Pathological manifestations of Farber disease in a new mouse model
-
Nadine Beckmann
Abstract
Farber disease (FD) is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments are clinically available and affected patients have a severely shortened lifespan. Due to the low incidence, the pathogenesis of FD is still poorly understood. Here, we report a novel acid ceramidase mutant mouse model that enables the study of pathogenic mechanisms of FD and ceramide accumulation. Asah1tmEx1 mice were generated by deletion of the acid ceramidase signal peptide sequence. The effects on lysosomal targeting and activity of the enzyme were assessed. Ceramide and sphingomyelin levels were quantified by liquid chromatography tandem-mass spectrometry (LC-MS/MS) and disease manifestations in several organ systems were analyzed by histology and biochemistry. We show that deletion of the signal peptide sequence disrupts lysosomal targeting and enzyme activity, resulting in ceramide and sphingomyelin accumulation. The affected mice fail to thrive and die early. Histiocytic infiltrations were observed in many tissues, as well as lung inflammation, liver fibrosis, muscular disease manifestations and mild kidney injury. Our new mouse model mirrors human FD and thus offers further insights into the pathogenesis of this disease. In the future, it may also facilitate the development of urgently needed therapies.
Funding source: DFG
Award Identifier / Grant number: GU 335-35/1
Funding statement: This work was supported by DFG grant GU 335-35/1 to EG and GRK 2098 (Funder Id: 10.13039/501100001659) to KBF and EG.
Acknowledgments
We thank S. Keitsch, C. Müller and S. Harde for their excellent help with the animal experiments and D. Herrmann for his excellent technical assistance with the LC-MS/MS analyses. We thank Beat Haenni for the electron microscopical preparations. Electron micrographs were acquired on equipment supported by the Microscopy Imaging Center (MIC) of the University of Bern.
Conflict of interest statement: The authors declare that they have no conflict of interest.
References
Alayoubi, A.M., Wang, J.C., Au, B.C., Carpentier, S., Garcia, V., Dworski, S., El-Ghamrasni, S., Kirouac, K.N., Exertier, M.J., Xiong, Z.J., et al. (2013). Systemic ceramide accumulation leads to severe and varied pathological consequences. EMBO Mol. Med. 5, 827–842.10.1002/emmm.201202301Search in Google Scholar
Antonarakis, S.E., Valle, D., Moser, H.W., Moser, A., Qualman, S.J., and Zinkham, W.H. (1984). Phenotypic variability in siblings with Farber disease. J. Pediatr. 104, 406–409.10.1016/S0022-3476(84)81106-3Search in Google Scholar
Bao, X.H., Tian, J.M., Ji, T.Y., and Chang, X.Z. (2017). [A case report of childhood Farber’s disease and literature review]. Zhonghua Er Ke Za Zhi. 55, 54–58.Search in Google Scholar
Ben-Yoseph, Y., Gagne, R., Parvathy, M.R., Mitchell, D.A., and Momoi, T. (1989). Leukocyte and plasma N-laurylsphingosine deacylase (ceramidase) in Farber disease. Clin. Genet. 36, 38–42.10.1111/j.1399-0004.1989.tb03364.xSearch in Google Scholar
Coant, N., Sakamoto, W., Mao, C., and Hannun, Y.A. (2017). Ceramidases, roles in sphingolipid metabolism and in health and disease. Adv. Biol. Regul. 63, 122–131.10.1016/j.jbior.2016.10.002Search in Google Scholar
Dulaney, J.T., Milunsky, A., Sidbury, J.B., Hobolth, N., and Moser, H.W. (1976). Diagnosis of lipogranulomatosis (Farber disease) by use of cultured fibroblasts. J. Pediatr. 89, 59–61.10.1016/S0022-3476(76)80927-4Search in Google Scholar
Dworski, S., Berger, A., Furlonger, C., Moreau, J.M., Yoshimitsu, M., Trentadue, J., Au, B.C., Paige, C.J., and Medin, J.A. (2015). Markedly perturbed hematopoiesis in acid ceramidase deficient mice. Haematologica 100, e162–e165.10.3324/haematol.2014.108530Search in Google Scholar PubMed PubMed Central
