Home Life Sciences The inhibition of the mitochondrial F1FO-ATPase activity when activated by Ca2+ opens new regulatory roles for NAD+
Article
Licensed
Unlicensed Requires Authentication

The inhibition of the mitochondrial F1FO-ATPase activity when activated by Ca2+ opens new regulatory roles for NAD+

  • Salvatore Nesci ORCID logo , Fabiana Trombetti , Vittoria Ventrella , Maurizio Pirini and Alessandra Pagliarani ORCID logo EMAIL logo
Published/Copyright: January 10, 2018

Abstract

The mitochondrial F1FO-ATPase is uncompetitively inhibited by NAD+ only when the natural cofactor Mg2+ is replaced by Ca2+, a mode putatively involved in cell death. The Ca2+-dependent F1FO-ATPase is also inhibited when NAD+ concentration in mitochondria is raised by acetoacetate. The enzyme inhibition by NAD+ cannot be ascribed to any de-ac(et)ylation or ADP-ribosylation by sirtuines, as it is not reversed by nicotinamide. Moreover, the addition of acetyl-CoA or palmitate, which would favor the enzyme ac(et)ylation, does not affect the F1FO-ATPase activity. Consistently, NAD+ may play a new role, not associated with redox and non-redox enzymatic reactions, in the Ca2+-dependent regulation of the F1FO-ATPase activity.

Acknowledgments

Danilo Matteuzzi (DIMEVET, University of Bologna, Italy) is gratefully acknowledged for kindly conferring swine hearts from a local abattoir to our lab. This work was financed by a RFO grant from the University of Bologna, Italy.

References

Allegretti, M., Klusch, N., Mills, D.J., Vonck, J., Kühlbrandt, W., and Davies, K.M. (2015). Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase. Nature 521, 237–240.10.1038/nature14185Search in Google Scholar

Arakaki, N., Ueyama, Y., Hirose, M., Himeda, T., Shibata, H., Futaki, S., Kitagawa, K., and Higuti, T. (2001). Stoichiometry of subunit e in rat liver mitochondrial H+-ATP synthase and membrane topology of its putative Ca2+-dependent regulatory region. Biochim. Biophys. Acta 1504, 220–228.10.1016/S0005-2728(00)00248-6Search in Google Scholar

Avalos, J.L., Bever, K.M., and Wolberger, C. (2005). Mechanism of sirtuin inhibition by nicotinamide: altering the NAD+ cosubstrate specificity of a Sir2 enzyme. Mol. Cell 17, 855–868.10.1016/j.molcel.2005.02.022Search in Google Scholar PubMed

Bernardi, P., Rasola, A., Forte, M., and Lippe, G. (2015). The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol. Rev. 95, 1111–1155.10.1152/physrev.00001.2015Search in Google Scholar PubMed PubMed Central

Casadio, R. and Melandri, B.A. (1996). CaATP inhibition of the MgATP-dependent proton pump (H+-ATPase) in bacterial photosynthetic membranes with a mechanism of alternative substrate inhibition. J. Biol. Inorg. Chem. 1, 284–291.10.1007/s007750050055Search in Google Scholar

Du, J., Jiang, H., and Lin, H. (2009). Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD. Biochemistry (Mosc.) 48, 2878–2890.10.1021/bi802093gSearch in Google Scholar PubMed

Gemperli, A.C., Dimroth, P., and Steuber, J. (2003). Sodium ion cycling mediates energy coupling between complex I and ATP synthase. Proc. Natl. Acad. Sci. USA 100, 839–844.10.1073/pnas.0237328100Search in Google Scholar PubMed PubMed Central

Giorgio, V., von Stockum, S., Antoniel, M., Fabbro, A., Fogolari, F., Forte, M., Glick, G.D., Petronilli, V., Zoratti, M., Szabó, I., et al. (2013). Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc. Natl. Acad. Sci. USA 110, 5887–5892.10.1073/pnas.1217823110Search in Google Scholar PubMed PubMed Central

Giorgio, V., Burchell, V., Schiavone, M., Bassot, C., Minervini, G., Petronilli, V., Argenton, F., Forte, M., Tosatto, S., Lippe, G., et al. (2017). Ca2+ binding to F-ATP synthase β subunit triggers the mitochondrial permeability transition. EMBO Rep. 18, 1065–1076.10.15252/embr.201643354Search in Google Scholar PubMed PubMed Central

Gong, B., Pan, Y., Vempati, P., Zhao, W., Knable, L., Ho, L., Wang, J., Sastre, M., Ono, K., Sauve, A.A., et al. (2013). Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol. Aging 34, 1581–1588.10.1016/j.neurobiolaging.2012.12.005Search in Google Scholar PubMed PubMed Central

Guarente, L. (2016). CELL METABOLISM. The resurgence of NAD+. Science 352, 1396–1397.Search in Google Scholar

Haigis, M.C. and Sinclair, D.A. (2010). Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5, 253–295.10.1146/annurev.pathol.4.110807.092250Search in Google Scholar PubMed PubMed Central

He, J., Ford, H.C., Carroll, J., Ding, S., Fearnley, I.M., and Walker, J.E. (2017). Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase. Proc. Natl. Acad. Sci. USA 114, 3409–3414.10.1073/pnas.1702357114Search in Google Scholar PubMed PubMed Central

Imai, S. and Guarente, L. (2014). NAD+ and sirtuins in aging and disease. Trends Cell Biol. 24, 464–471.10.1016/j.tcb.2014.04.002Search in Google Scholar PubMed PubMed Central

