Startseite Pulmonary infection of cystic fibrosis mice with Staphylococcus aureus requires expression of α-toxin
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Pulmonary infection of cystic fibrosis mice with Staphylococcus aureus requires expression of α-toxin

  • Simone Keitsch , Joachim Riethmüller , Matthias Soddemann , Carolin Sehl , Barbara Wilker , Michael J. Edwards , Charles C. Caldwell , Martin Fraunholz , Erich Gulbins und Katrin Anne Becker EMAIL logo
Veröffentlicht/Copyright: 1. Mai 2018

Abstract

Pulmonary infections of cystic fibrosis (CF) patients with Staphylococcus aureus (S. aureus) occur very early in the disease. The molecular details that cause infection-susceptibility of CF patients to and mediate infection with S. aureus are poorly characterized. Therefore, we aimed to identify the role of α-toxin, a major S. aureus toxin, for pulmonary infection of CF mice. Infection with S. aureus JE2 resulted in severe pneumonia in CF mice, while wildtype mice were almost unaffected. Deficiency of α-toxin in JE2-Δhla reduced the pathogenicity of S. aureus in CF mice. However, CF mice were still more susceptible to the mutant S. aureus strain than wildtype mice. The S. aureus JE2 induced a marked increase of ceramide and a downregulation of sphingosine and acid ceramidase expression in bronchi of CF mice. Deletion of α-toxin reduced these changes after infection of CF mice. Similar changes were observed in wildtype mice, but at much lower levels. Our data indicate that expression of α-toxin is a major factor causing S. aureus infections in CF mice. Wildtype S. aureus induces a marked increase of ceramide and a reduction of sphingosine and acid ceramidase expression in bronchial epithelial cells of wildtype and CF mice, changes that determine infection susceptibility.

Acknowledgments

We thank the Network on Antimicrobial Resistance in Staphylococcus aureus (NARSA) Program supported under NIAID/NIH Contract n° HHSN272200700055C for bacterial strains. The study was supported by the GRK 2098 to K.A.B. and E.G. and DFG grants GU 335/33-1 and GU 335/35-1 to E.G. (Funder Id: 10.13039/501100001659). This article is written in the memory of our dear colleague and friend Joachim Riethmüller, who passed away in the summer of 2017.

References

Adams, C., Icheva, V., Deppisch, C., Lauer, J., Herrmann, G., Graepler-Mainka, U., Heyder, S., Gulbins, E., and Riethmueller, J. (2016). Long-term pulmonal therapy of cystic fibrosis-patients with amitriptyline. Cell. Physiol. Biochem. 39, 565–572.10.1159/000445648Suche in Google Scholar PubMed

Becker, K.A., Riethmüller, J., Lüth, A., Döring, G., Kleuser, B., and Gulbins, E. (2010). Acid sphingomyelinase inhibitors normalize pulmonary ceramide and inflammation in cystic fibrosis. Am. J. Respir. Cell. Mol. Biol. 42, 716–724.10.1165/rcmb.2009-0174OCSuche in Google Scholar PubMed

Becker, K.A., Henry, B., Ziobro, R., Tümmler, B., Gulbins, E., and Grassmé, H. (2012). Role of CD95 in pulmonary inflammation and infection in cystic fibrosis. J. Mol. Med. (Berl.) 90, 1011–1023.10.1007/s00109-012-0867-2Suche in Google Scholar PubMed

Bibel, D.J., Aly, R., and Shinefield, H.R. (1992). Antimicrobial activity of sphingosines. J. Invest. Dermatol. 98, 269–273.10.1111/1523-1747.ep12497842Suche in Google Scholar PubMed

Bodas, M., Min, T., Mazur, S., and Vij, N. (2011). Critical modifier role of membrane-cystic fibrosis transmembrane conductance regulator-dependent ceramide signaling in lung injury and emphysema. J. Immunol. 186, 602–613.10.4049/jimmunol.1002850Suche in Google Scholar PubMed PubMed Central

Bonfield, T.L., Konstan, M.W., Burfeind, P., Panuska, J.R., Hilliard, J.B., and Berger, M. (1995). Normal bronchial epithelial cells constitutively produce the anti-inflammatory cytokine interleukin-10, which is downregulated in cystic fibrosis. Am. J. Respir. Cell. Mol. Biol. 13, 257–261.10.1165/ajrcmb.13.3.7544594Suche in Google Scholar PubMed