Dworski, S., Lu, P., Khan, A., Maranda, B., Mitchell, J.J., Parini, R., Di Rocco, M., Hugle, B., Yoshimitsu, M., Magnusson, B., et al. (2017). Acid ceramidase deficiency is characterized by a unique plasma cytokine and ceramide profile that is altered by therapy. Biochim. Biophys. Acta 1863, 386–394.10.1016/j.bbadis.2016.11.031Search in Google Scholar PubMed PubMed Central
Dyment, D.A., Sell, E., Vanstone, M.R., Smith, A.C., Garandeau, D., Garcia, V., Carpentier, S., Le Trionnaire, E., Sabourdy, F., Beaulieu, C.L., et al. (2014). Evidence for clinical, genetic and biochemical variability in spinal muscular atrophy with progressive myoclonic epilepsy. Clin. Genet. 86, 558–563.10.1111/cge.12307Search in Google Scholar PubMed
Ehlert, K., Roth, J., Frosch, M., Fehse, N., Zander, N., and Vormoor, J. (2006). Farber’s disease without central nervous system involvement: bone-marrow transplantation provides a promising new approach. Ann. Rheum. Dis. 65, 1665–1666.10.1136/ard.2005.048322Search in Google Scholar PubMed PubMed Central
Eliyahu, E., Park, J.H., Shtraizent, N., He, X., and Schuchman, E.H. (2007). Acid ceramidase is a novel factor required for early embryo survival. FASEB J. 21, 1403–1409.10.1096/fj.06-7016comSearch in Google Scholar PubMed
Farber, S., Cohen, J., and Uzman, L.L. (1957). Lipogranulomatosis, a new lipo-glycoprotein storage disease. J. Mt. Sinai Hosp. N. Y. 24, 816–837.Search in Google Scholar
Fensom, A.H., Benson, P.F., Neville, B.R., Moser, H.W., Moser, A.E., and Dulaney, J.T. (1979). Prenatal diagnosis of Farber’s disease. Lancet ii, 990–992.10.1016/S0140-6736(79)92562-5Search in Google Scholar
Filippov, V., Song, M.A., Zhang, K., Vinters, H.V., Tung, S., Kirsch, W.M., Yang, J., and Duerksen-Hughes, P.J. (2012). Increased ceramide in brains with Alzheimer’s and other neurodegenerative diseases. J. Alzheimers Dis. 29, 537–547.10.3233/JAD-2011-111202Search in Google Scholar
Filosto, M., Aureli, M., Castellotti, B., Rinaldi, F., Schiumarini, D., Valsecchi, M., Lualdi, S., Mazzotti, R., Pensato, V., Rota, S., et al. (2016). ASAH1 variant causing a mild SMA phenotype with no myoclonic epilepsy: a clinical, biochemical and molecular study. Eur. J. Hum. Genet. 24, 1578–1583.10.1038/ejhg.2016.28Search in Google Scholar
Fujiwaki, T., Hamanaka, S., Koga, M., Ishihara, T., Nishikomori, R., Kinoshita, E., and Furusho, K. (1992). A case of Farber disease. Acta Paediatr. Jpn. 34, 72–79.10.1111/j.1442-200X.1992.tb00928.xSearch in Google Scholar
Fujiwaki, T., Hamanaka, S., Tate, S., Inagaki, F., Suzuki, M., Suzuki, A., and Mori, C. (1995). Tissue accumulation of sulfatide and GM3 ganglioside in a patient with variant Farber disease. Clin. Chim. Acta 234, 23–36.10.1016/0009-8981(94)05970-4Search in Google Scholar
Gan, J.J., Garcia, V., Tian, J., Tagliati, M., Parisi, J.E., Chung, J.M., Lewis, R., Baloh, R., Levade, T., and Pierson, T.M. (2015). Acid ceramidase deficiency associated with spinal muscular atrophy with progressive myoclonic epilepsy. Neuromuscul. Disord. 25, 959–963.10.1016/j.nmd.2015.09.007Search in Google Scholar PubMed
Gulbins, E., Palmada, M., Reichel, M., Luth, A., Bohmer, C., Amato, D., Müller, C.P., Tischbirek, C.H., Groemer, T.W., Tabatabai, G., et al. (2013). Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs. Nat. Med. 19, 934–938.10.1038/nm.3214Search in Google Scholar PubMed
He, X., Dworski, S., Zhu, C., DeAngelis, V., Solyom, A., Medin, J.A., Simonaro, C.M., and Schuchman, E.H. (2017). Enzyme replacement therapy for Farber disease: proof-of-concept studies in cells and mice. Biochim. Biophys. Acta Clin. 7, 85–96.10.1016/j.bbacli.2017.02.001Search in Google Scholar PubMed PubMed Central
