Abstract
By hydrolyzing its substrate sphingomyelin at the cytosolic leaflet of cellular membranes, the neutral sphingomyelinase 2 (NSM2) generates microdomains which serve as docking sites for signaling proteins and thereby, functions to regulate signal relay. This has been particularly studied in cellular stress responses while the regulatory role of this enzyme in the immune cell compartment has only recently emerged. In T cells, phenotypic polarization by co-ordinated cytoskeletal remodeling is central to motility and interaction with endothelial or antigen-presenting cells during tissue recruitment or immune synapse formation, respectively. This review highlights studies adressing the role of NSM2 in T cell polarity in which the enzyme plays a major role in regulating cytoskeletal dynamics.
Acknowledgments
We apologize to all our colleagues whose exciting work we were not able to include due to space limits. We thank Erich Gulbins, Jürgen Schneider-Schaulies and Niklas Beyersdorf for helpful discussions in preparing this article. The authors are grateful to the DFG for funding their work (Funder ID: 10.13039/501100001659, Grant no. SCHN405/10-1 and 10-2).
References
Airola, M.V. and Hannun, Y.A. (2013). Sphingolipid metabolism and neutral sphingomyelinases. Handb. Exp. Pharmacol. 215, 57–76.10.1007/978-3-7091-1368-4_3Suche in Google Scholar PubMed PubMed Central
Airola, M.V., Shanbhogue, P., Shamseddine, A.A., Guja, K.E., Senkal, C.E., Maini, R., Bartke, N., Wu, B.X., Obeid, L.M., Garcia-Diaz, M., et al. (2017). Structure of human nSMase2 reveals an interdomain allosteric activation mechanism for ceramide generation. Proc. Natl. Acad. Sci. USA 114, E5549–E5558.10.1073/pnas.1705134114Suche in Google Scholar PubMed PubMed Central
Baldanzi, G., Bettio, V., Malacarne, V., and Graziani, A. (2016). Diacylglycerol kinases: shaping diacylglycerol and phosphatidic acid gradients to control cell polarity. Front. Cell Dev. Biol. 4, 140.10.3389/fcell.2016.00140Suche in Google Scholar PubMed PubMed Central
Boecke, A., Sieger, D., Neacsu, C.D., Kashkar, H., and Kronke, M. (2012). Factor associated with neutral sphingomyelinase activity mediates navigational capacity of leukocytes responding to wounds and infection: live imaging studies in zebrafish larvae. J. Immunol. 189, 1559–1566.10.4049/jimmunol.1102207Suche in Google Scholar PubMed PubMed Central
Bornschlogl, T. (2013). How filopodia pull: what we know about the mechanics and dynamics of filopodia. Cytoskeleton 70, 590–603.10.1002/cm.21130Suche in Google Scholar PubMed
Boucher, L.M., Wiegmann, K., Futterer, A., Pfeffer, K., Machleidt, T., Schutze, S., Mak, T.W., and Kronke, M. (1995). CD28 signals through acidic sphingomyelinase. J. Exp. Med. 181, 2059–2068.10.1084/jem.181.6.2059Suche in Google Scholar PubMed PubMed Central
Burkhardt, J.K., Carrizosa, E., and Shaffer, M.H. (2008). The actin cytoskeleton in T cell activation. Annu. Rev. Immunol. 26, 233–259.10.1146/annurev.immunol.26.021607.090347Suche in Google Scholar PubMed
Cabukusta, B., Kol, M., Kneller, L., Hilderink, A., Bickert, A., Mina, J.G., Korneev, S., and Holthuis, J.C. (2017). ER residency of the ceramide phosphoethanolamine synthase SMSr relies on homotypic oligomerization mediated by its SAM domain. Sci. Rep. 7, 41290.10.1038/srep41290Suche in Google Scholar PubMed PubMed Central
