Home Galanin suppresses proliferation of human U251 and T98G glioma cells via its subtype 1 receptor
Article
Licensed
Unlicensed Requires Authentication

Galanin suppresses proliferation of human U251 and T98G glioma cells via its subtype 1 receptor

  • Zhu Mei , Yutao Yang EMAIL logo , Yun Li , Feiya Yang , Junfa Li , Nianzeng Xing and Zhi-Qing David Xu EMAIL logo
Published/Copyright: May 19, 2017

Abstract

Galanin is a neuropeptide with a widespread distribution throughout the nervous and endocrine systems, and recent studies have shown an anti-proliferative effect of galanin on several types of tumors. However, whether and how galanin and its receptors are involved in the regulation of cell proliferation in glioma cells remains unclear. In this study, the roles of galanin and its subtype 1 receptor (GAL1) in the proliferation of human U251 and T98G glioma cells were investigated. We found that galanin significantly suppressed the proliferation of U251 and T98G cells as well as tumor growth in nude mice. However, galanin did not exert apoptotic or cytotoxic effects on these two cell lines. In addition, we showed that galanin decreased the proliferation of U251 and T98G cells via its GAL1 receptor. Finally, we found that the GAL1 receptor was involved in the suppressive effects of galanin by activating ERK1/2.

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (31171032, 31271154, 81671345), the grant from the Beijing Natural Science Foundation (7162016), Beijing Brain Project (Grant Z161100000216142), and the Special Project on Natural Chronic Non-infectious Diseases (2016YFC1307200).

  1. Conflict of interest statement: None to declare.

References

Barbieri, F., Pattarozzi, A., Gatti, M., Porcile, C., Bajetto, A., Ferrari, A., Culler, M.D., and Florio, T. (2008). Somatostatin receptors 1, 2, and 5 cooperate in the somatostatin inhibition of C6 glioma cell proliferation in vitro via a phosphotyrosine phosphatase-eta-dependent inhibition of extracellularly regulated kinase-1/2. Endocrinology 149, 4736–4746.10.1210/en.2007-1762Search in Google Scholar PubMed

Bauer, J.W., Lang, R., Jakab, M., and Kofler, B. (2010). Galanin family of peptides in skin function. EXS 102, 51–59.10.1007/978-3-0346-0228-0_5Search in Google Scholar PubMed

Berger, A., Tuechler, C., Almer, D., Kogner, P., Ratschek, M., Kerbl, R., Iismaa, T.P., Jones, N., Sperl, W., and Kofler, B. (2002). Elevated expression of galanin receptors in childhood neuroblastic tumors. Neuroendocrinology 75, 130–138.10.1159/000048229Search in Google Scholar PubMed

Berger, A., Santic, R., Almer, D., Hauser-Kronberger, C., Huemer, M., Humpel, C., Stockhammer, G., Sperl, W., and Kofler, B. (2003). Galanin and galanin receptors in human gliomas. Acta Neuropathol. 105, 555–560.10.1007/s00401-003-0680-7Search in Google Scholar PubMed

Berger, A., Lang, R., Moritz, K., Santic, R., Hermann, A., Sperl, W., and Kofler, B. (2004). Galanin receptor subtype GalR2 mediates apoptosis in SH-SY5Y neuroblastoma cells. Endocrinology 145, 500–507.10.1210/en.2003-0649Search in Google Scholar PubMed

Berger, A., Santic, R., Hauser-Kronberger, C., Schilling, F.H., Kogner, P., Ratschek, M., Gamper, A., Jones, N., Sperl, W., and Kofler, B. (2005). Galanin and galanin receptors in human cancers. Neuropeptides 39, 353–359.10.1016/j.npep.2004.12.016Search in Google Scholar PubMed

Biegańska, K., Sokołowska, P., Jöhren, O., and Zawilska, J.B. (2012). Orexin A suppresses the growth of rat C6 glioma cells via a caspase-dependent mechanism. J. Mol. Neurosci. 48, 706–712.10.1007/s12031-012-9799-0Search in Google Scholar PubMed PubMed Central

Crawley, J.N. (1999). The role of galanin in feeding behavior. Neuropeptides 33, 369–375.10.1054/npep.1999.0049Search in Google Scholar PubMed

Cochaud, S., Meunier, A.C., Monvoisin, A., Bensalma, S., Muller, J.M., and Chadéneau, C. (2015). Neuropeptides of the VIP family inhibit glioblastoma cell invasion. J. Neurooncol. 122, 63–73.10.1007/s11060-014-1697-6Search in Google Scholar PubMed

