-restricted bacterial pathogens block shedding of epithelial cells by stimulating integrin activation. Science 329, 1197–1201.10.1126/science.1190892Suche in Google Scholar PubMed
Nakatsuji, T., Tang, D.C., Zhang, L., Gallo, R.L., and Huang, C.M. (2011). Propionibacterium acnes CAMP factor and host acid sphingomyelinase contribute to bacterial virulence: potential targets for inflammatory acne treatment. PLoS One 6, e14797.10.1371/journal.pone.0014797Suche in Google Scholar PubMed PubMed Central
Nathan, C. and Shiloh, M.U. (2000). Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA 97, 8841–8848.10.1073/pnas.97.16.8841Suche in Google Scholar PubMed PubMed Central
Nunes-Alves, C., Booty, M.G., Carpenter, S.M., Jayaraman, P., Rothchild, A.C., and Behar, S. M. (2014). In search of a new paradigm for protective immunity to TB. Nat. Rev. Microbiol. 12, 289–299.10.1038/nrmicro3230Suche in Google Scholar PubMed PubMed Central
Peng, H., Li, C., Kadow, S., Henry, B.D., Steinmann, J., Becker, K.A., Riehle, A., Beckmann, N., Wilker, B., Li, P.L., et al. (2015). Acid sphingomyelinase inhibition protects mice from lung edema and lethal Staphylococcus aureus sepsis. J. Mol. Med. 93, 675–689.10.1007/s00109-014-1246-ySuche in Google Scholar PubMed PubMed Central
Peyron, P., Vaubourgeix, J., Poquet, Y., Levillain, F., Botanch, C., Bardou, F., Daffé, M., Emile, J.F., Marchou, B., Cardona, P.J., et al. (2008). Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog. 4, e1000204.10.1371/journal.ppat.1000204Suche in Google Scholar PubMed PubMed Central
Qrafli, M., Asekkaj, I., Bourkadi, J.E., El Aoud, R., and Sadki, K. (2017). New variant identified in major susceptibility locus to tuberculosis on chromosomal region 8Q12-q13 in Moroccan population: a case control study. BMC Infect. Dis. 7, 712.10.1186/s12879-017-2807-9Suche in Google Scholar
Reibel, F., Cambau, E., and Aubry, A. (2015) Update on the epidemiology, diagnosis, and treatment of leprosy. Med. Mal. Infect. 45, 383–393.10.1016/j.medmal.2015.09.002Suche in Google Scholar
Roca, F.J. and Ramakrishnan, L. (2013). TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell 153, 521–534.10.1016/j.cell.2013.03.022Suche in Google Scholar
Russell, D.G. (2007). Who puts the tubercle in tuberculosis? Nat. Rev. Microbiol. 5, 39–47.10.1038/nrmicro1538Suche in Google Scholar
Schissel, S.L., Keesler, G.A., Schuchman, E.H., Williams, K.J., and Tabas, I. (1998). The cellular trafficking and zinc dependence of secretory and lysosomal sphingomyelinase, two products of the acid sphingomyelinase gene. J. Biol. Chem. 273, 18250–18259.10.1074/jbc.273.29.18250Suche in Google Scholar
Schramm, M., Herz, J., Haas, A., Krönke, M., and Utermöhlen, O. (2008). Acid sphingomyelinase is required for efficient phago-lysosomal fusion. Cell. Microbiol. 10, 1839–1853.10.1111/j.1462-5822.2008.01169.xSuche in Google Scholar
Schuchman, E.H., Levran, O., Pereira, L.V., and Desnick, R.J. (1992). Structural organization and complete nucleotide sequence of the gene encoding human acid sphingomyelinase (Smpd1). Genomics 12, 197–205.10.1016/0888-7543(92)90366-ZSuche in Google Scholar
Schütze, S., Potthoff, K., Machleidt, T., Berkovic, D., Wiegmann, K., and Krönke, M. (1992). TNF activates NF-κB by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71, 765–776.10.1016/0092-8674(92)90553-OSuche in Google Scholar