Carpinteiro, A., Becker, K.A., Japtok, L., Hessler, G., Keitsch, S., Pozgajova, M., Schmid, K.W., Adams, C., Muller, S., Kleuser, B., et al. (2015). Regulation of hematogenous tumor metastasis by acid sphingomyelinase. EMBO Mol. Med. 7, 714–734.10.15252/emmm.201404571Suche in Google Scholar PubMed PubMed Central
Carpinteiro, A., Beckmann, N., Seitz, A., Hessler, G., Wilker, B., Soddemann, M., Helfrich, I., Edelmann, B., Gulbins, E., and Becker, K.A. (2016). Role of acid sphingomyelinase-induced signaling in melanoma cells for hematogenous tumor metastasis. Cell. Physiol. Biochem. 38, 1–14.10.1159/000438604Suche in Google Scholar PubMed
Cascianelli, G., Villani, M., Tosti, M., Marini, F., Bartoccini, E., Magni, M.V., and Albi, E. (2008). Lipid microdomains in cell nucleus. Mol. Biol. Cell 19, 5289–5295.10.1091/mbc.e08-05-0517Suche in Google Scholar PubMed PubMed Central
Chan, G. and Ochi, A. (1995). Sphingomyelin-ceramide turnover in CD28 costimulatory signaling. Eur. J. Immunol. 25, 1999–2004.10.1002/eji.1830250730Suche in Google Scholar PubMed
Chang, Y.C., Nalbant, P., Birkenfeld, J., Chang, Z.F., and Bokoch, G.M. (2008). GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA. Mol. Biol. Cell 19, 2147–2153.10.1091/mbc.e07-12-1269Suche in Google Scholar PubMed PubMed Central
Chichili, G.R., Westmuckett, A.D., and Rodgers, W. (2010). T cell signal regulation by the actin cytoskeleton. J. Biol. Chem. 285, 14737–14746.10.1074/jbc.M109.097311Suche in Google Scholar PubMed PubMed Central
Clarke, C.J., Guthrie, J.M., and Hannun, Y.A. (2008). Regulation of neutral sphingomyelinase-2 (nSMase2) by tumor necrosis factor-α involves protein kinase C-δ in lung epithelial cells. Mol. Pharmacol. 74, 1022–1032.10.1124/mol.108.046250Suche in Google Scholar PubMed PubMed Central
Clarke, C.J., Snook, C.F., Tani, M., Matmati, N., Marchesini, N., and Hannun, Y.A. (2006). The extended family of neutral sphingomyelinases. Biochemistry 45, 11247–11256.10.1021/bi061307zSuche in Google Scholar PubMed
Collenburg, L., Walter, T., Burgert, A., Muller, N., Seibel, J., Japtok, L., Kleuser, B., Sauer, M., and Schneider-Schaulies, S. (2016). A functionalized sphingolipid analogue for studying redistribution during activation in living T cells. J. Immunol. 196, 3951–3962.10.4049/jimmunol.1502447Suche in Google Scholar PubMed
Collenburg, L., Beyersdorf, N., Wiese, T., Arenz, C., Saied, E.M., Becker-Flegler, K.A., Schneider-Schaulies, S., and Avota, E. (2017). The activity of the neutral sphingomyelinase is important in T cell recruitment and directional migration. Front. Immunol. 8, 1007.10.3389/fimmu.2017.01007Suche in Google Scholar PubMed PubMed Central
Eich, C., Manzo, C., Keijzer, S., Bakker, G.J., Reinieren-Beeren, I., Garcia-Parajo, M.F., and Cambi, A. (2016). Changes in membrane sphingolipid composition modulate dynamics and adhesion of integrin nanoclusters. Sci. Rep. 6, 20693.10.1038/srep20693Suche in Google Scholar PubMed PubMed Central
