Abstract
Small RNAs govern almost every biological process in eukaryotes associating with the Argonaute (AGO) proteins to form the RNA-induced silencing complex (mRISC). AGO proteins constitute the core of RISCs with different members having variety of protein-binding partners and biochemical properties. This review focuses on the AGO subfamily of the AGOs that are ubiquitously expressed and are associated with small RNAs. The structure, function and role of the AGO proteins in the cell is discussed in detail.
Funding: Indian Council of Medical Research (grant number: 3/1/3/JRF-2012/HRD-29(32197)).
References
Adams, B.D., Claffey, K.P., and White, B.A. (2009). Argonaute-2 expression is regulated by epidermal growth factor receptor and mitogen-activated protein kinase signaling and correlates with a transformed phenotype in breast cancer cells. Endocrinology 150, 14–23.10.1210/en.2008-0984Suche in Google Scholar PubMed PubMed Central
Ameres, S.L., Martinez, J., and Schroeder, R. (2007). Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130, 101–112.10.1016/j.cell.2007.04.037Suche in Google Scholar PubMed
Ameyar-Zazoua, M., Rachez, C., Souidi, M., Robin, P., Fritsch, L., Young, R., Morozova, N., Fenouil, R., Descostes, N., and Andrau, J.-C. (2012). Argonaute proteins couple chromatin silencing to alternative splicing. Nat. Struct. Mol. Biol. 19, 998–1004.10.1038/nsmb.2373Suche in Google Scholar PubMed
Asai, T., Suzuki, Y., Matsushita, S., Yonezawa, S., Yokota, J., Katanasaka, Y., Ishida, T., Dewa, T., Kiwada, H., and Nango, M. (2008). Disappearance of the angiogenic potential of endothelial cells caused by Argonaute2 knockdown. Biochem. Biophys. Res. Commun. 368, 243–248.10.1016/j.bbrc.2008.01.074Suche in Google Scholar PubMed
Babiarz, J.E., Ruby, J.G., Wang, Y., Bartel, D.P., and Blelloch, R. (2008). Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, dicer-dependent small RNAs. Genes Dev. 22, 2773–2785.10.1101/gad.1705308Suche in Google Scholar PubMed PubMed Central
Bail, S., Swerdel, M., Liu, H., Jiao, X., Goff, L.A., Hart, R.P., and Kiledjian, M. (2010). Differential regulation of microRNA stability. RNA 16, 1032–1039.10.1261/rna.1851510Suche in Google Scholar PubMed PubMed Central
Balakumaran, A., Robey, P.G., Fedarko, N., and Landgren, O. (2010). Bone marrow microenvironment in myelomagenesis: its potential role in early diagnosis. Expert Rev. Mol. Diagn. 10, 465–480.10.1586/erm.10.31Suche in Google Scholar PubMed PubMed Central
Barent, R.L., Nair, S.C., Carr, D.C., Ruan, Y., Rimerman, R.A., Fulton, J., Zhang, Y., and Smith, D.F. (1998). Analysis of FKBP51/FKBP52 chimeras and mutants for Hsp90 binding and association with progesterone receptor complexes. Mol. Endocrinol. 12, 342–354.10.1210/mend.12.3.0075Suche in Google Scholar PubMed
Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233.10.1016/j.cell.2009.01.002Suche in Google Scholar PubMed PubMed Central
Baumberger, N. and Baulcombe, D. (2005). Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc. Natl. Acad. Sci. USA 102, 11928–11933.10.1073/pnas.0505461102Suche in Google Scholar PubMed PubMed Central
Behm-Ansmant, I., Rehwinkel, J., Doerks, T., Stark, A., Bork, P., and Izaurralde, E. (2006). mRNA degradation by miRNAs and GW182 requires both CCR4: NOT deadenylase and DCP1: DCP2 decapping complexes. Genes Dev. 20, 1885–1898.10.1101/gad.1424106Suche in Google Scholar PubMed PubMed Central
Benhamed, M., Herbig, U., Ye, T., Dejean, A., and Bischof, O. (2012). Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nat. Cell Biol. 14, 266–275.10.1038/ncb2443Suche in Google Scholar PubMed PubMed Central
Bies-Etheve, N., Pontier, D., Lahmy, S., Picart, C., Vega, D., Cooke, R., and Lagrange, T. (2009). RNA-directed DNA methylation requires an AGO4-interacting member of the SPT5 elongation factor family. EMBO Rep. 10, 649–654.10.1038/embor.2009.31Suche in Google Scholar PubMed PubMed Central
Bohmert, K., Camus, I., Bellini, C., Bouchez, D., Caboche, M., and Benning, C. (1998). AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 17, 170–180.10.1093/emboj/17.1.170Suche in Google Scholar PubMed PubMed Central
Brennecke, J., Stark, A., Russell, R.B., and Cohen, S.M. (2005). Principles of microRNA–target recognition. PLoS Biol. 3, e85.10.1371/journal.pbio.0030085Suche in Google Scholar PubMed PubMed Central
Bronevetsky, Y., Villarino, A.V., Eisley, C.J., Barbeau, R., Barczak, A.J., Heinz, G.A., Kremmer, E., Heissmeyer, V., McManus, M.T., and Erle, D.J. (2013). T cell activation induces proteasomal degradation of Argonaute and rapid remodeling of the microRNA repertoire. J. Exp. Med. 210, 417–432.10.1084/jem.20111717Suche in Google Scholar PubMed PubMed Central
Carmell, M.A., Xuan, Z., Zhang, M.Q., and Hannon, G.J. (2002). The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16, 2733–2742.10.1101/gad.1026102Suche in Google Scholar PubMed
Carrello, A., Ingley, E., Minchin, R.F., Tsai, S., and Ratajczak, T. (1999). The common tetratricopeptide repeat acceptor site for steroid receptor-associated immunophilins and hop is located in the dimerization domain of Hsp90. J. Biol. Chem. 274, 2682–2689.10.1074/jbc.274.5.2682Suche in Google Scholar PubMed
Castel, S.E. and Martienssen, R.A. (2013). RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat. Rev. Genet. 14, 100–112.10.1038/nrg3355Suche in Google Scholar PubMed PubMed Central
Cernilogar, F.M., Onorati, M.C., Kothe, G.O., Burroughs, A.M., Parsi, K.M., Breiling, A., Sardo, F.L., Saxena, A., Miyoshi, K., and Siomi, H. (2011). Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature 480, 391–395.10.1038/nature10492Suche in Google Scholar PubMed PubMed Central
Chak, L.-L. and Okamura, K. (2014). Argonaute-dependent small RNAs derived from single-stranded, non-structured precursors. Front Genet. 5, 172.10.3389/fgene.2014.00172Suche in Google Scholar PubMed PubMed Central
Chandradoss, S.D., Schirle, N.T., Szczepaniak, M., MacRae, I.J., and Joo, C. (2015). A dynamic search process underlies microRNA targeting. Cell 162, 96–107.10.1016/j.cell.2015.06.032Suche in Google Scholar PubMed PubMed Central
Chang, J.H., Xiang, S., and Tong, L. (2012). Structures of 5′–3′ exoribonucleases. The Enzymes 31, 115–129.10.1016/B978-0-12-404740-2.00006-9Suche in Google Scholar PubMed
Chatterjee, S., Fasler, M., Büssing, I., and Großhans, H. (2011). Target-mediated protection of endogenous microRNAs in C. elegans. Dev. Cell 20, 388–396.10.1016/j.devcel.2011.02.008Suche in Google Scholar PubMed
Chatterjee, S. and Großhans, H. (2009). Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 461, 546–549.10.1038/nature08349Suche in Google Scholar PubMed
Cheloufi, S., Dos Santos, C.O., Chong, M.M., and Hannon, G.J. (2010). A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584–589.10.1038/nature09092Suche in Google Scholar PubMed PubMed Central
Chen, J., Lai, F., and Niswander, L. (2012). The ubiquitin ligase mLin41 temporally promotes neural progenitor cell maintenance through FGF signaling. Genes Dev. 26, 803–815.10.1101/gad.187641.112Suche in Google Scholar PubMed PubMed Central
Chen, Z., Lai, T.-C., Jan, Y.-H., Lin, F.-M., Wang, W.-C., Xiao, H., Wang, Y.-T., Sun, W., Cui, X., and Li, Y.-S. (2013). Hypoxia-responsive miRNAs target argonaute 1 to promote angiogenesis. J. Clin. Invest. 123, 1057–1067.10.1172/JCI65344Suche in Google Scholar PubMed PubMed Central
