Home Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities
Article
Licensed
Unlicensed Requires Authentication

Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities

  • Takahisa Imamura EMAIL logo , Yoji Murakami and Hidetoshi Nitta
Published/Copyright: April 21, 2017

Abstract

Aeromonas sobria serine protease (ASP) is secreted from Aeromonas sobria, a pathogen causing gastroenteritis and sepsis. ASP resembles Saccharomyces cerevisiae Kex2, a member of the subtilisin family, and preferentially cleaves peptide bonds at the C-terminal side of paired basic amino acid residues; also accepting unpaired arginine at the P1 site. Unlike Kex2, however, ASP lacks an intramolecular chaperone N-terminal propeptide, instead utilizes the external chaperone ORF2 for proper folding, therefore, ASP and its homologues constitute a new subfamily in the subtilisin family. Through activation of the kallikrein/kinin system, ASP induces vascular leakage, and presumably causes edema and septic shock. ASP accelerates plasma clotting by α-thrombin generation from prothrombin, whereas it impairs plasma clottability by fibrinogen degradation, together bringing about blood coagulation disorder that occurs in disseminated intravascular coagulation, a major complication of sepsis. From complement C5 ASP liberates C5a that induces neutrophil recruitment and superoxide release, and mast cell degranulation, which are associated with pus formation, tissue injury and diarrhea, respectively. Nicked two-chain ASP also secreted from A. sobria is more resistant to inactivation by α2-macroglobulin than single-chain ASP, thereby raising virulence activities. Thus, ASP is a potent virulence factor and may participate in the pathogenesis of A. sobria infection.

Acknowledgments

We thank Dr. T. Yoshimura, Department of Pathology and Experimental Medicine, Okayama University for his critical reading and editing of this manuscript. We also thank Dr. H. Kobayashi, Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University for his invaluable comments on ASP properties.

References

Ascencio, F., Aleljung, P., Olusanya, O., and Wadström, T. (1990). Type I and IV collagen and fibrinogen binding to Aeromonas species isolated from various infections. Zentralbl. Bakteriol. 273, 186–194.10.1016/S0934-8840(11)80248-3Search in Google Scholar

Brenner, C. and Fuller, R.S. (1992). Structural and enzymatic characterization of a purified prohormon-processing enzyme: secreted, soluble Kex2 protease. Proc. Natl. Acad. Sci. USA 89, 922–926.10.1073/pnas.89.3.922Search in Google Scholar

Chang, J.-Y. (1986). The structures and proteolytic specificities of autolysed human thrombin. Biochem. J. 240, 797–802.10.1042/bj2400797Search in Google Scholar

Chang, A.K., Kim, H.Y., Park, J.E., Acharya, P., Park, I.-S., Yoon, S.M., You, H.J., Hahm, K.-S., Park, J.K., and Lee, J.S. (2005). Vibrio vulnificus secretes a broad-specificity metalloprotease capable of interfering with blood homeostasis through prothrombin activation and fibrinolysis. J. Bacteriol. 187, 6909–6916.10.1128/JB.187.20.6909-6916.2005Search in Google Scholar

Chung, D.W., Fujikawa, K., MacMullen, B.A., and Davie, E.W. (1986). Human plasma prekallikrein, a zymogen to a serine protease that contains four tandem repeats. Biochemistry 25, 2410–2417.10.1021/bi00357a017Search in Google Scholar

Cochrane, C.G. and Griffin, J.H. (1982). The biochemistry and pathophysiology of the contact system of plasma. Adv. Immunol. 33, 241–306.10.1016/S0065-2776(08)60837-8Search in Google Scholar

Coleman, G. and Whitby, P.W. (1993). A comparison of amino acid sequence of the serine protease of the fish pathogen Aeromonas salmonicida with those of other subtilisin-type enzymes relative to their substrate-binding sites. J. Gen. Microbiol. 139, 245–249.10.1099/00221287-139-2-245Search in Google Scholar PubMed

