The inhibition of the mitochondrial F1FO-ATPase activity when activated by Ca2+ opens new regulatory roles for NAD+
-
Salvatore Nesci
, Fabiana Trombetti
, Vittoria Ventrella , Maurizio Pirini and Alessandra Pagliarani
Abstract
The mitochondrial F1FO-ATPase is uncompetitively inhibited by NAD+ only when the natural cofactor Mg2+ is replaced by Ca2+, a mode putatively involved in cell death. The Ca2+-dependent F1FO-ATPase is also inhibited when NAD+ concentration in mitochondria is raised by acetoacetate. The enzyme inhibition by NAD+ cannot be ascribed to any de-ac(et)ylation or ADP-ribosylation by sirtuines, as it is not reversed by nicotinamide. Moreover, the addition of acetyl-CoA or palmitate, which would favor the enzyme ac(et)ylation, does not affect the F1FO-ATPase activity. Consistently, NAD+ may play a new role, not associated with redox and non-redox enzymatic reactions, in the Ca2+-dependent regulation of the F1FO-ATPase activity.
Acknowledgments
Danilo Matteuzzi (DIMEVET, University of Bologna, Italy) is gratefully acknowledged for kindly conferring swine hearts from a local abattoir to our lab. This work was financed by a RFO grant from the University of Bologna, Italy.
References
Allegretti, M., Klusch, N., Mills, D.J., Vonck, J., Kühlbrandt, W., and Davies, K.M. (2015). Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase. Nature 521, 237–240.10.1038/nature14185Search in Google Scholar
Arakaki, N., Ueyama, Y., Hirose, M., Himeda, T., Shibata, H., Futaki, S., Kitagawa, K., and Higuti, T. (2001). Stoichiometry of subunit e in rat liver mitochondrial H+-ATP synthase and membrane topology of its putative Ca2+-dependent regulatory region. Biochim. Biophys. Acta 1504, 220–228.10.1016/S0005-2728(00)00248-6Search in Google Scholar
Avalos, J.L., Bever, K.M., and Wolberger, C. (2005). Mechanism of sirtuin inhibition by nicotinamide: altering the NAD+ cosubstrate specificity of a Sir2 enzyme. Mol. Cell 17, 855–868.10.1016/j.molcel.2005.02.022Search in Google Scholar PubMed
Bernardi, P., Rasola, A., Forte, M., and Lippe, G. (2015). The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol. Rev. 95, 1111–1155.10.1152/physrev.00001.2015Search in Google Scholar PubMed PubMed Central
Casadio, R. and Melandri, B.A. (1996). CaATP inhibition of the MgATP-dependent proton pump (H+-ATPase) in bacterial photosynthetic membranes with a mechanism of alternative substrate inhibition. J. Biol. Inorg. Chem. 1, 284–291.10.1007/s007750050055Search in Google Scholar
Du, J., Jiang, H., and Lin, H. (2009). Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD. Biochemistry (Mosc.) 48, 2878–2890.10.1021/bi802093gSearch in Google Scholar PubMed
Gemperli, A.C., Dimroth, P., and Steuber, J. (2003). Sodium ion cycling mediates energy coupling between complex I and ATP synthase. Proc. Natl. Acad. Sci. USA 100, 839–844.10.1073/pnas.0237328100Search in Google Scholar PubMed PubMed Central
Giorgio, V., von Stockum, S., Antoniel, M., Fabbro, A., Fogolari, F., Forte, M., Glick, G.D., Petronilli, V., Zoratti, M., Szabó, I., et al. (2013). Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc. Natl. Acad. Sci. USA 110, 5887–5892.10.1073/pnas.1217823110Search in Google Scholar PubMed PubMed Central
Giorgio, V., Burchell, V., Schiavone, M., Bassot, C., Minervini, G., Petronilli, V., Argenton, F., Forte, M., Tosatto, S., Lippe, G., et al. (2017). Ca2+ binding to F-ATP synthase β subunit triggers the mitochondrial permeability transition. EMBO Rep. 18, 1065–1076.10.15252/embr.201643354Search in Google Scholar PubMed PubMed Central