Chendrimada, T.P., Gregory, R.I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K., and Shiekhattar, R. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744.10.1038/nature03868Suche in Google Scholar PubMed PubMed Central
Chendrimada, T.P., Finn, K.J., Ji, X., Baillat, D., Gregory, R.I., Liebhaber, S.A., Pasquinelli, A.E., and Shiekhattar, R. (2007). MicroRNA silencing through RISC recruitment of eIF6. Nature 447, 823–828.10.1038/nature05841Suche in Google Scholar PubMed
Chu, C.-Y. and Rana, T.M. (2006). Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol. 4, e210.10.1371/journal.pbio.0040210Suche in Google Scholar PubMed PubMed Central
Cifuentes, D., Xue, H., Taylor, D.W., Patnode, H., Mishima, Y., Cheloufi, S., Ma, E., Mane, S., Hannon, G.J., and Lawson, N.D. (2010). A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328, 1694–1698.10.1126/science.1190809Suche in Google Scholar PubMed PubMed Central
Cikaluk, D.E., Tahbaz, N., Hendricks, L.C., DiMattia, G.E., Hansen, D., Pilgrim, D., and Hobman, T.C. (1999). GERp95, a membrane-associated protein that belongs to a family of proteins involved in stem cell differentiation. Mol. Biol. Cell 10, 3357–3372.10.1091/mbc.10.10.3357Suche in Google Scholar PubMed PubMed Central
Cole, C., Sobala, A., Lu, C., Thatcher, S.R., Bowman, A., Brown, J.W., Green, P.J., Barton, G.J., and Hutvagner, G. (2009). Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 15, 2147–2160.10.1261/rna.1738409Suche in Google Scholar PubMed PubMed Central
Couvillion, M.T., Lee, S.R., Hogstad, B., Malone, C.D., Tonkin, L.A., Sachidanandam, R., Hannon, G.J., and Collins, K. (2009). Sequence, biogenesis, and function of diverse small RNA classes bound to the Piwi family proteins of Tetrahymena thermophila. Genes Dev. 23, 2016–2032.10.1101/gad.1821209Suche in Google Scholar PubMed PubMed Central
Couvillion, M.T., Sachidanandam, R., and Collins, K. (2010). A growth-essential Tetrahymena Piwi protein carries tRNA fragment cargo. Genes Dev. 24, 2742–2747.10.1101/gad.1996210Suche in Google Scholar PubMed PubMed Central
Czech, B. and Hannon, G.J. (2011). Small RNA sorting: matchmaking for Argonautes. Nat. Rev. Genet. 12, 19–31.10.1038/nrg2916Suche in Google Scholar PubMed PubMed Central
Czech, B., Malone, C.D., Zhou, R., Stark, A., Schlingeheyde, C., Dus, M., Perrimon, N., Kellis, M., Wohlschlegel, J.A., and Sachidanandam, R. (2008). An endogenous small interfering RNA pathway in Drosophila. Nature 453, 798–802.10.1038/nature07007Suche in Google Scholar PubMed PubMed Central
Czech, B., Zhou, R., Erlich, Y., Brennecke, J., Binari, R., Villalta, C., Gordon, A., Perrimon, N., and Hannon, G.J. (2009). Hierarchical rules for Argonaute loading in Drosophila. Mol. Cell 36, 445–456.10.1016/j.molcel.2009.09.028Suche in Google Scholar PubMed PubMed Central
Dahanukar, A., Walker, J.A., and Wharton, R.P. (1999). Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila. Mol. Cell 4, 209–218.10.1016/S1097-2765(00)80368-8Suche in Google Scholar
Das, S.K., Sokhi, U.K., Bhutia, S.K., Azab, B., Su, Z.-Z., Sarkar, D., and Fisher, P.B. (2010). Human polynucleotide phosphorylase selectively and preferentially degrades microRNA-221 in human melanoma cells. Proc. Natl. Acad. Sci. USA 107, 11948–11953.10.1073/pnas.0914143107Suche in Google Scholar PubMed PubMed Central
Diederichs, S. and Haber, D.A. (2007). Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131, 1097–1108.10.1016/j.cell.2007.10.032Suche in Google Scholar PubMed
Doench, J.G. and Sharp, P.A. (2004). Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511.10.1101/gad.1184404Suche in Google Scholar PubMed PubMed Central
El-Shami, M., Pontier, D., Lahmy, S., Braun, L., Picart, C., Vega, D., Hakimi, M.-A., Jacobsen, S.E., Cooke, R., and Lagrange, T. (2007). Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes Dev. 21, 2539–2544.10.1101/gad.451207Suche in Google Scholar PubMed PubMed Central
Elkayam, E., Kuhn, C.-D., Tocilj, A., Haase, A.D., Greene, E.M., Hannon, G.J., and Joshua-Tor, L. (2012). The structure of human argonaute-2 in complex with miR-20a. Cell 150, 100–110.10.1016/j.cell.2012.05.017Suche in Google Scholar PubMed PubMed Central
Ender, C. and Meister, G. (2010). Argonaute proteins at a glance. J. Cell Sci. 123, 1819–1823.10.1242/jcs.055210Suche in Google Scholar PubMed
Endo, Y., Iwakawa, H.O., and Tomari, Y. (2013). Arabidopsis ARGONAUTE7 selects miR390 through multiple checkpoints during RISC assembly. EMBO Rep. 14, 652–658.10.1038/embor.2013.73Suche in Google Scholar PubMed PubMed Central
Eulalio, A., Huntzinger, E., and Izaurralde, E. (2008). GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat. Struct. Mol. Biol. 15, 346–353.10.1038/nsmb.1405Suche in Google Scholar PubMed
Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.10.1038/35888Suche in Google Scholar PubMed
Flores, O., Nakayama, S., Whisnant, A.W., Javanbakht, H., Cullen, B.R., and Bloom, D.C. (2013). Mutational inactivation of herpes simplex virus 1 microRNAs identifies viral mRNA targets and reveals phenotypic effects in culture. J. Virol. 87, 6589–6603.10.1128/JVI.00504-13Suche in Google Scholar PubMed PubMed Central
Förstemann, K., Horwich, M.D., Wee, L., Tomari, Y., and Zamore, P.D. (2007). Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. Cell 130, 287–297.10.1016/j.cell.2007.05.056Suche in Google Scholar PubMed PubMed Central
Francia, S., Michelini, F., Saxena, A., Tang, D., de Hoon, M., Anelli, V., Mione, M., Carninci, P., and di Fagagna, F.D.A. (2012). Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature 488, 231–235.10.1038/nature11179Suche in Google Scholar PubMed PubMed Central
Frank, F., Sonenberg, N., and Nagar, B. (2010). Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465, 818–822.10.1038/nature09039Suche in Google Scholar PubMed
Frank, F., Hauver, J., Sonenberg, N., and Nagar, B. (2012). Arabidopsis Argonaute MID domains use their nucleotide specificity loop to sort small RNAs. EMBO J. 31, 3588–3595.10.1038/emboj.2012.204Suche in Google Scholar PubMed PubMed Central
Friend, K., Campbell, Z.T., Cooke, A., Kroll-Conner, P., Wickens, M.P., and Kimble, J. (2012). A conserved PUF–Ago–eEF1A complex attenuates translation elongation. Nat. Struct. Mol. Biol. 19, 176–183.10.1038/nsmb.2214Suche in Google Scholar PubMed PubMed Central
Frohn, A., Eberl, H.C., Stöhr, J., Glasmacher, E., Rüdel, S., Heissmeyer, V., Mann, M., and Meister, G. (2012). Dicer-dependent and- independent Argonaute 2 protein interaction networks in mammalian cells. Mol. Cell Proteomics 11, 1442–1456.10.1074/mcp.M112.017756Suche in Google Scholar PubMed PubMed Central
Ghildiyal, M., Xu, J., Seitz, H., Weng, Z., and Zamore, P.D. (2010). Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA 16, 43–56.10.1261/rna.1972910Suche in Google Scholar PubMed PubMed Central
Gibbings, D.J., Ciaudo, C., Erhardt, M., and Voinnet, O. (2009). Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell Biol. 11, 1143–1149.10.1038/ncb1929Suche in Google Scholar PubMed
Gregory, R.I., Chendrimada, T.P., Cooch, N., and Shiekhattar, R. (2005). Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631–640.10.1016/j.cell.2005.10.022Suche in Google Scholar PubMed