Imai, S., Armstrong, C.M., Kaeberlein, M., and Guarente, L. (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800.10.1038/35001622Search in Google Scholar PubMed

Izzo, V., Bravo-San Pedro, J.M., Sica, V., Kroemer, G., and Galluzzi, L. (2016). Mitochondrial permeability transition: new findings and persisting uncertainties. Trends Cell Biol. 26, 655–667.10.1016/j.tcb.2016.04.006Search in Google Scholar PubMed

Nesci, S. (2017). Mitochondrial permeability transition, F1FO-ATPase and calcium: an enigmatic triangle. EMBO Rep. 18, 1265–1267.10.15252/embr.201744570Search in Google Scholar PubMed PubMed Central

Nesci, S., Ventrella, V., Trombetti F., Pirini, M., Borgatti, A.R., Pagliarani, A. (2011). Tributyltin (TBT) and dibutyltin (DBT) differently inhibit the mitochondrial Mg-ATPase activity in mussel digestive gland. Toxicol. in Vitro. 25, 117–124.10.1016/j.tiv.2010.10.001Search in Google Scholar PubMed

Nesci, S., Ventrella, V., Trombetti, F., Pirini, M., and Pagliarani, A. (2012). Tributyltin-driven enhancement of the DCCD insensitive Mg-ATPase activity in mussel digestive gland mitochondria. Biochimie 94, 727–733.10.1016/j.biochi.2011.11.002Search in Google Scholar PubMed

Nesci, S., Ventrella, V., Trombetti, F., Pirini, M., and Pagliarani, A. (2014). Thiol oxidation is crucial in the desensitization of the mitochondrial F1FO-ATPase to oligomycin and other macrolide antibiotics. Biochim. Biophys. Acta 1840, 1882–1891.10.1016/j.bbagen.2014.01.008Search in Google Scholar PubMed

Nesci, S., Trombetti, F., Ventrella, V., and Pagliarani, A. (2015). Opposite rotation directions in the synthesis and hydrolysis of ATP by the ATP synthase: hints from a subunit asymmetry. J. Membr. Biol. 248, 163–169.10.1007/s00232-014-9760-ySearch in Google Scholar PubMed

Nesci, S., Ventrella, V., Trombetti, F., Pirini, M., and Pagliarani, A. (2016). Preferential nitrite inhibition of the mitochondrial F1FO-ATPase activities when activated by Ca2+ in replacement of the natural cofactor Mg2+. Biochim. Biophys. Acta 1860, 345–353.10.1016/j.bbagen.2015.11.004Search in Google Scholar PubMed

Nesci, S., Trombetti, F., Ventrella, V., Pirini, M., and Pagliarani, A. (2017). Kinetic properties of the mitochondrial F1FO-ATPase activity elicited by Ca2+ in replacement of Mg2+. Biochimie 140, 73–81.10.1016/j.biochi.2017.06.013Search in Google Scholar PubMed

Nicholls, D.G. and Ferguson, S.J. (2013). 7 – ATP synthases and bacterial flagella rotary motors. In: Bioenergetics, 4th Edition (Boston, USA: Academic Press), pp. 197–220.10.1016/B978-0-12-388425-1.00007-5Search in Google Scholar

Osborne, B., Bentley, N.L., Montgomery, M.K., and Turner, N. (2016). The role of mitochondrial sirtuins in health and disease. Free Radic. Biol. Med. 100, 164–174.10.1016/j.freeradbiomed.2016.04.197Search in Google Scholar PubMed

Papageorgiou, S., Melandri, A.B., and Solaini, G. (1998). Relevance of divalent cations to ATP-driven proton pumping in beef heart mitochondrial F0F1-ATPase. J. Bioenerg. Biomembr. 30, 533–541.10.1023/A:1020528432609Search in Google Scholar

Ryu, D., Zhang, H., Ropelle, E.R., Sorrentino, V., Mázala, D.A.G., Mouchiroud, L., Marshall, P.L., Campbell, M.D., Ali, A.S., Knowels, G.M., et al. (2016). NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation. Sci. Transl. Med. 8, 361ra139.10.1126/scitranslmed.aaf5504Search in Google Scholar PubMed PubMed Central

Sauve, A.A. and Youn, D.Y. (2012). Sirtuins: NAD+-dependent deacetylase mechanism and regulation. Curr. Opin. Chem. Biol. 16, 535–543.10.1016/j.cbpa.2012.10.003Search in Google Scholar PubMed

Vassilopoulos, A., Pennington, J.D., Andresson, T., Rees, D.M., Bosley, A.D., Fearnley, I.M., Ham, A., Flynn, C.R., Hill, S., Rose, K.L., et al. (2014). SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient- and exercise-induced stress. Antioxid. Redox Signal. 21, 551–564.10.1089/ars.2013.5420Search in Google Scholar PubMed PubMed Central

Walker, J.E. (2013). The ATP synthase: the understood, the uncertain and the unknown. Biochem. Soc. Trans. 41, 1–16.10.1042/BST20110773Search in Google Scholar PubMed

Zhang, H., Ryu, D., Wu, Y., Gariani, K., Wang, X., Luan, P., D’Amico, D., Ropelle, E.R., Lutolf, M.P., Aebersold, R., et al. (2016). NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436–1443.10.1126/science.aaf2693Search in Google Scholar PubMed


Supplemental Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2017-0209).


Received: 2017-7-25
Accepted: 2017-9-21
Published Online: 2018-1-10
Published in Print: 2018-1-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2017-0209/html
Scroll to top button