Brodlie, M., McKean, M.C., Johnson, G.E., Gray, J., Fisher, A.J., Corris, P.A., Lordan, J.L., and Ward, C. (2010). Ceramide is increased in the lower airway epithelium of people with advanced cystic fibrosis lung disease. Am. J. Respir. Crit. Care Med. 182, 369–375.10.1164/rccm.200905-0799OCSuche in Google Scholar PubMed

Bubeck Wardenburg, J., Patel, R.J., and Schneewind, O. (2007). Surface proteins and exotoxins are required for the pathogenesis of Staphylococcus aureus pneumonia. Infect. Immun. 75, 1040–1044.10.1128/IAI.01313-06Suche in Google Scholar PubMed PubMed Central

Caretti, A., Bragonzi, A., Facchini, M., De Fino, I., Riva, C., Gasco, P., Musicanti, C., Casas, J., Fabriàs, G., Ghidoni, R., et al. (2014). Anti-inflammatory action of lipid nanocarrier-delivered myriocin: therapeutic potential in cystic fibrosis. Biochim. Biophys. Acta 1840, 586–594.10.1016/j.bbagen.2013.10.018Suche in Google Scholar PubMed PubMed Central

Caretti, A., Vasso, M., Bonezzi, F.T., Gallina, A., Trinchera, M., Rossi, A., Adami, R., Casas, J., Falleni, M., Tosi, D., et al. (2017). Myriocin treatment of CF lung infection and inflammation: complex analyses for enigmatic lipids. Naunyn-Schmiedeberg‘s Arch. Pharmacol. 390, 775–790.10.1007/s00210-017-1373-4Suche in Google Scholar PubMed

Charizopoulou, N., Jansen, S., Dorsch, M., Stanke, F., Dorin, J.R., Hedrich, H.J., and Tümmler, B. (2004). Instability of the insertional mutation in CftrTgH(neoim)Hgu cystic fibrosis mouse model. BMC Genet. 5, 6.10.1186/1471-2156-5-6Suche in Google Scholar PubMed PubMed Central

Charizopoulou, N., Wilke, M., Dorsch, M., Bot, A., Jorna, H., Jansen, S., Stanke, F., Hedrich, H.J., de Jonge, H.R., and Tümmler, B. (2006). Spontaneous rescue from cystic fibrosis in a mouse model. BMC Genet. 7, 18.10.1186/1471-2156-7-18Suche in Google Scholar PubMed PubMed Central

Di, A., Brown, M.E., Deriy, L.V., Li, C., Szeto, F.L., Chen, Y., Huang, P., Tong, J., Naren, A.P., Bindokas, V., et al. (2006). Cftr regulates phagosome acidification in macrophages and alters bactericidal activity. Nat. Cell Biol. 8, 933–944.10.1038/ncb1456Suche in Google Scholar PubMed

Elborn, J.S. (2016). Cystic fibrosis. Lancet 388, 2519–2531.10.1201/b13421-39Suche in Google Scholar

Esen, M., Schreiner, B., Jendrossek, V., Lang, F., Fassbender, K., Grassmé, H., and Gulbins, E. (2001). Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis 6, 431–439.10.1023/A:1012445925628Suche in Google Scholar

Fey, P.D., Endres, J.L., Yajjala, V.K., Widhelm, T.J., Boissy, R.J., Bose, J.L., and Bayles, K.W. (2013). A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. MBio 4, e00537–e00512.10.1128/mBio.00537-12Suche in Google Scholar PubMed PubMed Central

Fischer, C.L., Drake, D.R., Dawson, D.V., Blanchette, D.R., Brogden, K.A., and Wertz, P.W. (2012). Antibacterial activity of sphingoid bases and fatty acids against gram-positive and gram-negative bacteria. Antimicrob. Agents Chemother. 56, 1157–1161.10.1128/AAC.05151-11Suche in Google Scholar PubMed PubMed Central

Forbes, A.R. and Horrigan, R.W. (1977). Mucociliary flow in the trachea during anesthesia with enflurane, ether, nitrous oxide, and morphine. Anesthesiology 146, 319–321.10.1097/00000542-197705000-00002Suche in Google Scholar PubMed

Garić, D., De Sanctis, J.B., Wojewodka, G., Houle, D., Cupri, S., Abu-Arish, A., Hanrahan, J.W., Hajduch, M., Matouk, E., and Radzioch, D. (2017). Fenretinide differentially modulates the levels of long- and very long-chain ceramidesby downregulating Cers5 enzyme: evidence from bench to bedside. J. Mol. Med. (Berl). 95, 1053–1064.10.1007/s00109-017-1564-ySuche in Google Scholar PubMed