Grimson, A., Farh, K.K.-H., Johnston, W.K., Garrett-Engele, P., Lim, L.P., and Bartel, D.P. (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105.10.1016/j.molcel.2007.06.017Suche in Google Scholar PubMed PubMed Central
Gu, S., Jin, L., Zhang, F., Huang, Y., Grimm, D., Rossi, J.J., and Kay, M.A. (2011). Thermodynamic stability of small hairpin RNAs highly influences the loading process of different mammalian Argonautes. Proc. Natl. Acad. Sci. USA 108, 9208–9213.10.1073/pnas.1018023108Suche in Google Scholar PubMed PubMed Central
Guenther, U.-P., Yandek, L.E., Niland, C.N., Campbell, F.E., Anderson, D., Anderson, V.E., Harris, M.E., and Jankowsky, E. (2013). Hidden specificity in an apparently nonspecific RNA-binding protein. Nature 502, 385–388.10.1038/nature12543Suche in Google Scholar PubMed PubMed Central
Haase, A.D., Jaskiewicz, L., Zhang, H., Lainé, S., Sack, R., Gatignol, A., and Filipowicz, W. (2005). TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep. 6, 961–967.10.1038/sj.embor.7400509Suche in Google Scholar PubMed PubMed Central
Haley, B. and Zamore, P.D. (2004). Kinetic analysis of the RNAi enzyme complex. Nat. Struct. Mol. Biol. 11, 599–606.10.1038/nsmb780Suche in Google Scholar PubMed
Halic, M. and Moazed, D. (2010). Dicer-independent primal RNAs trigger RNAi and heterochromatin formation. Cell 140, 504–516.10.1016/j.cell.2010.01.019Suche in Google Scholar PubMed PubMed Central
Hammell, C.M., Lubin, I., Boag, P.R., Blackwell, T.K., and Ambros, V. (2009). nhl-2 Modulates microRNA activity in Caenorhabditis elegans. Cell 136, 926–938.10.1016/j.cell.2009.01.053Suche in Google Scholar PubMed PubMed Central
Hatanaka, K., Shimizu, K., Asai, T., and Oku, N. (2008). [Antineovascular gene therapy by Ago2 knockdown]. Yakugaku zasshi 128, 1567–1575. (in Japanese).10.1248/yakushi.128.1567Suche in Google Scholar PubMed
Hauptmann, J., Dueck, A., Harlander, S., Pfaff, J., Merkl, R., and Meister, G. (2013). Turning catalytically inactive human Argonaute proteins into active slicer enzymes. Nat. Struct. Mol. Biol. 20, 814–817.10.1038/nsmb.2577Suche in Google Scholar PubMed
Haussecker, D., Huang, Y., Lau, A., Parameswaran, P., Fire, A.Z., and Kay, M.A. (2010). Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16, 673–695.10.1261/rna.2000810Suche in Google Scholar PubMed PubMed Central
Hawkins, P.G., Santoso, S., Adams, C., Anest, V., and Morris, K.V. (2009). Promoter targeted small RNAs induce long-term transcriptional gene silencing in human cells. Nucleic Acids Res. 37, 2984–2995.10.1093/nar/gkp127Suche in Google Scholar PubMed PubMed Central
Ho, J.D., Metcalf, J.L., Yan, M.S., Turgeon, P.J., Wang, J.J., Chalsev, M., Petruzziello-Pellegrini, T.N., Tsui, A.K., He, J.Z., and Dhamko, H. (2012). Functional importance of Dicer protein in the adaptive cellular response to hypoxia. J. Biol. Chem. 287, 29003–29020.10.1074/jbc.M112.373365Suche in Google Scholar PubMed PubMed Central
Höck, J., Weinmann, L., Ender, C., Rüdel, S., Kremmer, E., Raabe, M., Urlaub, H., and Meister, G. (2007). Proteomic and functional analysis of Argonaute-containing mRNA–protein complexes in human cells. EMBO Rep. 8, 1052–1060.10.1038/sj.embor.7401088Suche in Google Scholar PubMed PubMed Central
Holen, T., Amarzguioui, M., Babaie, E., and Prydz, H. (2003). Similar behaviour of single-strand and double-strand siRNAs suggests they act through a common RNAi pathway. Nucleic Acids Res. 31, 2401–2407.10.1093/nar/gkg338Suche in Google Scholar PubMed PubMed Central
Horman, S.R., Janas, M.M., Litterst, C., Wang, B., MacRae, I.J., Sever, M.J., Morrissey, D.V., Graves, P., Luo, B., and Umesalma, S. (2013). Akt-mediated phosphorylation of argonaute 2 downregulates cleavage and upregulates translational repression of microRNA targets. Mol. Cell 50, 356–367.10.1016/j.molcel.2013.03.015Suche in Google Scholar PubMed PubMed Central
Huntzinger, E. and Izaurralde, E. (2011). Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 12, 99–110.10.1038/nrg2936Suche in Google Scholar PubMed
Hutvagner, G. and Simard, M.J. (2008). Argonaute proteins: key players in RNA silencing. Nat. Rev. Mol. Cell Biol. 9, 22–32.10.1038/nrm2321Suche in Google Scholar PubMed
Hutvágner, G. and Zamore, P.D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060.10.1126/science.1073827Suche in Google Scholar PubMed
Hwang, H.-W., Wentzel, E.A., and Mendell, J.T. (2007). A hexanucleotide element directs microRNA nuclear import. Science 315, 97–100.10.1126/science.1136235Suche in Google Scholar PubMed
Hwang, H.-W., Wentzel, E.A., and Mendell, J.T. (2009). Cell-cell contact globally activates microRNA biogenesis. Proc. Natl. Acad. Sci. USA 106, 7016–7021.10.1073/pnas.0811523106Suche in Google Scholar PubMed PubMed Central
Iki, T., Yoshikawa, M., Nishikiori, M., Jaudal, M.C., Matsumoto-Yokoyama, E., Mitsuhara, I., Meshi, T., and Ishikawa, M. (2010). In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol. Cell 39, 282–291.10.1016/j.molcel.2010.05.014Suche in Google Scholar PubMed
Irvine, D.V., Zaratiegui, M., Tolia, N.H., Goto, D.B., Chitwood, D.H., Vaughn, M.W., Joshua-Tor, L., and Martienssen, R.A. (2006). Argonaute slicing is required for heterochromatic silencing and spreading. Science 313, 1134–1137.10.1126/science.1128813Suche in Google Scholar PubMed
Iwasaki, S., Kawamata, T., and Tomari, Y. (2009). Drosophila argonaute 1 and argonaute 2 employ distinct mechanisms for translational repression. Mol. Cell 34, 58–67.10.1016/j.molcel.2009.02.010Suche in Google Scholar PubMed
Iwasaki, S., Kobayashi, M., Yoda, M., Sakaguchi, Y., Katsuma, S., Suzuki, T., and Tomari, Y. (2010). Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol. Cell 39, 292–299.10.1016/j.molcel.2010.05.015Suche in Google Scholar PubMed
Jakymiw, A., Lian, S., Eystathioy, T., Li, S., Satoh, M., Hamel, J.C., Fritzler, M.J., and Chan, E.K. (2005). Disruption of GW bodies impairs mammalian RNA interference. Nat. Cell Biol. 7, 1267–1274.10.1038/ncb1334Suche in Google Scholar PubMed
Janas, M.M., Wang, B., Harris, A.S., Aguiar, M., Shaffer, J.M., Subrahmanyam, Y.V., Behlke, M.A., Wucherpfennig, K.W., Gygi, S.P., and Gagnon, E. (2012). Alternative RISC assembly: binding and repression of microRNA–mRNA duplexes by human Ago proteins. RNA 18, 2041–2055.10.1261/rna.035675.112Suche in Google Scholar PubMed PubMed Central
Jinek, M. and Doudna, J.A. (2009). A three-dimensional view of the molecular machinery of RNA interference. Nature 457, 405–412.10.1038/nature07755Suche in Google Scholar PubMed
Johnston, M., Geoffroy, M.-C., Sobala, A., Hay, R., and Hutvagner, G. (2010). HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells. Mol. Biol. Cell 21, 1462–1469.10.1091/mbc.e09-10-0885Suche in Google Scholar PubMed PubMed Central
Kalia, M., Willkomm, S., Claussen, J.C., Restle, T., and Bonvin, A.M. (2015). Novel insights into guide RNA 5′-nucleoside/tide binding by human Argonaute 2. Int. J. Mol. Sci. 17, 22.10.3390/ijms17010022Suche in Google Scholar PubMed PubMed Central
Kanak, M., Alseiari, M., Balasubramanian, P., Addanki, K., Aggarwal, M., Noorali, S., Kalsum, A., Mahalingam, K., Pace, G., and Panasik, N. (2010). Triplex-forming microRNAs form stable complexes with HIV-1 provirus and inhibit its replication. Appl. Immunohistochem. Mol. Morphol. 18, 532–545.10.1097/PAI.0b013e3181e1ef6aSuche in Google Scholar PubMed
