Startseite PARP-1 and PARP-2 activity in cancer-induced cachexia: potential therapeutic implications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

PARP-1 and PARP-2 activity in cancer-induced cachexia: potential therapeutic implications

  • Esther Barreiro EMAIL logo und Joaquim Gea
Veröffentlicht/Copyright: 10. Januar 2018

Abstract

Skeletal muscle dysfunction and mass loss is a characteristic feature in patients with chronic diseases including cancer and acute conditions such as critical illness. Maintenance of an adequate muscle mass is crucial for the patients’ prognosis irrespective of the underlying condition. Moreover, aging-related sarcopenia may further aggravate the muscle wasting process associated with chronic diseases and cancer. Poly(adenosine diphosphate-ribose) polymerase (PARP) activation has been demonstrated to contribute to the pathophysiology of muscle mass loss and dysfunction in animal models of cancer-induced cachexia. Genetic inhibition of PARP activity attenuated the deleterious effects seen on depleted muscles in mouse models of oncologic cachexia. In the present minireview the mechanisms whereby PARP activity inhibition may improve muscle mass and performance in models of cancer-induced cachexia are discussed. Specifically, the beneficial effects of inhibition of PARP activity on attenuation of increased oxidative stress, protein catabolism, poor muscle anabolism and mitochondrial content and epigenetic modulation of muscle phenotype are reviewed in this article. Finally, the potential therapeutic strategies of pharmacological PARP activity inhibition for the treatment of cancer-induced cachexia are also being described in this review.


Corresponding author: Dr. Esther Barreiro, Pulmonology Department, IMIM-Hospital del Mar, PRBB, Dr. Aiguader, 88, E-08003 Barcelona, Spain

Acknowledgments

Editorial support: None to declare. CIBERES, FIS 14/00713 (FEDER), SAF-2014-54371-R, SEPAR 2016, and FUCAP 2016 (Spain) have contributed to support part of the research described in this review.

  1. Conflict of interest statement: The authors declare no conflict of interest, financial or otherwise in relation to this article.

References

Alamdari, N., Aversa, Z., Castillero, E., and Hasselgren, P.O. (2013) Acetylation and deacetylation – novel factors in muscle wasting. Metabolism 62, 1–11.10.1016/j.metabol.2012.03.019Suche in Google Scholar PubMed PubMed Central

Alamdari, N., Smith, I.J., Aversa, Z., and Hasselgren, P.O. (2010) Sepsis and glucocorticoids upregulate p300 and downregulate HDAC6 expression and activity in skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R509–R520.10.1152/ajpregu.00858.2009Suche in Google Scholar PubMed PubMed Central

Bai, P., Canto, C., Brunyanszki, A., Huber, A., Szanto, M., Cen, Y., Yamamoto, H., Houten, S.M., Kiss, B., Oudart, H., et al. (2011a) PARP-2 regulates SIRT1 expression and whole-body energy expenditure. Cell Metab. 13, 450–460.10.1016/j.cmet.2011.03.013Suche in Google Scholar PubMed PubMed Central

Bai, P., Canto, C., Oudart, H., Brunyanszki, A., Cen, Y., Thomas, C., Yamamoto, H., Huber, A., Kiss, B., Houtkooper, R.H., et al. (2011b) PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461–468.10.1016/j.cmet.2011.03.004Suche in Google Scholar PubMed PubMed Central

Bai, P., Nagy, L., Fodor, T., Liaudet, L., and Pacher, P. (2015) Poly(ADP-ribose) polymerases as modulators of mitochondrial activity. Trends Endocrinol. Metab. 26, 75–83.10.1016/j.tem.2014.11.003Suche in Google Scholar PubMed

Barreiro, E. (2017) Skeletal muscle dysfunction in COPD: novelties in the last decade. Arch. Bronconeumol. 53, 43–44.10.1016/j.arbr.2016.08.006Suche in Google Scholar

Barreiro, E. and Gea, J. (2015) Epigenetics and muscle dysfunction in chronic obstructive pulmonary disease. Transl. Res. 165, 61–73.10.1016/B978-0-12-800802-7.00004-6Suche in Google Scholar