Grassmé, H., Kirschnek, S., Riethmueller, J., Riehle, A., von Kürthy, G., Lang, F., Weller, M., and Gulbins, E. (2000). CD95/CD95 ligand interactions on epithelial cells in host defense to Pseudomonas aeruginosa. Science 290, 527–530.10.1126/science.290.5491.527Suche in Google Scholar PubMed

Grassmé, H., Jekle, A., Riehle, A., Schwarz, H., Berger, J., Sandhoff, K., Kolesnick, R., and Gulbins, E. (2001). CD95 signaling via ceramide-rich membrane rafts. J. Biol. Chem. 276, 20589–20596.10.1074/jbc.M101207200Suche in Google Scholar PubMed

Grassmé, H., Jendrossek, V., Riehle, A., von Kurthy, G., Berger, J., Schwarz, H., Weller, M., Kolesnick, R., and Gulbins, E. (2003). Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat. Med. 9, 322–330.10.1038/nm823Suche in Google Scholar PubMed

Grassmé, H., Henry, B., Ziobro, R., Becker, K.A., Riethmüller, J., Gardner, A., Seitz, A.P., Steinmann, J., Lang, S., Ward, C., et al. (2017). β1-Integrin accumulates in cystic fibrosis luminal airway epithelial membranes and decreases sphingosine, promoting bacterial infections. Cell. Host. Microbe 21, 707–718.10.1016/j.chom.2017.05.001Suche in Google Scholar PubMed PubMed Central

Gulbins, E., Palmada, M., Reichel, M., Lüth, A., Böhmer, C., Amato, D., Müller, C.P., Tischbirek, C.H., Groemer, T.W., Tabatabai, G., et al. (2013). Acid sphingomyelinase/ceramide system mediates effects of antidepressant drugs. Nat. Med. 19, 934–938.10.1038/nm.3214Suche in Google Scholar PubMed

Hurwitz, R., Ferlinz, K., and Sandhoff, K. (1994). The tricyclic anti-depressant desipramine causes proteolytic degradation of lysosomal sphingo-myelinase in human fibroblasts. Biol. Chem. Hoppe-Seyler 375, 447–450.10.1515/bchm3.1994.375.7.447Suche in Google Scholar PubMed

Inoshima, I., Inoshima, N., Wilke, G.A., Powers, M.E., Frank, K.M., Wang, Y., and Bubeck Wardenburg, J. (2011). A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat. Med. 17, 1310–1314.10.1038/nm.2451Suche in Google Scholar PubMed PubMed Central

Inoshima, N., Wang, Y., and Bubeck Wardenburg, J. (2012). Genetic requirement for ADAM10 in severe Staphylococcus aureus skin infection. J. Invest. Dermatol. 132, 1513–1516.10.1038/jid.2011.462Suche in Google Scholar PubMed PubMed Central

Inoue, H., Massion, P.P., Ueki, I.F., Grattan, K.M., Hara, M., Dohrman, A.F., Chan, B., Lausier, J.A., Golden, J.A., and Nadel, J.A. (1994). Pseudomonas stimulates interleukin-8 mRNA expression selectively in airway epithelium, in gland ducts, and in recruited neutrophils. Am. J. Respir. Cell. Mol. Biol. 11, 651–663.10.1165/ajrcmb.11.6.7946394Suche in Google Scholar PubMed

Kerem, B., Rommens, J.M., Buchanan, J.A., Markiewicz, D., Cox, T.K., Chakravarti, A., Buchwald, M., and Tsui, L.C. (1989). Identification of the cystic fibrosis gene: genetic analysis. Science 245, 1073–1080.10.1126/science.2570460Suche in Google Scholar PubMed

Khan, T.Z., Wagener, J.S., Bost, T., Martinez, J., Accurso, F.J., and Riches, D.W. (1995). Early pulmonary inflammation in infants with cystic fibrosis. Am. J. Respir. Crit. Care Med. 151, 1075–1082.10.1164/ajrccm.151.4.7697234Suche in Google Scholar

Kornhuber, J., Tripal, P., Reichel, M., Terfloth, L., Bleich, S., Wiltfang, J., and Gulbins, E. (2008). Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model. J. Med. Chem. 51, 219–237.10.1021/jm070524aSuche in Google Scholar PubMed

Kornhuber, J., Tripal, P., Reichel, M., Mühle, C., Rhein, C., Mühlbacher, M., Groemer, T.W., and Gulbins, E. (2010). Functional inhibitors of acid sphingomyelinase (FIASMAs): a novel pharmacological group of drugs with broad clinical applications. Cell. Physiol. Biochem. 26, 9–20.10.1159/000315101Suche in Google Scholar