Huston, J.P., Kornhuber, J., Mühle, C., Japtok, L., Komorowski, M., Mattern, C., Reichel, M., Gulbins, E., Kleuser, B., Topic, B., et al. (2016). A sphingolipid mechanism for behavioral extinction. J. Neurochem. 137, 589–603.10.1111/jnc.13537Search in Google Scholar PubMed
Iqbal, J., Walsh, M.T., Hammad, S.M., and Hussain, M.M. (2017). Sphingolipids and lipoproteins in health and metabolic disorders. Trends Endocrinol. Metab. 28, 506–518.10.1016/j.tem.2017.03.005Search in Google Scholar PubMed PubMed Central
Jones, E.E., Dworski, S., Canals, D., Casas, J., Fabrias, G., Schoenling, D., Levade, T., Denlinger, C., Hannun, Y.A., Medin, J.A., et al. (2014). On-tissue localization of ceramides and other sphingolipids by MALDI mass spectrometry imaging. Anal. Chem. 86, 8303–8311.10.1021/ac501937dSearch in Google Scholar
Kosinska, M.K., Liebisch, G., Lochnit, G., Wilhelm, J., Klein, H., Kaesser, U., Lasczkowski, G., Rickert, M., Schmitz, G., and Steinmeyer, J. (2014). Sphingolipids in human synovial fluid–a lipidomic study. PLoS One 9, e91769.10.1371/journal.pone.0091769Search in Google Scholar
Kostik, M.M., Chikova, I.A., Avramenko, V.V., Vasyakina, L.I., Le Trionnaire, E., Chasnyk, V.G., and Levade, T. (2013). Farber lipogranulomatosis with predominant joint involvement mimicking juvenile idiopathic arthritis. J. Inherit. Metab. Dis. 36, 1079–1080.10.1007/s10545-012-9573-zSearch in Google Scholar
Kudoh, T. and Wenger, D.A. (1982). Diagnosis of metachromatic leukodystrophy, Krabbe disease, and Farber disease after uptake of fatty acid-labeled cerebroside sulfate into cultured skin fibroblasts. J. Clin. Invest. 70, 89–97.10.1172/JCI110607Search in Google Scholar
Levade, T., Tempesta, M.C., and Salvayre, R. (1993). The in situ degradation of ceramide, a potential lipid mediator, is not completely impaired in Farber disease. FEBS Lett. 329, 306–312.10.1016/0014-5793(93)80243-NSearch in Google Scholar
Levade, T., Moser, H.W., Fensom, A.H., Harzer, K., Moser, A.B., and Salvayre, R. (1995). Neurodegenerative course in ceramidase deficiency (Farber disease) correlates with the residual lysosomal ceramide turnover in cultured living patient cells. J. Neurol. Sci. 134, 108–114.10.1016/0022-510X(95)00231-0Search in Google Scholar
Levade, T., Leruth, M., Graber, D., Moisand, A., Vermeersch, S., Salvayre, R., and Courtoy, P.J. (1996). In situ assay of acid sphingomyelinase and ceramidase based on LDL-mediated lysosomal targeting of ceramide-labeled sphingomyelin. J. Lipid Res. 37, 2525–2538.10.1016/S0022-2275(20)37457-5Search in Google Scholar
Li, C.M., Hong, S.B., Kopal, G., He, X., Linke, T., Hou, W.S., Koch, J., Gatt, S., Sandhoff, K., and Schuchman, E.H. (1998). Cloning and characterization of the full-length cDNA and genomic sequences encoding murine acid ceramidase. Genomics 50, 267–274.10.1006/geno.1998.5334Search in Google Scholar PubMed
Li, C.M., Park, J.H., He, X., Levy, B., Chen, F., Arai, K., Adler, D.A., Disteche, C.M., Koch, J., Sandhoff, K., et al. (1999). The human acid ceramidase gene (ASAH): structure, chromosomal location, mutation analysis, and expression. Genomics 62, 223–231.10.1006/geno.1999.5940Search in Google Scholar PubMed
Li, C.M., Park, J.H., Simonaro, C.M., He, X., Gordon, R.E., Friedman, A.H., Ehleiter, D., Paris, F., Manova, K., Hepbildikler, S., et al. (2002). Insertional mutagenesis of the mouse acid ceramidase gene leads to early embryonic lethality in homozygotes and progressive lipid storage disease in heterozygotes. Genomics 79, 218–224.10.1006/geno.2002.6686Search in Google Scholar PubMed
Mondal, R.K., Nandi, M., Datta, S., and Hira, M. (2009). Disseminated lipogranulomatosis. Indian Pediatr. 46, 175–177.Search in Google Scholar