Barreiro, E., Ferrer, D., Sanchez, F., Minguella, J., Marin-Corral, J., Martinez-Llorens, J., Lloreta, J., and Gea, J. (2011) Inflammatory cells and apoptosis in respiratory and limb muscles of patients with COPD. J. Appl. Physiol. 111, 808–817.10.1152/japplphysiol.01017.2010Suche in Google Scholar PubMed

Barreiro, E., Bustamante, V., Cejudo, P., Galdiz, J.B., Gea, J., de, L.P., Martinez-Llorens, J., Ortega, F., Puente-Maestu, L., Roca, J., et al. (2015) Guidelines for the evaluation and treatment of muscle dysfunction in patients with chronic obstructive pulmonary disease. Arch. Bronconeumol. 51, 384–395.10.1016/j.arbr.2015.04.027Suche in Google Scholar

Burkle, A. and Virag, L. (2013) Poly(ADP-ribose): PARadigms and PARadoxes. Mol. Aspects Med. 34, 1046–1065.10.1016/j.mam.2012.12.010Suche in Google Scholar PubMed

Chacon-Cabrera, A., Fermoselle, C., Urtreger, A.J., Mateu-Jimenez, M., Diament, M.J., De Kier Joffe, E.D., Sandri, M., and Barreiro, E. (2014) Pharmacological strategies in lung cancer-induced cachexia: effects on muscle proteolysis, autophagy, structure, and weakness. J. Cell Physiol. 229, 1660–1672.10.1002/jcp.24611Suche in Google Scholar

Chacon-Cabrera, A., Fermoselle, C., Salmela, I., Yelamos, J., and Barreiro, E. (2015) MicroRNA expression and protein acetylation pattern in respiratory and limb muscles of Parp-1−/− and Parp-2−/− mice with lung cancer cachexia. Biochim. Biophys. Acta 1850, 2530–2543.10.1016/j.bbagen.2015.09.020Suche in Google Scholar

Chacon-Cabrera, A., Mateu-Jimenez, M., Langohr, K., Fermoselle, C., Garcia-Arumi, E., Andreu, A.L., Yelamos, J., and Barreiro, E. (2017) Role of PARP activity in lung cancer-induced cachexia: effects on muscle oxidative stress, proteolysis, anabolic markers, and phenotype. J. Cell Physiol. 232, 3744–3761.10.1002/jcp.25851Suche in Google Scholar

Consalvi, S., Saccone, V., Giordani, L., Minetti, G., Mozzetta, C., and Puri, P.L. (2011) Histone deacetylase inhibitors in the treatment of muscular dystrophies: epigenetic drugs for genetic diseases. Mol. Med. 17, 457–465.10.2119/molmed.2011.00049Suche in Google Scholar

Cui, H., Bansal, V., Grunert, M., Malecova, B., Dall’Agnese, A., Latella, L., Gatto, S., Ryan, T., Schulz, K., Chen, W., et al. (2017) Muscle-relevant genes marked by stable H3K4me2/3 profiles and enriched MyoD binding during myogenic differentiation. PLoS One 12, e0179464.10.1371/journal.pone.0179464Suche in Google Scholar

de, M.G., Huletsky, A., Lamarre, D., Gaudreau, A., Pouyet, J., Daune, M., and Poirier, G.G. (1986) Modulation of chromatin superstructure induced by poly(ADP-ribose) synthesis and degradation. J. Biol. Chem. 261, 7011–7017.10.1016/S0021-9258(19)62715-8Suche in Google Scholar

Ethier, C., Tardif, M., Arul, L., and Poirier, G.G. (2012) PARP-1 modulation of mTOR signaling in response to a DNA alkylating agent. PLoS One 7, e47978.10.1371/journal.pone.0047978Suche in Google Scholar

Fearon, K., Strasser, F., Anker, S.D., Bosaeus, I., Bruera, E., Fainsinger, R.L., Jatoi, A., Loprinzi, C., MacDonald, N., Mantovani, G., et al. (2011) Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 12, 489–495.10.1016/S1470-2045(10)70218-7Suche in Google Scholar

Fermoselle, C., Rabinovich, R., Ausin, P., Puig-Vilanova, E., Coronell, C., Sanchez, F., Roca, J., Gea, J., and Barreiro, E. (2012) Does oxidative stress modulate limb muscle atrophy in severe COPD patients? Eur. Respir. J. 40, 851–862.10.1183/09031936.00137211Suche in Google Scholar PubMed