Li, C., Wu, Y., Orian-Rousseau, V., Zhang, Y., Gulbins, E., and Grassmé, H. (2017a). Regulation of Staphylococcus aureus infection of macrophages by CD44, reactive oxygen species and acid sphingomyelinase. Antioxid. Redox Signal. doi: 10.1089/ars.2017.6994.10.1089/ars.2017.6994Suche in Google Scholar

Li, C., Wu, Y., Riehle, A., Ma, J., Kamler, M., Gulbins, E., and Grassmé, H. (2017b). Staphylococcus survives in cystic fibrosis macrophages forming a reservoir for chronic pneumonia. Infect. Immun. 85, e00883–e00816.10.1128/IAI.00883-16Suche in Google Scholar

Locke, L.W., Myerburg, M.M., Weiner, D.J., Markovetz, M.R., Parker, R.S., Muthukrishnan, A., Weber, L., Czachowski, M.R., Lacy, R.T., Pilewski, J.M., et al. (2016). Pseudomonas infection and mucociliary and absorptive clearance in the cystic fibrosis lung. Eur. Respir. J. 47, 1392–1401.10.1183/13993003.01880-2015Suche in Google Scholar

Lyczak, J.B., Cannon, C.L., and Pier, G.B. (2001). Lung infections associated with cystic fibrosis. Clin. Microbiol. Rev. 15, 194–222.10.1128/CMR.15.2.194-222.2002Suche in Google Scholar

Matsui, H., Grubb, B.R., Tarran, R., Randell, S.H., Gatzy, J.T., Davis, C.W., and Boucher, R.C. (1998). Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95, 1005–1015.10.1016/S0092-8674(00)81724-9Suche in Google Scholar

Matsui, H., Verghese, M.W., Kesimer, M., Schwab, U.E., Randell, S.H., Sheehan, J.K., Grubb, B.R., and Boucher, R.C. (2005). Reduced three-dimensional motility in dehydrated airway mucus prevents neutrophil capture and killing bacteria on airway epithelial surfaces. J. Immunol. 175, 1090–1099.10.4049/jimmunol.175.2.1090Suche in Google Scholar PubMed

Nährlich, L., Mainz, A., Unger, K., Graepler-Mainka, U., Hector, A., Heyder, S., Stern, M., Döring, G., Gulbins, E., and Riethmüller, J. (2013). Therapy of CF-patients with amitriptyline and placebo – a randomised, double-blind, placebo-controlled phase IIb multicenter, cohort study. Cell. Physiol. Biochem. 31, 505–512.10.1159/000350071Suche in Google Scholar PubMed

Oceandy, D., McMorran, B.J., Smith, S.N., Schreiber, R., Kunzelmann, K., Alton, E.W., Hume, D.A., and Wainwright, B.J. (2002). Gene complementation of airway epithelium in the cystic fibrosis mouse is necessary and sufficient to correct the pathogen clearance and inflammatory abnormalities. Hum. Mol. Genet. 11, 1059–1067.10.1093/hmg/11.9.1059Suche in Google Scholar PubMed

Okino, N., He, X., Gatt, S., Sandhoff, K., Ito, M., and Schuchman, E.H. (2003). The reverse activity of human acid ceramidase. J. Biol. Chem. 278, 29948–29953.10.1074/jbc.M303310200Suche in Google Scholar PubMed

Peng, H., Li, C., Kadow, S., Henry, B.D., Steinmann, J., Becker, K.A., Riehle, A., Beckmann, N., Wilker, B., Li, P.L., et al. (2015). Acid sphingomyelinase inhibition protects mice from lung edema and lethal Staphylococcus aureus sepsis. J. Mol. Med. (Berl). 93, 675–689.10.1007/s00109-014-1246-ySuche in Google Scholar PubMed PubMed Central

Pewzner-Jung, Y., Tavakoli Tabazavareh, S., Grassmé, H., Becker, K.A., Japtok, L., Steinmann, J., Joseph, T., Lang, S., Tuemmler, B., Schuchman, E.H., et al. (2014). Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa. EMBO Mol. Med. 6, 1205–1214.10.15252/emmm.201404075Suche in Google Scholar PubMed PubMed Central

Powers, M.E., Kim, H.K., Wang, Y., and Bubeck Wardenburg, J. (2012). ADAM10 mediates vascular injury induced by Staphylococcus aureus α-hemolysin. J. Infect. Dis. 206, 352–356.10.1093/infdis/jis192Suche in Google Scholar PubMed PubMed Central