Erdmann, R.S., Takakura, H., Thompson, A.D., Rivera-Molina, F., Allgeyer, E.S., Bewersdorf, J., Toomre, D., and Schepartz, A. (2014). Super-resolution imaging of the Golgi in live cells with a bioorthogonal ceramide probe. Angew. Chem. Int. Ed. 53, 10242–10246.10.1002/anie.201403349Suche in Google Scholar PubMed PubMed Central
Faulstich, M., Hagen, F., Avota, E., Kozjak-Pavlovic, V., Winkler, A.C., Xian, Y., Schneider-Schaulies, S., and Rudel, T. (2015). Neutral sphingomyelinase 2 is a key factor for PorB-dependent invasion of Neisseria gonorrhoeae. Cell. Microbiol. 17, 241–253.10.1111/cmi.12361Suche in Google Scholar PubMed
Feldhaus, M.J., Weyrich, A.S., Zimmerman, G.A., and McIntyre, T.M. (2002). Ceramide generation in situ alters leukocyte cytoskeletal organization and β2-integrin function and causes complete degranulation. J. Biol. Chem. 277, 4285–4293.10.1074/jbc.M106653200Suche in Google Scholar PubMed
Fernandez-Arenas, E., Calleja, E., Martinez-Martin, N., Gharbi, S.I., Navajas, R., Garcia-Medel, N., Penela, P., Alcami, A., Mayor, F., Jr., Albar, J.P., et al. (2014). β-Arrestin-1 mediates the TCR-triggered re-routing of distal receptors to the immunological synapse by a PKC-mediated mechanism. EMBO J. 33, 559–577.10.1002/embj.201386022Suche in Google Scholar PubMed PubMed Central
Filosto, S., Fry, W., Knowlton, A.A., and Goldkorn, T. (2010). Neutral sphingomyelinase 2 (nSMase2) is a phosphoprotein regulated by calcineurin (PP2B). J. Biol. Chem. 285, 10213–10222.10.1074/jbc.M109.069963Suche in Google Scholar PubMed PubMed Central
Filosto, S., Ashfaq, M., Chung, S., Fry, W., and Goldkorn, T. (2012). Neutral sphingomyelinase 2 activity and protein stability are modulated by phosphorylation of five conserved serines. J. Biol. Chem. 287, 514–522.10.1074/jbc.M111.315481Suche in Google Scholar PubMed PubMed Central
Fox, T.E., Houck, K.L., O’Neill, S.M., Nagarajan, M., Stover, T.C., Pomianowski, P.T., Unal, O., Yun, J.K., Naides, S.J., and Kester, M. (2007). Ceramide recruits and activates protein kinase C zeta (PKC zeta) within structured membrane microdomains. J. Biol. Chem. 282, 12450–12457.10.1074/jbc.M700082200Suche in Google Scholar PubMed
Gassert, E., Avota, E., Harms, H., Krohne, G., Gulbins, E., and Schneider-Schaulies, S. (2009). Induction of membrane ceramides: a novel strategy to interfere with T lymphocyte cytoskeletal reorganisation in viral immunosuppression. PLoS Pathog. 5, e1000623.10.1371/journal.ppat.1000623Suche in Google Scholar PubMed PubMed Central
Gault, C.R., Obeid, L.M., and Hannun, Y.A. (2010). An overview of sphingolipid metabolism: from synthesis to breakdown. Adv. Exp. Med. Biol. 688, 1–23.10.1007/978-1-4419-6741-1_1Suche in Google Scholar PubMed PubMed Central
Gaus, K., Chklovskaia, E., Fazekas de St Groth, B., Jessup, W., and Harder, T. (2005). Condensation of the plasma membrane at the site of T lymphocyte activation. J. Cell Biol. 171, 121–131.10.1083/jcb.200505047Suche in Google Scholar PubMed PubMed Central
Gerl, M.J., Bittl, V., Kirchner, S., Sachsenheimer, T., Brunner, H.L., Luchtenborg, C., Ozbalci, C., Wiedemann, H., Wegehingel, S., Nickel, W., et al. (2016). Sphingosine-1-phosphate lyase deficient cells as a tool to study protein lipid interactions. PLoS One 11, e0153009.10.1371/journal.pone.0153009Suche in Google Scholar PubMed PubMed Central