Kawaji, H., Nakamura, M., Takahashi, Y., Sandelin, A., Katayama, S., Fukuda, S., Daub, C.O., Kai, C., Kawai, J., and Yasuda, J. (2008). Hidden layers of human small RNAs. BMC Genomics 9, 157.10.1186/1471-2164-9-157Suche in Google Scholar PubMed PubMed Central
Kawamata, T. and Tomari, Y. (2010). Making risc. Trends Biochem. Sci. 35, 368–376.10.1016/j.tibs.2010.03.009Suche in Google Scholar PubMed
Kawamata, T., Seitz, H., and Tomari, Y. (2009). Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. Nat. Struct. Mol. Biol. 16, 953–960.10.1038/nsmb.1630Suche in Google Scholar PubMed
Kedersha, N. and Anderson, P. (2007). Mammalian stress granules and processing bodies. Methods Enzymol. 431, 61–81.10.1016/S0076-6879(07)31005-7Suche in Google Scholar PubMed
Kedersha, N., Stoecklin, G., Ayodele, M., Yacono, P., Lykke-Andersen, J., Fritzler, M.J., Scheuner, D., Kaufman, R.J., Golan, D.E., and Anderson, P. (2005). Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. 169, 871–884.10.1083/jcb.200502088Suche in Google Scholar PubMed PubMed Central
Ketting, R.F. (2011). The many faces of RNAi. Dev. Cell 20, 148–161.10.1016/j.devcel.2011.01.012Suche in Google Scholar PubMed
Khorshid, M., Hausser, J., Zavolan, M., and van Nimwegen, E. (2013). A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets. Nat. Methods 10, 253–255.10.1038/nmeth.2341Suche in Google Scholar PubMed
Khvorova, A., Reynolds, A., and Jayasena, S.D. (2003). Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216.10.1016/S0092-8674(03)00801-8Suche in Google Scholar
Kim, D.H., Sætrom, P., Snøve, O., and Rossi, J.J. (2008). MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc. Natl. Acad. Sci. USA 105, 16230–16235.10.1073/pnas.0808830105Suche in Google Scholar PubMed PubMed Central
Kinch, L.N. and Grishin, N.V. (2009). The human Ago2 MC region does not contain an eIF4E-like mRNA cap binding motif. Biol. Direct 4, 1.10.1186/1745-6150-4-2Suche in Google Scholar PubMed PubMed Central
Kiriakidou, M., Tan, G.S., Lamprinaki, S., De Planell-Saguer, M., Nelson, P.T., and Mourelatos, Z. (2007). An mRNA m 7 G cap binding-like motif within human Ago2 represses translation. Cell 129, 1141–1151.10.1016/j.cell.2007.05.016Suche in Google Scholar PubMed
Kuhn, C.-D. and Joshua-Tor, L. (2013). Eukaryotic Argonautes come into focus. Trends Biochem. Sci. 38, 263–271.10.1016/j.tibs.2013.02.008Suche in Google Scholar PubMed
Kumar, P., Anaya, J., Mudunuri, S.B., and Dutta, A. (2014). Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol. 12, 1.10.1186/s12915-014-0078-0Suche in Google Scholar PubMed PubMed Central
Kwak, P.B. and Tomari, Y. (2012). The N domain of Argonaute drives duplex unwinding during RISC assembly. Nat. Struct. Mol. Biol. 19, 145–151.10.1038/nsmb.2232Suche in Google Scholar PubMed
Lee, Y.S., Nakahara, K., Pham, J.W., Kim, K., He, Z., Sontheimer, E.J., and Carthew, R.W. (2004). Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81.10.1016/S0092-8674(04)00261-2Suche in Google Scholar
Lee, Y.S., Pressman, S., Andress, A.P., Kim, K., White, J.L., Cassidy, J.J., Li, X., Lubell, K., Lim, D.H., and Cho, I.S. (2009a). Silencing by small RNAs is linked to endosomal trafficking. Nat. Cell Biol. 11, 1150–1156.10.1038/ncb1930Suche in Google Scholar PubMed PubMed Central
Lee, Y.S., Shibata, Y., Malhotra, A., and Dutta, A. (2009b). A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev. 23, 2639–2649.10.1101/gad.1837609Suche in Google Scholar PubMed PubMed Central
Lee, H.-C., Li, L., Gu, W., Xue, Z., Crosthwaite, S.K., Pertsemlidis, A., Lewis, Z.A., Freitag, M., Selker, E.U., and Mello, C.C. (2010). Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. Mol. Cell 38, 803–814.10.1016/j.molcel.2010.04.005Suche in Google Scholar PubMed PubMed Central
Lemaire, M., Deleu, S., De Bruyne, E., Van Valckenborgh, E., Menu, E., and Vanderkerken, K. (2011). The microenvironment and molecular biology of the multiple myeloma tumor. Adv. Cancer Res. 110, 20.10.1016/B978-0-12-386469-7.00002-5Suche in Google Scholar PubMed
Leung, A.K., Calabrese, J.M., and Sharp, P.A. (2006). Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc. Natl. Acad. Sci. USA 103, 18125–18130.10.1073/pnas.0608845103Suche in Google Scholar PubMed PubMed Central
Leuschner, P.J., Ameres, S.L., Kueng, S., and Martinez, J. (2006). Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep. 7, 314–320.10.1038/sj.embor.7400637Suche in Google Scholar PubMed PubMed Central
Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20.10.1016/j.cell.2004.12.035Suche in Google Scholar PubMed
Li, L., Yu, C., Gao, H., and Li, Y. (2010). Argonaute proteins: potential biomarkers for human colon cancer. BMC Cancer 10, 1.10.1186/1471-2407-10-38Suche in Google Scholar PubMed PubMed Central
Li, Z., Ender, C., Meister, G., Moore, P.S., Chang, Y., and John, B. (2012). Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs. Nucleic Acids Res. 40, 6787–6799.10.1093/nar/gks307Suche in Google Scholar PubMed PubMed Central
Lian, S., Fritzler, M.J., Katz, J., Hamazaki, T., Terada, N., Satoh, M., and Chan, E.K. (2007). Small interfering RNA-mediated silencing induces target-dependent assembly of GW/P bodies. Mol. Biol. Cell 18, 3375–3387.10.1091/mbc.e07-01-0070Suche in Google Scholar PubMed PubMed Central
Lima, W.F., Wu, H., Nichols, J.G., Sun, H., Murray, H.M., and Crooke, S.T. (2009). Binding and cleavage specificities of human Argonaute2. J. Biol. Chem. 284, 26017–26028.10.1074/jbc.M109.010835Suche in Google Scholar PubMed PubMed Central
Lingel, A., Simon, B., Izaurralde, E., and Sattler, M. (2003). Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426, 465–469.10.1038/nature02123Suche in Google Scholar PubMed
Liu, Q., Rand, T.A., Kalidas, S., Du, F., Kim, H.-E., Smith, D.P., and Wang, X. (2003). R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301, 1921–1925.10.1126/science.1088710Suche in Google Scholar PubMed
Liu, J., Carmell, M.A., Rivas, F.V., Marsden, C.G., Thomson, J.M., Song, J.-J., Hammond, S.M., Joshua-Tor, L., and Hannon, G.J. (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441.10.1126/science.1102513Suche in Google Scholar PubMed
Liu, J., Rivas, F.V., Wohlschlegel, J., Yates, J.R., Parker, R., and Hannon, G.J. (2005). A role for the P-body component GW182 in microRNA function. Nat. Cell Biol. 7, 1261–1266.10.1038/ncb1333Suche in Google Scholar PubMed PubMed Central
Liu, Y., Ye, X., Jiang, F., Liang, C., Chen, D., Peng, J., Kinch, L.N., Grishin, N.V., and Liu, Q. (2009). C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation. Science 325, 750–753.10.1126/science.1176325Suche in Google Scholar PubMed PubMed Central
Loss-Morais, G., Waterhouse, P.M., and Margis, R. (2013). Description of plant tRNA-derived RNA fragments (tRFs) associated with argonaute and identification of their putative targets. Biol. Direct 8, 1.10.1186/1745-6150-8-6Suche in Google Scholar PubMed PubMed Central
Lund, E., Sheets, M.D., Imboden, S.B., and Dahlberg, J.E. (2011). Limiting Ago protein restricts RNAi and microRNA biogenesis during early development in Xenopus laevis. Genes Dev. 25, 1121–1131.10.1101/gad.2038811Suche in Google Scholar PubMed PubMed Central