Gong, B., Pan, Y., Vempati, P., Zhao, W., Knable, L., Ho, L., Wang, J., Sastre, M., Ono, K., Sauve, A.A., et al. (2013). Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol. Aging 34, 1581–1588.10.1016/j.neurobiolaging.2012.12.005Search in Google Scholar PubMed PubMed Central
Guarente, L. (2016). CELL METABOLISM. The resurgence of NAD+. Science 352, 1396–1397.Search in Google Scholar
Haigis, M.C. and Sinclair, D.A. (2010). Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5, 253–295.10.1146/annurev.pathol.4.110807.092250Search in Google Scholar PubMed PubMed Central
He, J., Ford, H.C., Carroll, J., Ding, S., Fearnley, I.M., and Walker, J.E. (2017). Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase. Proc. Natl. Acad. Sci. USA 114, 3409–3414.10.1073/pnas.1702357114Search in Google Scholar PubMed PubMed Central
Imai, S. and Guarente, L. (2014). NAD+ and sirtuins in aging and disease. Trends Cell Biol. 24, 464–471.10.1016/j.tcb.2014.04.002Search in Google Scholar PubMed PubMed Central
Imai, S., Armstrong, C.M., Kaeberlein, M., and Guarente, L. (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800.10.1038/35001622Search in Google Scholar PubMed
Izzo, V., Bravo-San Pedro, J.M., Sica, V., Kroemer, G., and Galluzzi, L. (2016). Mitochondrial permeability transition: new findings and persisting uncertainties. Trends Cell Biol. 26, 655–667.10.1016/j.tcb.2016.04.006Search in Google Scholar PubMed
Nesci, S. (2017). Mitochondrial permeability transition, F1FO-ATPase and calcium: an enigmatic triangle. EMBO Rep. 18, 1265–1267.10.15252/embr.201744570Search in Google Scholar PubMed PubMed Central
Nesci, S., Ventrella, V., Trombetti F., Pirini, M., Borgatti, A.R., Pagliarani, A. (2011). Tributyltin (TBT) and dibutyltin (DBT) differently inhibit the mitochondrial Mg-ATPase activity in mussel digestive gland. Toxicol. in Vitro. 25, 117–124.10.1016/j.tiv.2010.10.001Search in Google Scholar PubMed
Nesci, S., Ventrella, V., Trombetti, F., Pirini, M., and Pagliarani, A. (2012). Tributyltin-driven enhancement of the DCCD insensitive Mg-ATPase activity in mussel digestive gland mitochondria. Biochimie 94, 727–733.10.1016/j.biochi.2011.11.002Search in Google Scholar PubMed
Nesci, S., Ventrella, V., Trombetti, F., Pirini, M., and Pagliarani, A. (2014). Thiol oxidation is crucial in the desensitization of the mitochondrial F1FO-ATPase to oligomycin and other macrolide antibiotics. Biochim. Biophys. Acta 1840, 1882–1891.10.1016/j.bbagen.2014.01.008Search in Google Scholar PubMed
Nesci, S., Trombetti, F., Ventrella, V., and Pagliarani, A. (2015). Opposite rotation directions in the synthesis and hydrolysis of ATP by the ATP synthase: hints from a subunit asymmetry. J. Membr. Biol. 248, 163–169.10.1007/s00232-014-9760-ySearch in Google Scholar PubMed
Nesci, S., Ventrella, V., Trombetti, F., Pirini, M., and Pagliarani, A. (2016). Preferential nitrite inhibition of the mitochondrial F1FO-ATPase activities when activated by Ca2+ in replacement of the natural cofactor Mg2+. Biochim. Biophys. Acta 1860, 345–353.10.1016/j.bbagen.2015.11.004Search in Google Scholar PubMed
Nesci, S., Trombetti, F., Ventrella, V., Pirini, M., and Pagliarani, A. (2017). Kinetic properties of the mitochondrial F1FO-ATPase activity elicited by Ca2+ in replacement of Mg2+. Biochimie 140, 73–81.10.1016/j.biochi.2017.06.013Search in Google Scholar PubMed