Giri, B., Dixit, V.D., Ghosh, M.C., Collins, G.D., Khan, I.U., Madara, K., Weeraratna, A.T., and Taub, D.D. (2007). CXCL12-induced partitioning of flotillin-1 with lipid rafts plays a role in CXCR4 function. Eur. J. Immunol. 37, 2104–2116.10.1002/eji.200636680Suche in Google Scholar PubMed PubMed Central
Gomez-Mouton, C., Abad, J.L., Mira, E., Lacalle, R.A., Gallardo, E., Jimenez-Baranda, S., Illa, I., Bernad, A., Manes, S., and Martinez, A.C. (2001). Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc. Natl. Acad. Sci. USA 98, 9642–9647.10.1073/pnas.171160298Suche in Google Scholar PubMed PubMed Central
Grassme, H., Henry, B., Ziobro, R., Becker, K.A., Riethmuller, J., Gardner, A., Seitz, A.P., Steinmann, J., Lang, S., Ward, C., et al. (2017). β1-Integrin accumulates in cystic fibrosis luminal airway epithelial membranes and decreases sphingosine, promoting bacterial infections. Cell Host Microbe 21, 707–718.10.1016/j.chom.2017.05.001Suche in Google Scholar PubMed PubMed Central
Haberkant, P., Stein, F., Hoglinger, D., Gerl, M.J., Brugger, B., Van Veldhoven, P.P., Krijgsveld, J., Gavin, A.C., and Schultz, C. (2016). Bifunctional sphingosine for cell-based analysis of protein-sphingolipid interactions. ACS Chem. Biol. 11, 222–230.10.1021/acschembio.5b00810Suche in Google Scholar PubMed
Harder, T., Rentero, C., Zech, T., and Gaus, K. (2007). Plasma membrane segregation during T cell activation: probing the order of domains. Curr. Opin. Immunol. 19, 470–475.10.1016/j.coi.2007.05.002Suche in Google Scholar PubMed
Hashimoto-Tane, A., Yokosuka, T., Sakata-Sogawa, K., Sakuma, M., Ishihara, C., Tokunaga, M., and Saito, T. (2011). Dynein-driven transport of T cell receptor microclusters regulates immune synapse formation and T cell activation. Immunity 34, 919–931.10.1016/j.immuni.2011.05.012Suche in Google Scholar PubMed
He, Q., Wang, G., Wakade, S., Dasgupta, S., Dinkins, M., Kong, J.N., Spassieva, S.D., and Bieberich, E. (2014). Primary cilia in stem cells and neural progenitors are regulated by neutral sphingomyelinase 2 and ceramide. Mol. Biol. Cell 25, 1715–1729.10.1091/mbc.e13-12-0730Suche in Google Scholar
Hogg, N., Patzak, I., and Willenbrock, F. (2011). The insider’s guide to leukocyte integrin signalling and function. Nat. Rev. Immunol. 11, 416–426.10.1038/nri2986Suche in Google Scholar PubMed
Hoglinger, D., Nadler, A., and Schultz, C. (2014). Caged lipids as tools for investigating cellular signaling. Biochim. Biophys. Acta 1841, 1085–1096.10.1016/j.bbalip.2014.03.012Suche in Google Scholar PubMed
Hoglinger, D., Nadler, A., Haberkant, P., Kirkpatrick, J., Schifferer, M., Stein, F., Hauke, S., Porter, F.D., and Schultz, C. (2017). Trifunctional lipid probes for comprehensive studies of single lipid species in living cells. Proc. Natl. Acad. Sci. USA 114, 1566–1571.10.1073/pnas.1611096114Suche in Google Scholar PubMed PubMed Central
Junge, S., Brenner, B., Lepple-Wienhues, A., Nilius, B., Lang, F., Linderkamp, O., and Gulbins, E. (1999). Intracellular mechanisms of L-selectin induced capping. Cell Signal 11, 301–308.10.1016/S0898-6568(98)00068-0Suche in Google Scholar
Katsuno, H., Toriyama, M., Hosokawa, Y., Mizuno, K., Ikeda, K., Sakumura, Y., and Inagaki, N. (2015). Actin migration driven by directional assembly and disassembly of membrane-anchored actin filaments. Cell Rep. 12, 648–660.10.1016/j.celrep.2015.06.048Suche in Google Scholar PubMed