Quinn, R.A., Lim, Y.W., Mak, T.D., Whiteson, K., Furlan, M., Conrad, D., Rohwer, F., and Dorrestein, P. (2016). Metabolomics of pulmonary exacerbations reveals the personalized nature of cystic fibrosis disease. Peer J. 4, e2174.10.7717/peerj.2174Suche in Google Scholar PubMed PubMed Central

Riethmüller, J., Anthonysamy, J., Serra, E., Schwab, M., Döring, G., and Gulbins, E. (2009). Therapeutic efficacy and safety of amitriptyline in patients with cystic fibrosis. Cell. Physiol. Biochem. 24, 65–72.10.1159/000227814Suche in Google Scholar PubMed

Riordan, J.R., Rommens, J.M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavsic, N., Chou, J.L., et al. (1989). Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073.10.1126/science.2475911Suche in Google Scholar PubMed

Rommens, J.M., Iannuzzi, M.C., Kerem, B., Drumm, M.L., Melmer, G., Dean, M., Rozmahel, R., Cole, J.L., Kennedy, D., Hidaka, N., et al. (1989). Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245, 1059–1065.10.1097/00006254-199003000-00005Suche in Google Scholar

Schultz, M.J., Rijneveld, A.W., Florquin, S., Edwards, C.K., Dinarello, C.A., and van der Poll, T. (2002). Role of interleukin-1 in the pulmonary immune response during Pseudomonas aeruginosa pneumonia. Am. J. Physiol. Lung. Cell. Mol. Physiol. 282, L285–L290.10.1152/ajplung.00461.2000Suche in Google Scholar PubMed

Tabary, O., Escotte, S., Couetil, J.P., Hubert, D., Dusser, D., Puchelle, E., and Jacquot, J. (2001). Relationship between IκBα deficiency, NF-κB activity and interleukin-8 production in CF human airway epithelial cells. Pflüger’s Arch. 443, S40–S44.10.1007/s004240100642Suche in Google Scholar PubMed

Tavakoli Tabazavareh, S., Seitz, A., Jernigan, P., Sehl, C., Keitsch, S., Lang, S., Kahl, B.C., Edwards, M., Grassmé, H., Gulbins, E., et al. (2016). Lack of sphingosine causes susceptibility to pulmonary Staphylococcus aureus infections in cystic fibrosis. Cell. Physiol. Biochem. 38, 2094–2102.10.1159/000445567Suche in Google Scholar PubMed

Teichgräber, V., Ulrich, M., Endlich, N., Riethmüller, J., Wilker, B., De Oliveira-Munding, C.C., van Heeckeren, A.M., Barr, M.L., von Kürthy, G., Schmid, K.W., et al. (2008). Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat. Med. 14, 382–391.10.1038/nm1748Suche in Google Scholar PubMed

Tirouvanziam, R., de Bentzmann, S., Hubeau, C., Hinnrasky, J., Jacquot, J., Peault, B., and Puchelle, E. (2000). Inflammation and infection in naive human cystic fibrosis airway grafts. Am. J. Respir. Cell. Mol. Biol. 23, 121–127.10.1165/ajrcmb.23.2.4214Suche in Google Scholar PubMed

Ulrich, M., Worlitzsch, D., Viglio, S., Siegmann, N., Iadarola, P., Shute, J.K., Geiser, M., Pier, G.B., Friedel, G., Barr, M.L., et al. (2010). Alveolar inflammation in cystic fibrosis. J. Cyst. Fibros. 9, 217–227.10.1016/j.jcf.2010.03.001Suche in Google Scholar PubMed PubMed Central

Verhaeghe, C., Delbecque, K., de Leval, L., Oury, C., and Bours, V. (2007). Early inflammation in the airways of a cystic fibrosis foetus. J. Cyst. Fibros. 6, 304–308.10.1016/j.jcf.2006.12.001Suche in Google Scholar PubMed

Wilke, G.A. and Bubeck Wardenburg, J. (2010). Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus α-hemolysin-mediated cellular injury. Proc. Natl. Acad. Sci. USA 107, 13473–13478.10.1073/pnas.1001815107Suche in Google Scholar PubMed PubMed Central

Zhang, Y., Li, X., Grassmé, H., Döring, G., and Gulbins, E. (2009). Alterations in ceramide concentration and pH determine the release of reactive oxygen species by Cftr-deficient macrophages on infection. J. Immunol. 184, 5104–5111.10.4049/jimmunol.0902851Suche in Google Scholar PubMed

Received: 2018-02-18
Accepted: 2018-03-28
Published Online: 2018-05-01
Published in Print: 2018-09-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2018-0161/html?lang=de
Button zum nach oben scrollen