Moser, H.W.L.T., Fensom, A. H., Levade, T., Sandhoff, K. (2001). Acid ceramidase deficiency: Farber lipogranulomatosis. In: The Metabolic and Molecular Bases of Inherited Diseases (New York: McGraw-Hill Inc.), pp. 3573–3588.Search in Google Scholar
Peister, A., Mellad, J.A., Larson, B.L., Hall, B.M., Gibson, L.F., and Prockop, D.J. (2004). Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103, 1662–1668.10.1182/blood-2003-09-3070Search in Google Scholar
Quillin, R.C., 3rd, Wilson, G.C., Nojima, H., Freeman, C.M., Wang, J., Schuster, R.M., Blanchard, J.A., Edwards, M.J., Gandhi, C.R., Gulbins, E., et al. (2015). Inhibition of acidic sphingomyelinase reduces established hepatic fibrosis in mice. Hepatol. Res. 45, 305–314.10.1111/hepr.12352Search in Google Scholar
Schuchman, E.H. and Desnick, R.J. (2017). Types A and B Niemann-Pick disease. Mol. Genet. Metab. 120, 27–33.10.1016/j.ymgme.2016.12.008Search in Google Scholar
Shtraizent, N., Eliyahu, E., Park, J.H., He, X., Shalgi, R., and Schuchman, E.H. (2008). Autoproteolytic cleavage and activation of human acid ceramidase. J. Biol. Chem. 283, 11253–11259.10.1074/jbc.M709166200Search in Google Scholar
Sikora, J., Dworski, S., Jones, E.E., Kamani, M.A., Micsenyi, M.C., Sawada, T., Le Faouder, P., Bertrand-Michel, J., Dupuy, A., Dunn, C.K., et al. (2017). Acid ceramidase deficiency in mice results in a broad range of central nervous system abnormalities. Am. J. Pathol. 187, 864–883.10.1016/j.ajpath.2016.12.005Search in Google Scholar
Singh, I., Pahan, K., Khan, M., and Singh, A.K. (1998). Cytokine-mediated induction of ceramide production is redox-sensitive. Implications to proinflammatory cytokine-mediated apoptosis in demyelinating diseases. J. Biol. Chem. 273, 20354–20362.10.1074/jbc.273.32.20354Search in Google Scholar
Sólyom, A., Karabul, N., Hügle, B., Simonaro, C., and Schuchman, E. (2014). Polyarticular arthritis as presenting feature of Farber disease: a lysosomal storage disease involving inflammation. Pediatr. Rheumatol. 12, P285.10.1186/1546-0096-12-S1-P285Search in Google Scholar
Sugita, M., Dulaney, J.T., and Moser, H.W. (1972). Ceramidase deficiency in Farber’s disease (lipogranulomatosis). Science 178, 1100–1102.10.1126/science.178.4065.1100Search in Google Scholar
Sugita, M., Willians, M., Dulaney, J.T., and Moser, H.W. (1975). Ceramidase and ceramide synthesis in human kidney and cerebellum. Description of a new alkaline ceramidase. Biochim. Biophys. Acta 398, 125–131.10.1016/0005-2760(75)90176-9Search in Google Scholar
Teichgräber, V., Ulrich, M., Endlich, N., Riethmüller, J., Wilker, B., De Oliveira-Munding, C.C., van Heeckeren, A.M., Barr, M.L., von Kürthy, G., et al. (2008). Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat. Med. 14, 382–391.10.1038/nm1748Search in Google Scholar PubMed
Torcoletti, M., Petaccia, A., Pinto, R.M., Hladnik, U., Locatelli, F., Agostoni, C., and Corona, F. (2014). Farber disease in infancy resembling juvenile idiopathic arthritis: identification of two new mutations and a good early response to allogeneic haematopoietic stem cell transplantation. Rheumatology (Oxford) 53, 1533–1534.10.1093/rheumatology/keu010Search in Google Scholar PubMed
Tsuboi, K., Sun, Y.X., Okamoto, Y., Araki, N., Tonai, T., and Ueda, N. (2005). Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase. J. Biol. Chem. 280, 11082–11092.10.1074/jbc.M413473200Search in Google Scholar PubMed
Vasiliauskaite-Brooks, I., Sounier, R., Rochaix, P., Bellot, G., Fortier, M., Hoh, F., De Colibus, L., Bechara, C., Saied, E.M., Arenz, C., et al. (2017). Structural insights into adiponectin receptors suggest ceramidase activity. Nature 544, 120–123.10.1038/nature21714Search in Google Scholar PubMed PubMed Central