Krishnamurthy, K., Wang, G., Silva, J., Condie, B.G., and Bieberich, E. (2007). Ceramide regulates atypical PKCζ/λ-mediated cell polarity in primitive ectoderm cells. A novel function of sphingolipids in morphogenesis. J. Biol. Chem. 282, 3379–3390.10.1074/jbc.M607779200Suche in Google Scholar PubMed
Lasserre, R., Guo, X.J., Conchonaud, F., Hamon, Y., Hawchar, O., Bernard, A.M., Soudja, S.M., Lenne, P.F., Rigneault, H., Olive, D., et al. (2008). Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nat. Chem. Biol. 4, 538–547.10.1038/nchembio.103Suche in Google Scholar PubMed
Lee, Y.G., Lee, J., and Cho, J.Y. (2010). Cell-permeable ceramides act as novel regulators of U937 cell-cell adhesion mediated by CD29, CD98, and CD147. Immunobiology 215, 294–303.10.1016/j.imbio.2009.05.009Suche in Google Scholar PubMed
Legler, D.F., Matti, C., Laufer, J.M., Jakobs, B.D., Purvanov, V., Uetz-von Allmen, E., and Thelen, M. (2017). Modulation of chemokine receptor function by cholesterol: new prospects for pharmacological intervention. Mol. Pharmacol. 91, 331–338.10.1124/mol.116.107151Suche in Google Scholar PubMed
Leijnse, N., Oddershede, L.B., and Bendix, P.M. (2015). An updated look at actin dynamics in filopodia. Cytoskeleton 72, 71–79.10.1002/cm.21216Suche in Google Scholar PubMed
Leithner, A., Eichner, A., Muller, J., Reversat, A., Brown, M., Schwarz, J., Merrin, J., de Gorter, D.J., Schur, F., Bayerl, J., et al. (2016). Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes. Nat. Cell Biol. 18, 1253–1259.10.1038/ncb3426Suche in Google Scholar PubMed
Ley, K., Laudanna, C., Cybulsky, M.I., and Nourshargh, S. (2007). Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689.10.1038/nri2156Suche in Google Scholar PubMed
Li, C., Peng, H., Japtok, L., Seitz, A., Riehle, A., Wilker, B., Soddemann, M., Kleuser, B., Edwards, M., Lammas, D., et al. (2016). Inhibition of neutral sphingomyelinase protects mice against systemic tuberculosis. Front. Biosci. 8, 311–325.10.2741/e769Suche in Google Scholar
Lopes Pinheiro, M.A., Kroon, J., Hoogenboezem, M., Geerts, D., van Het Hof, B., van der Pol, S.M., van Buul, J.D., and de Vries, H.E. (2016). Acid sphingomyelinase-derived ceramide regulates icam-1 function during t cell transmigration across brain endothelial cells. J. Immunol. 196, 72–79.10.4049/jimmunol.1500702Suche in Google Scholar PubMed
Martin-Cofreces, N.B., Robles-Valero, J., Cabrero, J.R., Mittelbrunn, M., Gordon-Alonso, M., Sung, C.H., Alarcon, B., Vazquez, J., and Sanchez-Madrid, F. (2008). MTOC translocation modulates IS formation and controls sustained T cell signaling. J. Cell Biol. 182, 951–962.10.1083/jcb.200801014Suche in Google Scholar PubMed PubMed Central
Martin-Cofreces, N.B., Baixauli, F., and Sanchez-Madrid, F. (2014). Immune synapse: conductor of orchestrated organelle movement. Trends Cell Biol. 24, 61–72.10.1016/j.tcb.2013.09.005Suche in Google Scholar PubMed PubMed Central
Miguel, L., Owen, D.M., Lim, C., Liebig, C., Evans, J., Magee, A.I., and Jury, E.C. (2011). Primary human CD4+ T cells have diverse levels of membrane lipid order that correlate with their function. J. Immunol. 186, 3505–3516.10.4049/jimmunol.1002980Suche in Google Scholar PubMed