Ma, J.-B., Ye, K., and Patel, D.J. (2004). Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429, 318–322.10.1038/nature02519Suche in Google Scholar PubMed PubMed Central
Maiti, M., Lee, H.-C., and Liu, Y. (2007). QIP, a putative exonuclease, interacts with the Neurospora Argonaute protein and facilitates conversion of duplex siRNA into single strands. Genes Dev. 21, 590–600.10.1101/gad.1497607Suche in Google Scholar PubMed PubMed Central
Makarova, K.S., Wolf, Y.I., Van der Oost, J., and Koonin, E.V. (2009). Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol. Direct 4, 1.10.1186/1745-6150-4-29Suche in Google Scholar PubMed PubMed Central
Mallory, A. and Vaucheret, H. (2010). Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22, 3879–3889.10.1105/tpc.110.080671Suche in Google Scholar PubMed PubMed Central
Maniataki, E. and Mourelatos, Z. (2005). A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev. 19, 2979–2990.10.1101/gad.1384005Suche in Google Scholar PubMed PubMed Central
Marasovic, M., Zocco, M., and Halic, M. (2013). Argonaute and Triman generate dicer-independent priRNAs and mature siRNAs to initiate heterochromatin formation. Mol. Cell 52, 173–183.10.1016/j.molcel.2013.08.046Suche in Google Scholar PubMed
Martianov, I., Ramadass, A., Barros, A.S., Chow, N., and Akoulitchev, A. (2007). Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445, 666–670.10.1038/nature05519Suche in Google Scholar PubMed
Martinez, N.J. and Gregory, R.I. (2013). Argonaute2 expression is post-transcriptionally coupled to microRNA abundance. RNA 19, 605–612.10.1261/rna.036434.112Suche in Google Scholar PubMed PubMed Central
Martinez, J., Patkaniowska, A., Urlaub, H., Lührmann, R., and Tuschl, T. (2002). Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574.10.1016/S0092-8674(02)00908-XSuche in Google Scholar PubMed
Matranga, C., Tomari, Y., Shin, C., Bartel, D.P., and Zamore, P.D. (2005). Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607–620.10.1016/j.cell.2005.08.044Suche in Google Scholar PubMed
Matzke, M., Kanno, T., Daxinger, L., Huettel, B., and Matzke, A.J. (2009). RNA-mediated chromatin-based silencing in plants. Curr. Opin. Cell Biol. 21, 367–376.10.1016/j.ceb.2009.01.025Suche in Google Scholar PubMed
Maute, R.L., Schneider, C., Sumazin, P., Holmes, A., Califano, A., Basso, K., and Dalla-Favera, R. (2013). tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc. Natl. Acad. Sci. USA 110, 1404–1409.10.1073/pnas.1206761110Suche in Google Scholar PubMed PubMed Central
Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., and Tuschl, T. (2004). Human Argonaute 2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197.10.1016/j.molcel.2004.07.007Suche in Google Scholar PubMed
Meister, G., Landthaler, M., Peters, L., Chen, P.Y., Urlaub, H., Lührmann, R., and Tuschl, T. (2005). Identification of novel argonaute-associated proteins. Curr. Biol. 15, 2149–2155.10.1016/j.cub.2005.10.048Suche in Google Scholar PubMed
Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., Wu, L., Li, S., Zhou, H., and Long, C. (2008). Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133, 116–127.10.1016/j.cell.2008.02.034Suche in Google Scholar PubMed PubMed Central
Michalik, K.M., Böttcher, R., and Förstemann, K. (2012). A small RNA response at DNA ends in Drosophila. Nucleic Acids Res. 40, 9596–9603.10.1093/nar/gks711Suche in Google Scholar PubMed PubMed Central
Michlewski, G., Guil, S., Semple, C.A., and Cáceres, J.F. (2008). Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol. Cell 32, 383–393.10.1016/j.molcel.2008.10.013Suche in Google Scholar PubMed PubMed Central
Ming, D., Wall, M.E., and Sanbonmatsu, K.Y. (2007). Domain motions of Argonaute, the catalytic engine of RNA interference. BMC Bioinformat. 8, 470.10.1186/1471-2105-8-470Suche in Google Scholar PubMed PubMed Central
Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H., and Siomi, M.C. (2005). Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev. 19, 2837–2848.10.1101/gad.1370605Suche in Google Scholar PubMed PubMed Central
Miyoshi, K., Okada, T.N., Siomi, H., and Siomi, M.C. (2009). Characterization of the miRNA-RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway. RNA 15, 1282–1291.10.1261/rna.1541209Suche in Google Scholar PubMed PubMed Central
Montgomery, T.A., Howell, M.D., Cuperus, J.T., Li, D., Hansen, J.E., Alexander, A.L., Chapman, E.J., Fahlgren, N., Allen, E., and Carrington, J.C. (2008). Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133, 128–141.10.1016/j.cell.2008.02.033Suche in Google Scholar PubMed
Nakanishi, K., Weinberg, D.E., Bartel, D.P., and Patel, D.J. (2012). Structure of yeast Argonaute with guide RNA. Nature 486, 368–374.10.1038/nature11211Suche in Google Scholar PubMed PubMed Central
Nishi, K., Nishi, A., Nagasawa, T., and Ui-Tei, K. (2013). Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus. RNA 19, 17–35.10.1261/rna.034769.112Suche in Google Scholar PubMed PubMed Central
Noland, C.L. and Doudna, J.A. (2013). Multiple sensors ensure guide strand selection in human RNAi pathways. RNA 19, 639–648.10.1261/rna.037424.112Suche in Google Scholar PubMed PubMed Central
Nowotny, M., Gaidamakov, S.A., Crouch, R.J., and Yang, W. (2005). Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell 121, 1005–1016.10.1016/j.cell.2005.04.024Suche in Google Scholar PubMed
Nykänen, A., Haley, B., and Zamore, P.D. (2001). ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309–321.10.1016/S0092-8674(01)00547-5Suche in Google Scholar
O’Carroll, D., Mecklenbrauker, I., Das, P.P., Santana, A., Koenig, U., Enright, A.J., Miska, E.A., and Tarakhovsky, A. (2007). A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev. 21, 1999–2004.10.1101/gad.1565607Suche in Google Scholar PubMed PubMed Central
Okamura, K., Ishizuka, A., Siomi, H., and Siomi, M.C. (2004). Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666.10.1101/gad.1210204Suche in Google Scholar PubMed PubMed Central
Okamura, K., Ladewig, E., Zhou, L., and Lai, E.C. (2013). Functional small RNAs are generated from select miRNA hairpin loops in flies and mammals. Genes Dev. 27, 778–792.10.1101/gad.211698.112Suche in Google Scholar PubMed PubMed Central
Olejniczak, S.H., La Rocca, G., Gruber, J.J., and Thompson, C.B. (2013). Long-lived microRNA–Argonaute complexes in quiescent cells can be activated to regulate mitogenic responses. Proc. Natl. Acad. Sci. USA 110, 157–162.10.1073/pnas.1219958110Suche in Google Scholar PubMed PubMed Central
Olovnikov, I., Chan, K., Sachidanandam, R., Newman, D.K., and Aravin, A.A. (2013). Bacterial argonaute samples the transcriptome to identify foreign DNA. Mol. Cell 51, 594–605.10.1016/j.molcel.2013.08.014Suche in Google Scholar PubMed PubMed Central
Ørom, U.A., Nielsen, F.C., and Lund, A.H. (2008). MicroRNA-10a binds the 5′ UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell 30, 460–471.10.1016/j.molcel.2008.05.001Suche in Google Scholar PubMed
Pai, B., Siripornmongcolchai, T., Berentsen, B., Pakzad, A., Vieuille, C., Pallesen, S., Pajak, M., Simpson, T.I., Armstrong, J.D., and Wibrand, K. (2015). NMDA receptor-dependent regulation of miRNA expression and association with Argonaute during LTP in vivo. Front. Cell. Neurosci. 7, 1–15.10.3389/fncel.2013.00285Suche in Google Scholar PubMed PubMed Central