Yeager, A.M., Uhas, K.A., Coles, C.D., Davis, P.C., Krause, W.L., and Moser, H.W. (2000). Bone marrow transplantation for infantile ceramidase deficiency (Farber disease). Bone Marrow Transplant. 26, 357–363.10.1038/sj.bmt.1702489Search in Google Scholar PubMed
Yu, F.P., Islam, D., Sikora, J., Dworski, S., Gurka, J., Lopez-Vasquez, L., Liu, M., Kuebler, W.M., Levade, T., Zhang, H., et al. (2018). Chronic lung injury and impaired pulmonary function in a mouse model of acid ceramidase deficiency. Am. J. Physiol. Lung Cell. Mol. Physiol. 314, L406–L420.10.1152/ajplung.00223.2017Search in Google Scholar PubMed PubMed Central
Zaugg, P., Djonov, V., Fuchtbauer, E.M., and Draeger, A. (1999). Sorting of murine vascular smooth muscle cells during wound healing in the chicken chorioallantoic membrane. Exp. Cell. Res. 253, 599–606.10.1006/excr.1999.4712Search in Google Scholar PubMed
Zhang, Z., Mandal, A.K., Mital, A., Popescu, N., Zimonjic, D., Moser, A., Moser, H., and Mukherjee, A.B. (2000). Human acid ceramidase gene: novel mutations in Farber disease. Mol. Genet. Metab. 70, 301–309.10.1006/mgme.2000.3029Search in Google Scholar PubMed
Zhou, J., Tawk, M., Tiziano, F.D., Veillet, J., Bayes, M., Nolent, F., Garcia, V., Servidei, S., Bertini, E., Castro-Giner, F., et al. (2012). Spinal muscular atrophy associated with progressive myoclonic epilepsy is caused by mutations in ASAH1. Am. J. Hum. Genet. 91, 5–14.10.1016/j.ajhg.2012.05.001Search in Google Scholar PubMed PubMed Central
Supplementary Material:
The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2018-0170).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Highlight: sphingolipids in infectious biology and immunology
- Sphingolipids in early viral replication and innate immune activation
- The function of sphingomyelinases in mycobacterial infections
- The role of acid sphingomyelinase and modulation of sphingolipid metabolism in bacterial infection
- The neutral sphingomyelinase 2 in T cell receptor signaling and polarity
- Click reactions with functional sphingolipids
- Sphingolipids in inflammatory hypoxia
- CD4+ Foxp3+ regulatory T cell-mediated immunomodulation by anti-depressants inhibiting acid sphingomyelinase
- Pathological manifestations of Farber disease in a new mouse model
- Pulmonary infection of cystic fibrosis mice with Staphylococcus aureus requires expression of α-toxin
- Minireview
- Roles of the nucleotide exchange factor and chaperone Hsp110 in cellular proteostasis and diseases of protein misfolding
- Research Articles/Short Communications
- Proteolysis
- The two cathepsin B-like proteases of Arabidopsis thaliana are closely related enzymes with discrete endopeptidase and carboxydipeptidase activities
Articles in the same Issue
- Frontmatter
- Highlight: sphingolipids in infectious biology and immunology
- Sphingolipids in early viral replication and innate immune activation
- The function of sphingomyelinases in mycobacterial infections
- The role of acid sphingomyelinase and modulation of sphingolipid metabolism in bacterial infection
- The neutral sphingomyelinase 2 in T cell receptor signaling and polarity
- Click reactions with functional sphingolipids
- Sphingolipids in inflammatory hypoxia
- CD4+ Foxp3+ regulatory T cell-mediated immunomodulation by anti-depressants inhibiting acid sphingomyelinase
- Pathological manifestations of Farber disease in a new mouse model
- Pulmonary infection of cystic fibrosis mice with Staphylococcus aureus requires expression of α-toxin
- Minireview
- Roles of the nucleotide exchange factor and chaperone Hsp110 in cellular proteostasis and diseases of protein misfolding
- Research Articles/Short Communications
- Proteolysis
- The two cathepsin B-like proteases of Arabidopsis thaliana are closely related enzymes with discrete endopeptidase and carboxydipeptidase activities