Mittelbrunn, M., Gutierrez-Vazquez, C., Villarroya-Beltri, C., Gonzalez, S., Sanchez-Cabo, F., Gonzalez, M.A., Bernad, A., and Sanchez-Madrid, F. (2011). Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2, 282.10.1038/ncomms1285Suche in Google Scholar PubMed PubMed Central
Moser, M., Bauer, M., Schmid, S., Ruppert, R., Schmidt, S., Sixt, M., Wang, H.V., Sperandio, M., and Fassler, R. (2009). Kindlin-3 is required for β2 integrin-mediated leukocyte adhesion to endothelial cells. Nat. Med. 15, 300–305.10.1038/nm.1921Suche in Google Scholar PubMed
Mueller, N., Avota, E., Collenburg, L., Grassme, H., and Schneider-Schaulies, S. (2014). Neutral sphingomyelinase in physiological and measles virus induced T cell suppression. PLoS Pathog. 10, e1004574.10.1371/journal.ppat.1004574Suche in Google Scholar PubMed PubMed Central
Ni, H.T., Deeths, M.J., Li, W., Mueller, D.L., and Mescher, M.F. (1999). Signaling pathways activated by leukocyte function-associated Ag-1-dependent costimulation. J. Immunol. 162, 5183–5189.10.4049/jimmunol.162.9.5183Suche in Google Scholar
Nordenfelt, P., Elliott, H.L., and Springer, T.A. (2016). Coordinated integrin activation by actin-dependent force during T-cell migration. Nat. Commun. 7, 13119.10.1038/ncomms13119Suche in Google Scholar PubMed PubMed Central
Nourshargh, S. and Alon, R. (2014). Leukocyte migration into inflamed tissues. Immunity 41, 694–707.10.1016/j.immuni.2014.10.008Suche in Google Scholar PubMed
Pageon, S.V., Tabarin, T., Yamamoto, Y., Ma, Y., Bridgeman, J.S., Cohnen, A., Benzing, C., Gao, Y., Crowther, M.D., Tungatt, K., et al. (2016). Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination. Proc. Natl. Acad. Sci. USA 113, E5454–E5463.10.1073/pnas.1607436113Suche in Google Scholar PubMed PubMed Central
Philipp, S., Puchert, M., Adam-Klages, S., Tchikov, V., Winoto-Morbach, S., Mathieu, S., Deerberg, A., Kolker, L., Marchesini, N., Kabelitz, D., et al. (2010). The Polycomb group protein EED couples TNF receptor 1 to neutral sphingomyelinase. Proc. Natl. Acad. Sci. USA 107, 1112–1117.10.1073/pnas.0908486107Suche in Google Scholar PubMed PubMed Central
Quann, E.J., Liu, X., Altan-Bonnet, G., and Huse, M. (2011). A cascade of protein kinase C isozymes promotes cytoskeletal polarization in T cells. Nat. Immunol. 12, 647–654.10.1038/ni.2033Suche in Google Scholar PubMed PubMed Central
Rossy, J., Williamson, D.J., Benzing, C., and Gaus, K. (2012). The integration of signaling and the spatial organization of the T cell synapse. Front. Immunol. 3, 352.10.3389/fimmu.2012.00352Suche in Google Scholar PubMed PubMed Central
Sadik, C.D. and Luster, A.D. (2012). Lipid-cytokine-chemokine cascades orchestrate leukocyte recruitment in inflammation. J. Leukoc. Biol. 91, 207–215.10.1189/jlb.0811402Suche in Google Scholar PubMed PubMed Central
Shamseddine, A.A., Airola, M.V., and Hannun, Y.A. (2015). Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes. Adv. Biol. Regul. 57, 24–41.10.1016/j.jbior.2014.10.002Suche in Google Scholar PubMed PubMed Central
Shi, X., Bi, Y., Yang, W., Guo, X., Jiang, Y., Wan, C., Li, L., Bai, Y., Guo, J., Wang, Y., et al. (2013). Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature 493, 111–115.10.1038/nature11699Suche in Google Scholar PubMed