Pare, J.M., Tahbaz, N., López-Orozco, J., LaPointe, P., Lasko, P., and Hobman, T.C. (2009). Hsp90 regulates the function of Argonaute 2 and its recruitment to stress granules and P-bodies. Mol. Biol. Cell 20, 3273–3284.10.1091/mbc.e09-01-0082Suche in Google Scholar PubMed PubMed Central
Parker, J.S. (2010). How to slice: snapshots of Argonaute in action. Silence 1, 1.10.1186/1758-907X-1-3Suche in Google Scholar PubMed PubMed Central
Parker, J.S., Roe, S.M., and Barford, D. (2004). Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J. 23, 4727–4737.10.1038/sj.emboj.7600488Suche in Google Scholar PubMed PubMed Central
Parker, J.S., Parizotto, E.A., Wang, M., Roe, S.M., and Barford, D. (2009). Enhancement of the seed-target recognition step in RNA silencing by a PIWI/MID domain protein. Mol. Cell 33, 204–214.10.1016/j.molcel.2008.12.012Suche in Google Scholar PubMed PubMed Central
Partridge, J.F., DeBeauchamp, J.L., Kosinski, A.M., Ulrich, D.L., Hadler, M.J., and Noffsinger, V.J. (2007). Functional separation of the requirements for establishment and maintenance of centromeric heterochromatin. Mol. Cell 26, 593–602.10.1016/j.molcel.2007.05.004Suche in Google Scholar PubMed
Peters, L. and Meister, G. (2007). Argonaute proteins: mediators of RNA silencing. Mol. Cell 26, 611–623.10.1016/j.molcel.2007.05.001Suche in Google Scholar PubMed
Petri, S., Dueck, A., Lehmann, G., Putz, N., Rüdel, S., Kremmer, E., and Meister, G. (2011). Increased siRNA duplex stability correlates with reduced off-target and elevated on-target effects. RNA 17, 737–749.10.1261/rna.2348111Suche in Google Scholar PubMed PubMed Central
Pham, J.W., Pellino, J.L., Lee, Y.S., Carthew, R.W., and Sontheimer, E.J. (2004). A Dicer-2-dependent 80s complex cleaves targeted mRNAs during RNAi in Drosophila. Cell 117, 83–94.10.1016/S0092-8674(04)00258-2Suche in Google Scholar
Pinder, B.D. and Smibert, C.A. (2013). microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein. EMBO Rep. 14, 80–86.10.1038/embor.2012.192Suche in Google Scholar PubMed PubMed Central
Poulsen, C., Vaucheret, H., and Brodersen, P. (2013). Lessons on RNA silencing mechanisms in plants from eukaryotic argonaute structures. Plant Cell 25, 22–37.10.1105/tpc.112.105643Suche in Google Scholar PubMed PubMed Central
Qi, Y., Denli, A.M., and Hannon, G.J. (2005). Biochemical specialization within Arabidopsis RNA silencing pathways. Mol. Cell 19, 421–428.10.1016/j.molcel.2005.06.014Suche in Google Scholar PubMed
Qi, Y., He, X., Wang, X.-J., Kohany, O., Jurka, J., and Hannon, G.J. (2006). Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature 443, 1008–1012.10.1038/nature05198Suche in Google Scholar PubMed
Qi, H.H., Ongusaha, P.P., Myllyharju, J., Cheng, D., Pakkanen, O., Shi, Y., Lee, S.W., Peng, J., and Shi, Y. (2008). Prolyl 4-hydroxylation regulates argonaute 2 stability. Nature 455, 421–424.10.1038/nature07186Suche in Google Scholar PubMed PubMed Central
Rand, T.A., Petersen, S., Du, F., and Wang, X. (2005). Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123, 621–629.10.1016/j.cell.2005.10.020Suche in Google Scholar PubMed
Rashid, U.J., Paterok, D., Koglin, A., Gohlke, H., Piehler, J., and Chen, J.C.-H. (2007). Structure of Aquifex aeolicus argonaute highlights conformational flexibility of the PAZ domain as a potential regulator of RNA-induced silencing complex function. J. Biol. Chem. 282, 13824–13832.10.1074/jbc.M608619200Suche in Google Scholar PubMed
Ricci, E.P., Limousin, T., Soto-Rifo, R., Allison, R., Pöyry, T., Decimo, D., Jackson, R.J., and Ohlmann, T. (2011). Activation of a microRNA response in trans reveals a new role for poly (A) in translational repression. Nucleic Acids Res. 39, 5215–5231.10.1093/nar/gkr086Suche in Google Scholar PubMed PubMed Central
Rivas, F.V., Tolia, N.H., Song, J.-J., Aragon, J.P., Liu, J., Hannon, G.J., and Joshua-Tor, L. (2005). Purified Argonaute 2 and an siRNA form recombinant human RISC. Nat. Struct. Mol. Biol. 12, 340–349.10.1038/nsmb918Suche in Google Scholar PubMed
Röhl, A., Rohrberg, J., and Buchner, J. (2013). The chaperone Hsp90: changing partners for demanding clients. Trends Biochem. Sci. 38, 253–262.10.1016/j.tibs.2013.02.003Suche in Google Scholar PubMed
Rüdel, S., Wang, Y., Lenobel, R., Körner, R., Hsiao, H.-H., Urlaub, H., Patel, D., and Meister, G. (2010). Phosphorylation of human Argonaute proteins affects small RNA binding. Nucleic Acids Res. 39, 2330–2343.10.1093/nar/gkq1032Suche in Google Scholar PubMed PubMed Central
Rüegger, S. and Großhans, H. (2012). MicroRNA turnover: when, how, and why. Trends Biochem. Sci. 37, 436–446.10.1016/j.tibs.2012.07.002Suche in Google Scholar PubMed
Rybak, A., Fuchs, H., Hadian, K., Smirnova, L., Wulczyn, E.A., Michel, G., Nitsch, R., Krappmann, D., and Wulczyn, F.G. (2009). The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2. Nat. Cell Biol. 11, 1411–1420.10.1038/ncb1987Suche in Google Scholar PubMed
Saito, K., Nishida, K.M., Mori, T., Kawamura, Y., Miyoshi, K., Nagami, T., Siomi, H., and Siomi, M.C. (2006). Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev. 20, 2214–2222.10.1101/gad.1454806Suche in Google Scholar PubMed PubMed Central
Salmanidis, M., Pillman, K., Goodall, G. and Bracken, C. (2014). Direct transcriptional regulation by nuclear microRNAs. Int. J. Biochem. Cell Biol. 54, 304–311.10.1016/j.biocel.2014.03.010Suche in Google Scholar PubMed
Sanei, M. and Chen, X. (2015). Mechanisms of microRNA turnover. Curr. Opin. Plant Biol. 27, 199–206.10.1016/j.pbi.2015.07.008Suche in Google Scholar PubMed PubMed Central
Schirle, N.T. and MacRae, I.J. (2012). The crystal structure of human Argonaute 2. Science 336, 1037–1040.10.1126/science.1221551Suche in Google Scholar PubMed PubMed Central
Schirle, N.T., Sheu-Gruttadauria, J., and MacRae, I.J. (2014). Structural basis for microRNA targeting. Science 346, 608–613.10.1126/science.1258040Suche in Google Scholar PubMed PubMed Central
Schmidt, M.F., Korb, O., and Abell, C. (2013). MicroRNA-specific Argonaute 2 protein inhibitors. ACS Chem. Biol. 8, 2122–2126.10.1021/cb400246kSuche in Google Scholar PubMed
Schwamborn, J.C., Berezikov, E., and Knoblich, J.A. (2009). The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell 136, 913–925.10.1016/j.cell.2008.12.024Suche in Google Scholar PubMed PubMed Central
Schwarz, D.S., Hutvágner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P.D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208.10.1016/S0092-8674(03)00759-1Suche in Google Scholar
Schwarz, D.S., Hutvágner, G., Haley, B., and Zamore, P.D. (2002). Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol. Cell 10, 537–548.10.1016/S1097-2765(02)00651-2Suche in Google Scholar PubMed
Sheng, G., Zhao, H., Wang, J., Rao, Y., Tian, W., Swarts, D.C., van der Oost, J., Patel, D.J., and Wang, Y. (2014). Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proc. Natl. Acad. Sci. USA 111, 652–657.10.1073/pnas.1321032111Suche in Google Scholar PubMed PubMed Central
Shigematsu, M. and Kirino, Y. (2015). tRNA-derived short non-coding RNA as interacting partners of argonaute proteins. Gene Regul. Syst. Biol. 9, 27.10.4137/GRSB.S29411Suche in Google Scholar PubMed PubMed Central