El-Salhy, M. and Dennerqvist, V. (2004). Effects of triple therapy with octreotide, galanin and serotonin on liver metastasis of human colon cancer in xenografts. Oncol. Rep. 11, 1177–1182.10.3892/or.11.6.1177Search in Google Scholar

Giaid, A., Gibson, S.J., Herrero, M.T., Gentleman, S., Legon, S., Yanagisawa, M., Masaki, T., Ibrahim, N.B., Roberts, G.W., Rossi, M.L., et al. (1991). Topographical localisation of endothelin mRNA and peptide immunoreactivity in neurones of the human brain. Histochemistry 95, 303–314.10.1007/BF00266781Search in Google Scholar PubMed

Habert-Ortoli, E., Amiranoff, B., Loquet, I., Laburthe, M., and Mayaux, J.F. (1994). Molecular cloning of a functional human galanin receptor. Proc. Natl. Acad. Sci. USA 91, 9780–9783.10.1073/pnas.91.21.9780Search in Google Scholar PubMed PubMed Central

Henson, B.S., Neubig, R.R., Jang, I., Ogawa, T., Zhang, Z., Carey, T.E., and D’Silva, N.J. (2005). Galanin receptor 1 has anti-proliferative effects in oral squamous cell carcinoma. J. Biol. Chem. 280, 22564–22571.10.1074/jbc.M414589200Search in Google Scholar PubMed

Hökfelt, T., Xu, Z.Q., Shi, T.J., Holmberg, K., and Zhang, X. (1998). Galanin in ascending systems. Focus on coexistence with 5-hydroxytryptamine and noradrenaline. Ann. N.Y. Acad. Sci. 863, 252–263.10.1111/j.1749-6632.1998.tb10700.xSearch in Google Scholar PubMed

Howard, A.D., Tan, C., Shiao, L.L., Palyha, O.C., McKee, K.K., Weinberg, D.H., Feighner, S.D., Cascieri, M.A., Smith, R.G., Van Der Ploeg, L.H., et al. (1997). Molecular cloning and characterization of a new receptor for galanin. FEBS Lett. 405, 285–290.10.1016/S0014-5793(97)00196-8Search in Google Scholar

Iismaa, T.P. and Shine, J. (1999). Galanin and galanin receptors. Results Probl. Cell Differ. 26, 257–291.10.1007/978-3-540-49421-8_12Search in Google Scholar PubMed

Kanazawa, T., Kommareddi, P.K., Iwashita, T., Kumar, B., Misawa, K., Misawa, Y., Jang, I., Nair, T.S., Iino, Y., and Carey, T.E. (2009). Galanin receptor subtype 2 suppresses cell proliferation and induces apoptosis in p53 mutant head and neck cancer cells. Clin. Cancer Res. 15, 2222–2230.10.1158/1078-0432.CCR-08-2443Search in Google Scholar PubMed PubMed Central

Kordower, J.H., Le, H.K., and Mufson, E.J. (1992). Galanin immunoreactivity in the primate central nervous system. J. Comp. Neurol. 319, 479–500.10.1002/cne.903190403Search in Google Scholar PubMed

Lahlou, H., Saint-Laurent, N., Esteve, J.P., Eychene, A., Pradayrol, L., Pyronnet, S., and Susini, C. (2003). sst2 Somatostatin receptor inhibits cell proliferation through Ras-, Rap1-, and B-Raf-dependent ERK2 activation. J. Biol. Chem. 278, 39356–39371.10.1074/jbc.M304524200Search in Google Scholar PubMed

Lang, R., Gundlach, A.L., and Kofler, B. (2007). The galanin peptide family: receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacol. Ther. 115, 177–207.10.1016/j.pharmthera.2007.05.009Search in Google Scholar PubMed

Lang, R., Gundlach, A.L., Holmes, F.E., Hobson, S.A., Wynick, D., Hökfelt, T., and Kofler, B. (2015). Physiology, signaling, and pharmacology of galanin peptides and receptors: three decades of emerging diversity. Pharmacol. Rev. 67, 118–175.10.1124/pr.112.006536Search in Google Scholar PubMed

Leung, B., Iisma, T.P., Leung, K.C., Hort, Y.J., Turner, J., Sheehy, J.P., and Ho, K.K. (2002). Galanin in human pituitary adenomas: frequency and clinical significance. Clin. Endocrinol. (Oxford) 56, 397–403.10.1046/j.1365-2265.2002.01486.xSearch in Google Scholar PubMed

Lu, X. and Bartfai, T. (2009). Analyzing the validity of GalR1 and GalR2 antibodies using knockout mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 379, 417–420.10.1007/s00210-009-0394-zSearch in Google Scholar PubMed PubMed Central