Shulman, Z., Shinder, V., Klein, E., Grabovsky, V., Yeger, O., Geron, E., Montresor, A., Bolomini-Vittori, M., Feigelson, S.W., Kirchhausen, T., et al. (2009). Lymphocyte crawling and transendothelial migration require chemokine triggering of high-affinity LFA-1 integrin. Immunity 30, 384–396.10.1016/j.immuni.2008.12.020Suche in Google Scholar PubMed PubMed Central
Sitrin, R.G., Sassanella, T.M., and Petty, H.R. (2011). An obligate role for membrane-associated neutral sphingomyelinase activity in orienting chemotactic migration of human neutrophils. Am. J. Respir. Cell Mol. Biol. 44, 205–212.10.1165/rcmb.2010-0019OCSuche in Google Scholar PubMed PubMed Central
Stroka, K.M., Hayenga, H.N., and Aranda-Espinoza, H. (2013). Human neutrophil cytoskeletal dynamics and contractility actively contribute to trans-endothelial migration. PLoS One 8, e61377.10.1371/journal.pone.0061377Suche in Google Scholar PubMed PubMed Central
Swamy, M., Beck-Garcia, K., Beck-Garcia, E., Hartl, F.A., Morath, A., Yousefi, O.S., Dopfer, E.P., Molnar, E., Schulze, A.K., Blanco, R., et al. (2016). A cholesterol-based allostery model of T cell receptor phosphorylation. Immunity 44, 1091–1101.10.1016/j.immuni.2016.04.011Suche in Google Scholar PubMed
Takesono, A., Heasman, S.J., Wojciak-Stothard, B., Garg, R., and Ridley, A.J. (2010). Microtubules regulate migratory polarity through Rho/ROCK signaling in T cells. PLoS One 5, e8774.10.1371/journal.pone.0008774Suche in Google Scholar PubMed PubMed Central
Tonnetti, L., Veri, M.C., Bonvini, E., and D’Adamio, L. (1999). A role for neutral sphingomyelinase-mediated ceramide production in T cell receptor-induced apoptosis and mitogen-activated protein kinase-mediated signal transduction. J. Exp. Med. 189, 1581–1589.10.1084/jem.189.10.1581Suche in Google Scholar PubMed PubMed Central
Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Brugger, B., and Simons, M. (2008). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247.10.1126/science.1153124Suche in Google Scholar PubMed
van Gijsel-Bonnello, M., Acar, N., Molino, Y., Bretillon, L., Khrestchatisky, M., de Reggi, M., and Gharib, B. (2015). Pantethine alters lipid composition and cholesterol content of membrane rafts, with down-regulation of CXCL12-induced T cell migration. J. Cell Physiol. 230, 2415–2425.10.1002/jcp.24971Suche in Google Scholar PubMed
Walter, T., Collenburg, L., Japtok, L., Kleuser, B., Schneider-Schaulies, S., Muller, N., Becam, J., Schubert-Unkmeir, A., Kong, J.N., Bieberich, E., et al. (2016). Incorporation and visualization of azido-functionalized N-oleoyl serinol in Jurkat cells, mouse brain astrocytes, 3T3 fibroblasts and human brain microvascular endothelial cells. Chem. Commun. 52, 8612–8614.10.1039/C6CC02879ASuche in Google Scholar PubMed PubMed Central
Wang, G., Silva, J., Krishnamurthy, K., Tran, E., Condie, B.G., and Bieberich, E. (2005). Direct binding to ceramide activates protein kinase Cζ before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells. J. Biol. Chem. 280, 26415–26424.10.1074/jbc.M501492200Suche in Google Scholar PubMed