Siomi, M.C., Sato, K., Pezic, D. and Aravin, A.A. (2011). PIWI-interacting small RNAs: the vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 12, 246–258.10.1038/nrm3089Suche in Google Scholar PubMed
Smibert, C.A., Wilson, J.E., Kerr, K., and Macdonald, P.M. (1996). smaug protein represses translation of unlocalized nanos mRNA in the Drosophila embryo. Genes Dev. 10, 2600–2609.10.1101/gad.10.20.2600Suche in Google Scholar PubMed
Smibert, P., Yang, J.-S., Azzam, G., Liu, J.-L., and Lai, E.C. (2013). Homeostatic control of Argonaute stability by microRNA availability. Nat. Struct. Mol. Biol. 20, 789–795.10.1038/nsmb.2606Suche in Google Scholar PubMed PubMed Central
Sobala, A. and Hutvagner, G. (2011). Transfer RNA-derived fragments: origins, processing, and functions. Wiley Interdiscip. Rev. RNA 2, 853–862.10.1002/wrna.96Suche in Google Scholar PubMed
Song, J.-J., Liu, J., Tolia, N.H., Schneiderman, J., Smith, S.K., Martienssen, R.A., Hannon, G.J., and Joshua-Tor, L. (2003a). The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat. Struct. Mol. Biol. 10, 1026–1032.10.1038/nsb1016Suche in Google Scholar PubMed
Song, E., Lee, S.-K., Dykxhoorn, D.M., Novina, C., Zhang, D., Crawford, K., Cerny, J., Sharp, P.A., Lieberman, J., and Manjunath, N. (2003b). Sustained small interfering RNA-mediated human immunodeficiency virus type 1 inhibition in primary macrophages. J. Virol. 77, 7174–7181.10.1128/JVI.77.13.7174-7181.2003Suche in Google Scholar PubMed PubMed Central
Song, J.-J., Smith, S.K., Hannon, G.J., and Joshua-Tor, L. (2004). Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–1437.10.1126/science.1102514Suche in Google Scholar PubMed
Stalder, L., Heusermann, W., Sokol, L., Trojer, D., Wirz, J., Hean, J., Fritzsche, A., Aeschimann, F., Pfanzagl, V., and Basselet, P. (2013). The rough endoplasmic reticulum is a central nucleation site of siRNA-mediated RNA silencing. EMBO J. 32, 1115–1127.10.1038/emboj.2013.52Suche in Google Scholar PubMed PubMed Central
Steiner, F.A., Hoogstrate, S.W., Okihara, K.L., Thijssen, K.L., Ketting, R.F., Plasterk, R.H., and Sijen, T. (2007). Structural features of small RNA precursors determine Argonaute loading in Caenorhabditis elegans. Nat. Struct. Mol. Biol. 14, 927–933.10.1038/nsmb1308Suche in Google Scholar PubMed
Swarts, D.C., Jore, M.M., Westra, E.R., Zhu, Y., Janssen, J.H., Snijders, A.P., Wang, Y., Patel, D.J., Berenguer, J., and Brouns, S.J. (2014). DNA-guided DNA interference by a prokaryotic Argonaute. Nature 507, 258–261.10.1038/nature12971Suche in Google Scholar PubMed PubMed Central
Tahbaz, N., Carmichael, J.B., and Hobman, T.C. (2001). GERp95 belongs to a family of signal-transducing proteins and requires Hsp90 activity for stability and Golgi localization. J. Biol. Chem. 276, 43294–43299.10.1074/jbc.M107808200Suche in Google Scholar PubMed
Tahbaz, N., Kolb, F.A., Zhang, H., Jaronczyk, K., Filipowicz, W., and Hobman, T.C. (2004). Characterization of the interactions between mammalian PAZ PIWI domain proteins and Dicer. EMBO Rep. 5, 189–194.10.1038/sj.embor.7400070Suche in Google Scholar PubMed PubMed Central
Taipale, M., Jarosz, D.F., and Lindquist, S. (2010). HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell Biol. 11, 515–528.10.1038/nrm2918Suche in Google Scholar PubMed
Takimoto, K., Wakiyama, M., and Yokoyama, S. (2009). Mammalian GW182 contains multiple Argonaute-binding sites and functions in microRNA-mediated translational repression. RNA 15, 1078–1089.10.1261/rna.1363109Suche in Google Scholar PubMed PubMed Central
Taliaferro, J.M., Aspden, J.L., Bradley, T., Marwha, D., Blanchette, M., and Rio, D.C. (2013). Two new and distinct roles for Drosophila Argonaute-2 in the nucleus: alternative pre-mRNA splicing and transcriptional repression. Genes Dev. 27, 378–389.10.1101/gad.210708.112Suche in Google Scholar PubMed PubMed Central
Till, S., Lejeune, E., Thermann, R., Bortfeld, M., Hothorn, M., Enderle, D., Heinrich, C., Hentze, M.W., and Ladurner, A.G. (2007). A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nat. Struct. Mol. Biol. 14, 897–903.10.1038/nsmb1302Suche in Google Scholar PubMed
Tomari, Y., Du, T., Haley, B., Schwarz, D.S., Bennett, R., Cook, H.A., Koppetsch, B.S., Theurkauf, W.E., and Zamore, P.D. (2004a). RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 116, 831–841.10.1016/S0092-8674(04)00218-1Suche in Google Scholar
Tomari, Y., Matranga, C., Haley, B., Martinez, N., and Zamore, P.D. (2004b). A protein sensor for siRNA asymmetry. Science 306, 1377–1380.10.1126/science.1102755Suche in Google Scholar PubMed
Tomari, Y. and Zamore, P.D. (2005). Perspective: machines for RNAi. Genes Dev. 19, 517–529.10.1101/gad.1284105Suche in Google Scholar PubMed
Tomari, Y., Du, T., and Zamore, P.D. (2007). Sorting of Drosophila small silencing RNAs. Cell 130, 299–308.10.1016/j.cell.2007.05.057Suche in Google Scholar PubMed PubMed Central
Toscano-Garibay, J.D. and Aquino-Jarquin, G. (2014). Transcriptional regulation mechanism mediated by miRNA–DNA⋅ DNA triplex structure stabilized by Argonaute. Biochim. Biophys. Acta Gene Regul. Mech. 1839, 1079–1083.10.1016/j.bbagrm.2014.07.016Suche in Google Scholar PubMed
Valen, E., Preker, P., Andersen, P.R., Zhao, X., Chen, Y., Ender, C., Dueck, A., Meister, G., Sandelin, A., and Jensen, T.H. (2011). Biogenic mechanisms and utilization of small RNAs derived from human protein-coding genes. Nat. Struct. Mol. Biol. 18, 1075–1082.10.1038/nsmb.2091Suche in Google Scholar PubMed
Vasudevan, S. and Steitz, J.A. (2007). AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 128, 1105–1118.10.1016/j.cell.2007.01.038Suche in Google Scholar PubMed PubMed Central
Vasudevan, S., Tong, Y., and Steitz, J.A. (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931–1934.10.1126/science.1149460Suche in Google Scholar PubMed
Vaucheret, H. (2008). Plant argonautes. Trends Plant Sci. 13, 350–358.10.1016/j.tplants.2008.04.007Suche in Google Scholar PubMed
Vaucheret, H., Vazquez, F., Crété, P., and Bartel, D.P. (2004). The action of Argonaute 1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev. 18, 1187–1197.10.1101/gad.1201404Suche in Google Scholar PubMed PubMed Central
Vella, M.C., Choi, E.-Y., Lin, S.-Y., Reinert, K., and Slack, F.J. (2004). The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′UTR. Genes Dev. 18, 132–137.10.1101/gad.1165404Suche in Google Scholar PubMed PubMed Central
Ventura, A. and Jacks, T. (2009). MicroRNAs and cancer: short RNAs go a long way. Cell 136, 586–591.10.1016/j.cell.2009.02.005Suche in Google Scholar PubMed PubMed Central
Wang, B., Love, T.M., Call, M.E., Doench, J.G., and Novina, C.D. (2006). Recapitulation of short RNA-directed translational gene silencing in vitro. Mol. Cell 22, 553–560.10.1016/j.molcel.2006.03.034Suche in Google Scholar PubMed
Wang, Y., Sheng, G., Juranek, S., Tuschl, T., and Patel, D.J. (2008a). Structure of the guide-strand-containing argonaute silencing complex. Nature 456, 209–213.10.1038/nature07315Suche in Google Scholar PubMed PubMed Central
Wang, Y., Juranek, S., Li, H., Sheng, G., Tuschl, T., and Patel, D.J. (2008b). Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456, 921–926.10.1038/nature07666Suche in Google Scholar PubMed PubMed Central