Schwandner, R., Wiegmann, K., Bernardo, K., Kreder, D., and Kronke, M. (1998). TNF receptor death domain-associated proteins TRADD and FADD signal activation of acid sphingomyelinase. J. Biol. Chem. 273, 5916–5922.10.1074/jbc.273.10.5916Suche in Google Scholar PubMed
Ségui, B., Cuvillier, O., Adam-Klages, S., Garcia, V., Malagarie-Cazenave, S., Léveque, S., Caspar-Bauguil, S., Coudert, J., Salvayre, R., Krönke, M., et al. (2001). Involvement of FAN in TNF-induced apoptosis. J. Clin. Invest. 108, 143–151.10.1172/JCI11498Suche in Google Scholar PubMed PubMed Central
Shamseddine, A.A., Airola, M.V., and Hannun, Y.A. (2015). Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes. Adv. Biol. Regul. 57, 24–41.10.1016/j.jbior.2014.10.002Suche in Google Scholar
Simonis, A., Hebling, S., Gulbins, E., Schneider-Schaulies, S., and Schubert-Unkmeir, A. (2014). Differential activation of acid sphingomyelinase and ceramide release determines invasiveness of Neisseria meningitidis into brain endothelial cells. PLoS Pathog. 10, e1004160.10.1371/journal.ppat.1004160Suche in Google Scholar
Takahashi, T., Suchi, M., Desnick, R.J, Takada, G., and Schuchman, E.H. (1992). Identification and expression of five mutations in the human acid sphingomyelinase gene causing types A and B Niemann-Pick disease. Molecular evidence for genetic heterogeneity in the neuronopathic and non-neuronopathic forms. J. Biol. Chem. 267, 12552–12558.10.1016/S0021-9258(18)42312-5Suche in Google Scholar
Tani, M. and Hannun, Y.A. (2007). Neutral sphingomyelinase 2 is palmitoylated on multiple cysteine residues. Role of palmitoylation in subcellular localization. J. Biol. Chem. 282, 10047–10056.10.1074/jbc.M611249200Suche in Google Scholar PubMed
Teichgräber, V., Ulrich, M., Endlich, N., Riethmüller, J., Wilker, B., De Oliveira-Munding, C.C., van Heeckeren, A.M., Barr, M.L., von Kürthy, G., Schmid, K.W., et al. (2008). Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat. Med. 14, 382–391.10.1038/nm1748Suche in Google Scholar PubMed
Tonnetti, L., Verí, M.C., Bonvini, E., and D’Adamio, L.A. (1999). Role for neutral sphingomyelinase-mediated ceramide production in T cell receptor-induced apoptosis and mitogen-activated protein kinase-mediated signal transduction. J. Exp. Med. 189, 1581–1589.10.1084/jem.189.10.1581Suche in Google Scholar PubMed PubMed Central
Utermöhlen, O., Karow, U., Löhler, J., and Krönke, M. (2003). Severe impairment in early host defense against Listeria monocytogenes in mice deficient in acid sphingomyelinase. J. Immunol. 170, 2621–2628.10.4049/jimmunol.170.5.2621Suche in Google Scholar PubMed
Utermöhlen, O., Herz, J., Schramm, M., and Krönke, M. (2008). Fusogenicity of membranes: the impact of acid sphingomyelinase on innate immune responses. Immunobiology 213, 307–314.10.1016/j.imbio.2007.10.016Suche in Google Scholar PubMed
Vázquez, C.L., Rodgers, A., Herbst, S., Coade, S., Gronow, A., Guzman, C.A., Wilson, M.S., Kanzaki, M., Nykjaer, A., and Gutierrez, M.G. (2016). The proneurotrophin receptor sortilin is required for Mycobacterium tuberculosis control by macrophages. Sci. Rep. 6, 29332.10.1038/srep29332Suche in Google Scholar PubMed PubMed Central
Wähe, A., Kasmapour, B., Schmaderer, C., Liebl, D., Sandhoff, K., Nykjaer, A., Griffiths, G., and Gutiérrez, M.G. (2010). Golgi-to-phagosome transport of acid sphingomyelinase and prosaposin is mediated by sortilin. J. Cell Sci. 123, 2502–2511.10.1242/jcs.067686Suche in Google Scholar PubMed