Lu, X., Bartfai, T., and Lundström, L. (2005). Galanin (2–11) binds to GalR3 in transfected cell lines: limitations for pharmacological definition of receptor subtypes. Neuropeptides 39, 165–167.10.1016/j.npep.2004.12.013Search in Google Scholar PubMed

Lundstrom, L., Elmquist, A., Bartfai, T., and Langel, U. (2005). Galanin and its receptors in neurological disorders. Neuromolecular Med. 7, 157–180.10.1385/NMM:7:1-2:157Search in Google Scholar PubMed

Mazarati, A.M. and Lu, X. (2005). Regulation of limbic status epilepticus by hippocampal galanin type 1 and type 2 receptors. Neuropeptides 39, 277–280.10.1016/j.npep.2004.12.003Search in Google Scholar PubMed

Merchenthaler, I., Lopez, F.J., and Negro-Vilar, A. (1993). Anatomy and physiology of central galanin-containing pathways. Prog. Neurobiol. 40, 711–769.10.1016/0301-0082(93)90012-HSearch in Google Scholar PubMed

Michel, M.C., Wieland, T., and Tsujimoto, G. (2009). How reliable are G-protein-coupled receptor antibodies? Naunyn-Schmiedeberg’s.Arch. Pharmacol. 379, 385–388.10.1007/s00210-009-0395-ySearch in Google Scholar PubMed

Otis, M., Campbell, S., Payet, M.D., and Gallo-Payet, N. (2005). Angiotensin II stimulates protein synthesis and inhibits proliferation in primary cultures of rat adrenal glomerulosa cells. Endocrinology 146, 633–642.10.1210/en.2004-0935Search in Google Scholar PubMed

Pan, N.C., Bai, Y.F., Yang, Y.T., Hökfelt, T., and Xu, Z.Q. (2014). Activation of galanin receptor 2 stimulates large conductance Ca2+-dependent K+ (BK) channels through the IP3 pathway in human embryonic kidney (HEK293) cells. Biochem. Biophys. Res. Commun. 446, 316–321.10.1016/j.bbrc.2014.02.110Search in Google Scholar PubMed

Pumiglia, K.M. and Decker, S.J. (1997). Cell cycle arrest mediated by the MEK/mitogen-activated protein kinase pathway. Proc. Natl. Acad. Sci. USA 94, 448–452.10.1073/pnas.94.2.448Search in Google Scholar PubMed PubMed Central

Tatemoto, K., Rokaeus, A., Jornvall, H., McDonald, T.J., and Mutt, V. (1983). Galanin – a novel biologically active peptide from porcine intestine. FEBS Lett. 164, 124–128.10.1016/0014-5793(83)80033-7Search in Google Scholar PubMed

Tofighi, R., Joseph, B., Xia, S., Xu, Z.Q., Hamberger, B., Hökfelt, T., and Ceccatelli, S. (2008). Galanin decreases proliferation of PC12 cells and induces apoptosis via its subtype 2 receptor (GalR2). Proc. Natl. Acad. Sci. USA 105, 2717–2722.10.1073/pnas.0712300105Search in Google Scholar PubMed PubMed Central

Tsukada, Y., Miyazawa, K., and Kitamura, N. (2001). High intensity ERK signal mediates hepatocyte growth factor-induced proliferation inhibition of the human hepatocellular carcinoma cell line HepG2. J. Biol. Chem. 276, 40968–40976.10.1074/jbc.M010890200Search in Google Scholar PubMed

Wang, S., He, C., Hashemi, T., and Bayne, M. (1997). Cloning and expressional characterization of a novel galanin receptor. Identification of different pharmacophores within galanin for the three galanin receptor subtypes. J. Biol. Chem. 272, 31949–31952.10.1074/jbc.272.51.31949Search in Google Scholar PubMed

Wang, S., Hashemi, T., Fried, S., Clemmons, A.L., and Hawes, B.E. (1998). Differential intracellular signaling of the GalR1 and GalR2 galanin receptor subtypes. Biochemistry 37, 6711–6717.10.1021/bi9728405Search in Google Scholar PubMed

Wittau, N., Grosse, R., Kalkbrenner, F., Gohla, A., Schultz, G., and Gudermann, T. (2000). The galanin receptor type 2 initiates multiple signaling pathways in small cell lung cancer cells by coupling to Gq, Gi and G12 proteins. Oncogene 19, 4199–4209.10.1038/sj.onc.1203777Search in Google Scholar PubMed


Supplemental Material:

The online version of this article (DOI: https://doi.org/10.1515/hsz-2016-0320) offers supplementary material, available to authorized users.


Received: 2016-10-24
Accepted: 2017-5-4
Published Online: 2017-5-19
Published in Print: 2017-9-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2016-0320/html?lang=en
Scroll to top button