Wang, G., Krishnamurthy, K., Umapathy, N.S., Verin, A.D., and Bieberich, E. (2009). The carboxyl-terminal domain of atypical protein kinase Cζ binds to ceramide and regulates junction formation in epithelial cells. J. Biol. Chem. 284, 14469–14475.10.1074/jbc.M808909200Suche in Google Scholar PubMed PubMed Central
Wang, F., Beck-Garcia, K., Zorzin, C., Schamel, W.W., and Davis, M.M. (2016). Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol. Nat. Immunol. 17, 844–850.10.1038/ni.3462Suche in Google Scholar PubMed PubMed Central
Wu, B.X., Clarke, C.J., and Hannun, Y.A. (2010). Mammalian neutral sphingomyelinases: regulation and roles in cell signaling responses. Neuromol. Med. 12, 320–330.10.1007/s12017-010-8120-zSuche in Google Scholar PubMed PubMed Central
Zech, T., Ejsing, C.S., Gaus, K., de Wet, B., Shevchenko, A., Simons, K., and Harder, T. (2009). Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling. EMBO J 28, 466–476.10.1038/emboj.2009.6Suche in Google Scholar PubMed PubMed Central
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Highlight: sphingolipids in infectious biology and immunology
- Sphingolipids in early viral replication and innate immune activation
- The function of sphingomyelinases in mycobacterial infections
- The role of acid sphingomyelinase and modulation of sphingolipid metabolism in bacterial infection
- The neutral sphingomyelinase 2 in T cell receptor signaling and polarity
- Click reactions with functional sphingolipids
- Sphingolipids in inflammatory hypoxia
- CD4+ Foxp3+ regulatory T cell-mediated immunomodulation by anti-depressants inhibiting acid sphingomyelinase
- Pathological manifestations of Farber disease in a new mouse model
- Pulmonary infection of cystic fibrosis mice with Staphylococcus aureus requires expression of α-toxin
- Minireview
- Roles of the nucleotide exchange factor and chaperone Hsp110 in cellular proteostasis and diseases of protein misfolding
- Research Articles/Short Communications
- Proteolysis
- The two cathepsin B-like proteases of Arabidopsis thaliana are closely related enzymes with discrete endopeptidase and carboxydipeptidase activities
Artikel in diesem Heft
- Frontmatter
- Highlight: sphingolipids in infectious biology and immunology
- Sphingolipids in early viral replication and innate immune activation
- The function of sphingomyelinases in mycobacterial infections
- The role of acid sphingomyelinase and modulation of sphingolipid metabolism in bacterial infection
- The neutral sphingomyelinase 2 in T cell receptor signaling and polarity
- Click reactions with functional sphingolipids
- Sphingolipids in inflammatory hypoxia
- CD4+ Foxp3+ regulatory T cell-mediated immunomodulation by anti-depressants inhibiting acid sphingomyelinase
- Pathological manifestations of Farber disease in a new mouse model
- Pulmonary infection of cystic fibrosis mice with Staphylococcus aureus requires expression of α-toxin
- Minireview
- Roles of the nucleotide exchange factor and chaperone Hsp110 in cellular proteostasis and diseases of protein misfolding
- Research Articles/Short Communications
- Proteolysis
- The two cathepsin B-like proteases of Arabidopsis thaliana are closely related enzymes with discrete endopeptidase and carboxydipeptidase activities