Fermoselle, C., Garcia-Arumi, E., Puig-Vilanova, E., Andreu, A.L., Urtreger, A.J., De Kier Joffe, E.D., Tejedor, A., Puente-Maestu, L., and Barreiro, E. (2013) Mitochondrial dysfunction and therapeutic approaches in respiratory and limb muscles of cancer cachectic mice. Exp. Physiol. 98, 1349–1365.10.1113/expphysiol.2013.072496Suche in Google Scholar PubMed

Fry, C.S., Drummond, M.J., Glynn, E.L., Dickinson, J.M., Gundermann, D.M., Timmerman, K.L., Walker, D.K., Dhanani, S., Volpi, E., and Rasmussen, B.B. (2011) Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skeletal Muscle 1, 1–11.10.1186/2044-5040-1-11Suche in Google Scholar PubMed PubMed Central

Ha, H.C. and Snyder, S.H. (1999) Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc. Natl. Acad. Sci. USA 96, 13978–13982.10.1073/pnas.96.24.13978Suche in Google Scholar PubMed PubMed Central

Hassa, P.O. and Hottiger, M.O. (1999) A role of poly (ADP-ribose) polymerase in NF-κB transcriptional activation. Biol. Chem. 380, 953–959.10.1515/BC.1999.118Suche in Google Scholar PubMed

Hassa, P.O. and Hottiger, M.O. (2008) The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci. 13, 3046–3082.10.2741/2909Suche in Google Scholar PubMed

Jagtap, P., Soriano, F.G., Virag, L., Liaudet, L., Mabley, J., Szabo, E., Hasko, G., Marton, A., Lorigados, C.B., Gallyas, F., Jr., et al. (2002) Novel phenanthridinone inhibitors of poly (adenosine 5′-diphosphate-ribose) synthetase: potent cytoprotective and antishock agents. Crit. Care Med. 30, 1071–1082.10.1097/00003246-200205000-00019Suche in Google Scholar PubMed

Jagtap, P. and Szabo, C. (2005) Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat. Rev. Drug Discov. 4, 421–440.10.1038/nrd1718Suche in Google Scholar PubMed

Kiefmann, R., Heckel, K., Doerger, M., Schenkat, S., Kupatt, C., Stoeckelhuber, M., Wesierska-Gadek, J., and Goetz, A.E. (2004) Role of PARP on iNOS pathway during endotoxin-induced acute lung injury. Intensive Care Med. 30, 1421–1431.10.1007/s00134-004-2301-xSuche in Google Scholar PubMed

Marquis, K., Debigare, R., Lacasse, Y., LeBlanc, P., Jobin, J., Carrier, G., and Maltais, F. (2002) Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit Care Med. 166, 809–813.10.1164/rccm.2107031Suche in Google Scholar PubMed

Mohamed, J.S., Hajira, A., Pardo, P.S., and Boriek, A.M. (2014) MicroRNA-149 inhibits PARP-2 and promotes mitochondrial biogenesis via SIRT-1/PGC-1alpha network in skeletal muscle. Diabetes 63, 1546–1559.10.2337/db13-1364Suche in Google Scholar PubMed

Natanek, S.A., Riddoch-Contreras, J., Marsh, G.S., Hopkinson, N.S., Man, W.D., Moxham, J., Polkey, M.I., and Kemp, P.R. (2011) Yin Yang 1 expression and localisation in quadriceps muscle in COPD. Arch. Bronconeumol. 47, 296–302.10.1016/j.arbr.2011.02.004Suche in Google Scholar

Olah, G., Szczesny, B., Brunyanszki, A., Lopez-Garcia, I.A., Gero, D., Radak, Z., and Szabo, C. (2015) Differentiation-associated downregulation of poly(ADP-Ribose) polymerase-1 expression in myoblasts serves to increase their resistance to oxidative stress. PLoS One 10, e0134227.10.1371/journal.pone.0134227Suche in Google Scholar PubMed PubMed Central

Oliver, F.J., Menissier-de, M.J., Nacci, C., Decker, P., Andriantsitohaina, R., Muller, S., de la Rubia, G., Stoclet, J.C., and de, M.G. (1999) Resistance to endotoxic shock as a consequence of defective NF-κB activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO J. 18, 4446–4454.10.1093/emboj/18.16.4446Suche in Google Scholar PubMed PubMed Central