Wang, B., Li, S., Qi, H.H., Chowdhury, D., Shi, Y., and Novina, C.D. (2009a). Distinct passenger strand and mRNA cleavage activities of human Argonaute proteins. Nat. Struct. Mol. Biol. 16, 1259–1266.10.1038/nsmb.1712Suche in Google Scholar PubMed
Wang, Y., Juranek, S., Li, H., Sheng, G., Wardle, G.S., Tuschl, T., and Patel, D.J. (2009b). Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461, 754–761.10.1038/nature08434Suche in Google Scholar PubMed PubMed Central
Wei, W., Ba, Z., Gao, M., Wu, Y., Ma, Y., Amiard, S., White, C.I., Danielsen, J.M.R., Yang, Y.-G., and Qi, Y. (2012). A role for small RNAs in DNA double-strand break repair. Cell 149, 101–112.10.1016/j.cell.2012.03.002Suche in Google Scholar PubMed
Weinmann, L., Höck, J., Ivacevic, T., Ohrt, T., Mütze, J., Schwille, P., Kremmer, E., Benes, V., Urlaub, H., and Meister, G. (2009). Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell 136, 496–507.10.1016/j.cell.2008.12.023Suche in Google Scholar PubMed
Winter, J., Link, S., Witzigmann, D., Hildenbrand, C., Previti, C., and Diederichs, S. (2013). Loop-miRs: active microRNAs generated from single-stranded loop regions. Nucleic Acids Res. 41, 5503–5512.10.1093/nar/gkt251Suche in Google Scholar PubMed PubMed Central
Wu, C., So, J., Davis-Dusenbery, B.N., Qi, H.H., Bloch, D.B., Shi, Y., Lagna, G., and Hata, A. (2011). Hypoxia potentiates microRNA-mediated gene silencing through posttranslational modification of Argonaute2. Mol. Cell Biol. 31, 4760–4774.10.1128/MCB.05776-11Suche in Google Scholar PubMed PubMed Central
Wu, S., Yu, W., Qu, X., Wang, R., Xu, J., Zhang, Q., Xu, J., Li, J., and Chen, L. (2014). Argonaute 2 promotes myeloma angiogenesis via microRNA dysregulation. J. Hematol. Oncol. 7, 1.10.1186/1756-8722-7-40Suche in Google Scholar PubMed PubMed Central
Yan, K.S., Yan, S., Farooq, A., Han, A., Zeng, L., and Zhou, M.-M. (2003). Structure and conserved RNA binding of the PAZ domain. Nature 426, 469–474.10.1038/nature02129Suche in Google Scholar PubMed
Yang, W., Lee, J.Y., and Nowotny, M. (2006). Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity. Mol. Cell 22, 5–13.10.1016/j.molcel.2006.03.013Suche in Google Scholar PubMed
Yang, J.-S., Maurin, T., Robine, N., Rasmussen, K.D., Jeffrey, K.L., Chandwani, R., Papapetrou, E.P., Sadelain, M., O’Carroll, D., and Lai, E.C. (2010). Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl. Acad. Sci. USA 107, 15163–15168.10.1073/pnas.1006432107Suche in Google Scholar PubMed PubMed Central
Yang, J.-S., Smibert, P., Westholm, J.O., Jee, D., Maurin, T., and Lai, E.C. (2014). Intertwined pathways for Argonaute-mediated microRNA biogenesis in Drosophila. Nucleic Acids Res. 42, 1987–2002.10.1093/nar/gkt1038Suche in Google Scholar PubMed PubMed Central
Ye, R., Wang, W., Iki, T., Liu, C., Wu, Y., Ishikawa, M., Zhou, X., and Qi, Y. (2012). Cytoplasmic assembly and selective nuclear import of Arabidopsis Argonaute4/siRNA complexes. Mol Cell 46, 859–870.10.1016/j.molcel.2012.04.013Suche in Google Scholar PubMed
Yoda, M., Kawamata, T., Paroo, Z., Ye, X., Iwasaki, S., Liu, Q., and Tomari, Y. (2010). ATP-dependent human RISC assembly pathways. Nat. Struct. Mol. Biol. 17, 17–23.10.1038/nsmb.1733Suche in Google Scholar PubMed PubMed Central
Younger, S.T. and Corey, D.R. (2011). Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters. Nucleic Acids Res. 39, 5682–5691.10.1093/nar/gkr155Suche in Google Scholar PubMed PubMed Central
Yuan, Y.-R., Pei, Y., Chen, H.-Y., Tuschl, T., and Patel, D.J. (2006). A potential protein-RNA recognition event along the RISC-loading pathway from the structure of A. aeolicus Argonaute with externally bound siRNA. Structure 14, 1557–1565.10.1016/j.str.2006.08.009Suche in Google Scholar PubMed PubMed Central
Zeng, Y., Sankala, H., Zhang, X., and Graves, P.R. (2008). Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. Biochem J. 413, 429–436.10.1042/BJ20080599Suche in Google Scholar PubMed
Zhang, X., Graves, P., and Zeng, Y. (2013). Overexpression of human Argonaute2 inhibits cell and tumor growth. Biochim. Biophys. Acta Gen. Subj. 1830, 2553–2561.10.1016/j.bbagen.2012.11.013Suche in Google Scholar PubMed
Zhang, X., Niu, D., Carbonell, A., Wang, A., Lee, A., Tun, V., Wang, Z., Carrington, J.C., Chia-en, A.C., and Jin, H. (2014). Argonaute PIWI domain and microRNA duplex structure regulate small RNA sorting in Arabidopsis. Nat. Commun. 5. Article number: 5468. doi: 10.1038/ncomms6468.10.1038/ncomms6468Suche in Google Scholar PubMed PubMed Central
Zheng, X., Zhu, J., Kapoor, A., and Zhu, J.K. (2007). Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO J. 26, 1691–1701.10.1038/sj.emboj.7601603Suche in Google Scholar PubMed PubMed Central
Zhou, Y., Chen, L., Barlogie, B., Stephens, O., Wu, X., Williams, D.R., Cartron, M.-A., van Rhee, F., Nair, B., and Waheed, S. (2010). High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2. Proc. Natl. Acad. Sci. USA 107, 7904–7909.10.1073/pnas.0908441107Suche in Google Scholar PubMed PubMed Central
Zhu, H., Hu, F., Wang, R., Zhou, X., Sze, S.-H., Liou, L.W., Barefoot, A., Dickman, M., and Zhang, X. (2011). Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145, 242–256.10.1016/j.cell.2011.03.024Suche in Google Scholar PubMed PubMed Central
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- Hodgkin lymphoma cell lines: to separate the wheat from the chaff
- The AGO proteins: an overview
- Research Articles/Short Communications
- Protein Structure and Function
- Structural changes at the myrtenol backbone reverse its positive allosteric potential into inhibitory GABAA receptor modulation
- The two major glucokinase isoforms show conserved functionality in β-cells despite different subcellular distribution
- Functional characterization of the mouse Serpina1 paralog DOM-7
- Cell Biology and Signaling
- CD45RO regulates the HIV-1 gp120-mediated apoptosis of T cells by activating Lck
- Silencing of MED27 inhibits adrenal cortical carcinogenesis by targeting the Wnt/β-catenin signaling pathway and the epithelial-mesenchymal transition process
- HDAC1 knockdown inhibits invasion and induces apoptosis in non-small cell lung cancer cells
- Hepatitis B virus X protein promotes proliferation of hepatocellular carcinoma cells by upregulating miR-181b by targeting ING5
Artikel in diesem Heft
- Frontmatter
- Reviews
- Hodgkin lymphoma cell lines: to separate the wheat from the chaff
- The AGO proteins: an overview
- Research Articles/Short Communications
- Protein Structure and Function
- Structural changes at the myrtenol backbone reverse its positive allosteric potential into inhibitory GABAA receptor modulation
- The two major glucokinase isoforms show conserved functionality in β-cells despite different subcellular distribution
- Functional characterization of the mouse Serpina1 paralog DOM-7
- Cell Biology and Signaling
- CD45RO regulates the HIV-1 gp120-mediated apoptosis of T cells by activating Lck
- Silencing of MED27 inhibits adrenal cortical carcinogenesis by targeting the Wnt/β-catenin signaling pathway and the epithelial-mesenchymal transition process
- HDAC1 knockdown inhibits invasion and induces apoptosis in non-small cell lung cancer cells
- Hepatitis B virus X protein promotes proliferation of hepatocellular carcinoma cells by upregulating miR-181b by targeting ING5