World Health Organization. (2017). Global tuberculosis report 2017. http://www.who.int/tb/publications/global_report/en/. Accessed May 12, 2018.Suche in Google Scholar
Yu, H., Zeidan, Y.H., Wu, B.X., Jenkins, R.W., Flotte, T.R., Hannun, Y.A., and Virella-Lowell, I. (2009). Defective acid sphingomyelinase pathway with Pseudomonas aeruginosa infection in cystic fibrosis. Am. J. Respir. Cell Mol. Biol. 41, 367–375.10.1165/rcmb.2008-0295OCSuche in Google Scholar PubMed PubMed Central
Zhang, Y., Li, X., Carpinteiro, A., and Gulbins, E. (2008). Acid sphingomyelinase amplifies redox signaling in Pseudomonas aeruginosa-induced macrophage apoptosis. J. Immun. 181, 4247–4254.10.4049/jimmunol.181.6.4247Suche in Google Scholar PubMed
Zhang, Y., Li, X., Becker, K.A., and Gulbins, E. (2009). Ceramide-enriched membrane domains – structure and function. Biochim. Biophys. Acta 1788, 178–183.10.1016/j.bbamem.2008.07.030Suche in Google Scholar PubMed
Zhang, Y., Li, X., Grassmé, H., Döring, G., and Gulbins, E. (2010). Alterations in ceramide concentration and pH determine the release of reactive oxygen species by Cftr-deficient macrophages on infection. J. Immunol. 184, 5104–5111.10.4049/jimmunol.0902851Suche in Google Scholar PubMed
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Highlight: sphingolipids in infectious biology and immunology
- Sphingolipids in early viral replication and innate immune activation
- The function of sphingomyelinases in mycobacterial infections
- The role of acid sphingomyelinase and modulation of sphingolipid metabolism in bacterial infection
- The neutral sphingomyelinase 2 in T cell receptor signaling and polarity
- Click reactions with functional sphingolipids
- Sphingolipids in inflammatory hypoxia
- CD4+ Foxp3+ regulatory T cell-mediated immunomodulation by anti-depressants inhibiting acid sphingomyelinase
- Pathological manifestations of Farber disease in a new mouse model
- Pulmonary infection of cystic fibrosis mice with Staphylococcus aureus requires expression of α-toxin
- Minireview
- Roles of the nucleotide exchange factor and chaperone Hsp110 in cellular proteostasis and diseases of protein misfolding
- Research Articles/Short Communications
- Proteolysis
- The two cathepsin B-like proteases of Arabidopsis thaliana are closely related enzymes with discrete endopeptidase and carboxydipeptidase activities
Artikel in diesem Heft
- Frontmatter
- Highlight: sphingolipids in infectious biology and immunology
- Sphingolipids in early viral replication and innate immune activation
- The function of sphingomyelinases in mycobacterial infections
- The role of acid sphingomyelinase and modulation of sphingolipid metabolism in bacterial infection
- The neutral sphingomyelinase 2 in T cell receptor signaling and polarity
- Click reactions with functional sphingolipids
- Sphingolipids in inflammatory hypoxia
- CD4+ Foxp3+ regulatory T cell-mediated immunomodulation by anti-depressants inhibiting acid sphingomyelinase
- Pathological manifestations of Farber disease in a new mouse model
- Pulmonary infection of cystic fibrosis mice with Staphylococcus aureus requires expression of α-toxin
- Minireview
- Roles of the nucleotide exchange factor and chaperone Hsp110 in cellular proteostasis and diseases of protein misfolding
- Research Articles/Short Communications
- Proteolysis
- The two cathepsin B-like proteases of Arabidopsis thaliana are closely related enzymes with discrete endopeptidase and carboxydipeptidase activities