Pacher, P., Beckman, J.S., and Liaudet, L. (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 87, 315–424.10.1152/physrev.00029.2006Suche in Google Scholar PubMed PubMed Central

Pacher, P. and Szabo, C. (2008) Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease. Am.J.Pathol. 173, 2–13.10.2353/ajpath.2008.080019Suche in Google Scholar PubMed PubMed Central

Potthoff, M.J., Wu, H., Arnold, M.A., Shelton, J.M., Backs, J., McAnally, J., Richardson, J.A., Bassel-Duby, R., and Olson, E.N. (2007) Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J. Clin. Invest. 117, 2459–2467.10.1172/JCI31960Suche in Google Scholar PubMed PubMed Central

Puig-Vilanova, E., Aguilo, R., Rodriguez-Fuster, A., Martinez-Llorens, J., Gea, J., and Barreiro, E. (2014a) Epigenetic mechanisms in respiratory muscle dysfunction of patients with chronic obstructive pulmonary disease. PLoS One 9, e111514.10.1371/journal.pone.0111514Suche in Google Scholar PubMed PubMed Central

Puig-Vilanova, E., Ausin, P., Martinez-Llorens, J., Gea, J., and Barreiro, E. (2014b) Do epigenetic events take place in the vastus lateralis of patients with mild chronic obstructive pulmonary disease? PLoS One 9, e102296.10.1371/journal.pone.0102296Suche in Google Scholar PubMed PubMed Central

Puig-Vilanova, E., Rodriguez, D.A., Lloreta, J., Ausin, P., Pascual-Guardia, S., Broquetas, J., Roca, J., Gea, J., and Barreiro, E. (2014c) Oxidative stress, redox signaling pathways, and autophagy in cachectic muscles of male patients with advanced COPD and lung cancer. Free Radic. Biol. Med. 79C, 91–108.10.1016/j.freeradbiomed.2014.11.006Suche in Google Scholar PubMed

Puig-Vilanova, E., Martinez-Llorens, J., Ausin, P., Roca, J., Gea, J., and Barreiro, E. (2015) Quadriceps muscle weakness and atrophy are associated with a differential epigenetic profile in advanced COPD. Clin. Sci. (Lond) 128, 905–921.10.1042/CS20140428Suche in Google Scholar PubMed

Rajamohan, S.B., Pillai, V.B., Gupta, M., Sundaresan, N.R., Birukov, K.G., Samant, S., Hottiger, M.O., and Gupta, M.P. (2009) SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Mol. Cell Biol. 29, 4116–4129.10.1128/MCB.00121-09Suche in Google Scholar PubMed PubMed Central

Sadoul, K., Boyault, C., Pabion, M., and Khochbin, S. (2008) Regulation of protein turnover by acetyltransferases and deacetylases. Biochimie 90, 306–312.10.1016/j.biochi.2007.06.009Suche in Google Scholar

Schreiber, V., Dantzer, F., Ame, J.C., and de, M.G. (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat. Rev. Mol. Cell Biol. 7, 517–528.10.1038/nrm1963Suche in Google Scholar

Seymour, J.M., Spruit, M.A., Hopkinson, N.S., Natanek, S.A., Man, W.D., Jackson, A., Gosker, H.R., Schols, A.M., Moxham, J., Polkey, M.I., et al. (2010) The prevalence of quadriceps weakness in COPD and the relationship with disease severity. Eur. Respir. J. 36, 81–88.10.1164/ajrccm-conference.2009.179.1_MeetingAbstracts.A4204Suche in Google Scholar

Shrikrishna, D., Patel, M., Tanner, R.J., Seymour, J.M., Connolly, B.A., Puthucheary, Z.A., Walsh, S.L., Bloch, S.A., Sidhu, P.S., Hart, N., et al. (2012) Quadriceps wasting and physical inactivity in patients with COPD. Eur. Respir. J. 40, 1115–1122.10.1183/09031936.00170111Suche in Google Scholar

Swallow, E.B., Reyes, D., Hopkinson, N.S., Man, W.D., Porcher, R., Cetti, E.J., Moore, A.J., Moxham, J., and Polkey, M.I. (2007) Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax 62, 115–120.10.1136/thx.2006.062026Suche in Google Scholar