Nicholls, D.G. and Ferguson, S.J. (2013). 7 – ATP synthases and bacterial flagella rotary motors. In: Bioenergetics, 4th Edition (Boston, USA: Academic Press), pp. 197–220.10.1016/B978-0-12-388425-1.00007-5Search in Google Scholar
Osborne, B., Bentley, N.L., Montgomery, M.K., and Turner, N. (2016). The role of mitochondrial sirtuins in health and disease. Free Radic. Biol. Med. 100, 164–174.10.1016/j.freeradbiomed.2016.04.197Search in Google Scholar PubMed
Papageorgiou, S., Melandri, A.B., and Solaini, G. (1998). Relevance of divalent cations to ATP-driven proton pumping in beef heart mitochondrial F0F1-ATPase. J. Bioenerg. Biomembr. 30, 533–541.10.1023/A:1020528432609Search in Google Scholar
Ryu, D., Zhang, H., Ropelle, E.R., Sorrentino, V., Mázala, D.A.G., Mouchiroud, L., Marshall, P.L., Campbell, M.D., Ali, A.S., Knowels, G.M., et al. (2016). NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation. Sci. Transl. Med. 8, 361ra139.10.1126/scitranslmed.aaf5504Search in Google Scholar PubMed PubMed Central
Sauve, A.A. and Youn, D.Y. (2012). Sirtuins: NAD+-dependent deacetylase mechanism and regulation. Curr. Opin. Chem. Biol. 16, 535–543.10.1016/j.cbpa.2012.10.003Search in Google Scholar PubMed
Vassilopoulos, A., Pennington, J.D., Andresson, T., Rees, D.M., Bosley, A.D., Fearnley, I.M., Ham, A., Flynn, C.R., Hill, S., Rose, K.L., et al. (2014). SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient- and exercise-induced stress. Antioxid. Redox Signal. 21, 551–564.10.1089/ars.2013.5420Search in Google Scholar PubMed PubMed Central
Walker, J.E. (2013). The ATP synthase: the understood, the uncertain and the unknown. Biochem. Soc. Trans. 41, 1–16.10.1042/BST20110773Search in Google Scholar PubMed
Zhang, H., Ryu, D., Wu, Y., Gariani, K., Wang, X., Luan, P., D’Amico, D., Ropelle, E.R., Lutolf, M.P., Aebersold, R., et al. (2016). NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436–1443.10.1126/science.aaf2693Search in Google Scholar PubMed
Supplemental Material:
The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2017-0209).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- Structure and function of the human parvulins Pin1 and Par14/17
- Structural mechanisms of HECT-type ubiquitin ligases
- Mechanisms, pathophysiological roles and methods for analyzing mitophagy – recent insights
- Minireview
- PARP-1 and PARP-2 activity in cancer-induced cachexia: potential therapeutic implications
- Research Articles/Short Communications
- Protein Structure and Function
- The dinoponeratoxin peptides from the giant ant Dinoponera quadriceps display in vitro antitrypanosomal activity
- The inhibition of the mitochondrial F1FO-ATPase activity when activated by Ca2+ opens new regulatory roles for NAD+
Articles in the same Issue
- Frontmatter
- Review
- Structure and function of the human parvulins Pin1 and Par14/17
- Structural mechanisms of HECT-type ubiquitin ligases
- Mechanisms, pathophysiological roles and methods for analyzing mitophagy – recent insights
- Minireview
- PARP-1 and PARP-2 activity in cancer-induced cachexia: potential therapeutic implications
- Research Articles/Short Communications
- Protein Structure and Function
- The dinoponeratoxin peptides from the giant ant Dinoponera quadriceps display in vitro antitrypanosomal activity
- The inhibition of the mitochondrial F1FO-ATPase activity when activated by Ca2+ opens new regulatory roles for NAD+