Szabo, C., Ischiropoulos, H., and Radi, R. (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 6, 662–680.10.1038/nrd2222Suche in Google Scholar

Toth, M.J., Miller, M.S., Callahan, D.M., Sweeny, A.P., Nunez, I., Grunberg, S.M., Der-Torossian, H., Couch, M.E., and Dittus, K. (2013) Molecular mechanisms underlying skeletal muscle weakness in human cancer: reduced myosin-actin cross-bridge formation and kinetics. J. Appl. Physiol 114, 858–868.10.1152/japplphysiol.01474.2012Suche in Google Scholar

Tseng, A.H., Wu, L.H., Shieh, S.S., and Wang, D.L. (2014) SIRT3 interactions with FOXO3 acetylation, phosphorylation and ubiquitinylation mediate endothelial cell responses to hypoxia. Biochem. J. 464, 157–168.10.1042/BJ20140213Suche in Google Scholar

Ullrich, O., Reinheckel, T., Sitte, N., Hass, R., Grune, T., and Davies, K.J. (1999) Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones. Proc. Natl. Acad. Sci. USA 96, 6223–6228.10.1073/pnas.96.11.6223Suche in Google Scholar

Ullrich, O., Ciftci, O., and Hass, R. (2000) Proteasome activation by poly-ADP-ribose-polymerase in human myelomonocytic cells after oxidative stress. Free Radic. Biol. Med. 29, 995–1004.10.1016/S0891-5849(00)00399-3Suche in Google Scholar

Vaschetto, R., Kuiper, J.W., Chiang, S.R., Haitsma, J.J., Juco, J.W., Uhlig, S., Plotz, F.B., Della, C.F., Zhang, H., and Slutsky, A.S. (2008) Inhibition of poly(adenosine diphosphate-ribose) polymerase attenuates ventilator-induced lung injury. Anesthesiology 108, 261–268.10.1097/01.anes.0000299434.86640.15Suche in Google Scholar PubMed PubMed Central

Virag, L. and Szabo, C. (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev. 54, 375–429.10.1124/pr.54.3.375Suche in Google Scholar PubMed

Vogelmeier, C.F., Criner, G.J., Martinez, F.J., Anzueto, A., Barnes, P.J., Bourbeau, J., Celli, B.R., Chen, R., Decramer, M., Fabbri, L.M., et al. (2017) Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report: gold executive summary. Arch. Bronconeumol. 53, 128–149.Suche in Google Scholar

Wang, H., Hertlein, E., Bakkar, N., Sun, H., Acharyya, S., Wang, J., Carathers, M., Davuluri, R., and Guttridge, D.C. (2007) NF-κB regulation of YY1 inhibits skeletal myogenesis through transcriptional silencing of myofibrillar genes. Mol. Cell Biol. 27, 4374–4387.10.1128/MCB.02020-06Suche in Google Scholar PubMed PubMed Central

White, J.P., Baynes, J.W., Welle, S.L., Kostek, M.C., Matesic, L.E., Sato, S., and Carson, J.A. (2011) The regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the Apc(Min/+) mouse. PLoS One 6, e24650.10.1371/journal.pone.0024650Suche in Google Scholar PubMed PubMed Central

Yelamos, J., Farres, J., Llacuna, L., Ampurdanes, C., and Martin-Caballero, J. (2011) PARP-1 and PARP-2: new players in tumour development. Am. J. Cancer Res. 1, 328–346.Suche in Google Scholar

Zhang, C.L., McKinsey, T.A., and Olson, E.N. (2002) Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol. Cell Biol. 22, 7302–7312.10.1128/MCB.22.20.7302-7312.2002Suche in Google Scholar PubMed PubMed Central

Zheng, J., Devalaraja-Narashimha, K., Singaravelu, K., and Padanilam, B.J. (2005) Poly(ADP-ribose) polymerase-1 gene ablation protects mice from ischemic renal injury. Am. J. Physiol. Renal Physiol. 288, F387–F398.10.1152/ajprenal.00436.2003Suche in Google Scholar PubMed

Received: 2017-5-2
Accepted: 2017-10-4
Published Online: 2018-1-10
Published in Print: 2018-1-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2017-0158/html
Button zum nach oben scrollen