Collet, J.-P., Moen, J.L., Veklich, Y.I., Gorkun, O.V., Lord, S.T., Montalescot, G., and Wiesel, J.W. (2005). The αC domains of fibrinogen affect the structure of the fibrin clot, its physical properties, and its susceptibility to fibrinolysis. Blood 106, 3824–3830.10.1182/blood-2005-05-2150Search in Google Scholar PubMed PubMed Central

Daily, O.P., Joseph, S.W., Coolbaugh, J.C., Walker, R.I., Merrell, B.R., Rollins, D.M., Seidler, R.J., Colwell, R.R., and Lissner, C.R. (1981). Association of Aeromonas sobria with human infection. J. Clin. Microbiol. 13, 769 –777.10.1128/jcm.13.4.769-777.1981Search in Google Scholar PubMed PubMed Central

Degen, S.F.J., MacGillivray, R.T.A., and Davie, E.W. (1983). Characterization of the complementary deoxyribonucleic acid and gene coding for human prothrombin. Biochemistry 22, 2087–2097.10.1021/bi00278a008Search in Google Scholar PubMed

de Bruijn, M.H.L. and Fey, G.H. (1985). Human complement component C3: cDNA coding sequence and derived primary structure. Proc. Natl. Acad. Sci. USA 82, 708–712.10.1073/pnas.82.3.708Search in Google Scholar

Deutsch, S.F. and Wedzina, W. (1997). Aeromonas sobria- associated left-sided segmental colitis. Am. J. Gastroenterol. 92, 2104–2106.Search in Google Scholar

DiScipio, R.G., Smith, C.A., Müller-Eberhard, H.J., and Hugli, T.E. (1983). The activation of human complement component C5 by a fluid phase C5 convertase. J. Biol. Chem. 258, 10629–10636.10.1016/S0021-9258(17)44503-0Search in Google Scholar

DiScipio, R.G., Daffern, P.J., Kawahara, M., Pike, R., Travis, J., and Hugli, T.E. (1996). Cleavage of human complement component C5 by cysteine proteinases from Porphyromonas gingivalis: prior oxidation of C5 augments proteinase digestion of C5. Immunology 87, 660–667.10.1046/j.1365-2567.1996.478594.xSearch in Google Scholar

Doyle, M.F. and Mann, K.G. (1990) Multiple active forms of thrombin. IV. Relative activities of meizothrombins. J. Biol. Chem. 265, 10693–10701.10.1016/S0021-9258(18)87002-8Search in Google Scholar

Duthie, R., Ling, T.W., Cheng, A.F.B., and French, G.L. (1995). Aeromonas septicemia in Hong Kong: species distribution and associated diseases. J. Infect. Dis. 30, 241–244.Search in Google Scholar

Esteve, C. and Birbeck, T.H. (2004). Secretion of haemolysins and proteases by Aeromonas hydrophila EO63: separation and characterization of the serine protease (caseinase) and the metalloprotease (elastase). J. Appl. Microbiol. 96, 994–1001.10.1111/j.1365-2672.2004.02227.xSearch in Google Scholar

Farraye, F.A., Peppercorn, M.A., Ciano, P.S., and Kavesh, W.N. (1989). Segmental colitis associated with Aeromonas hydrophila. Am. J. Gastroenterol. 84, 436–438.Search in Google Scholar

Fernandez, H.N. and Hugli, T.E. (1978). Primary structural analysis of the polypeptide portion of human C5a anaphylatoxin: polypeptide sequence determination and assignment of the oligosaccharide attachment site in C5a. J. Biol. Chem. 253, 6955–6964.10.1016/S0021-9258(17)38013-4Search in Google Scholar

Fernandez, H.N., Henson, P.M., Otani, A., and Hugli, T.E. (1978). Chemotactic response to human C3a and C5a anaphylatoxins. 1. Evaluation of C3a and C5a leukotaxis in vitro and under stimulated in vivo cinditions. J. Immunol. 120, 109–115.10.4049/jimmunol.120.1.109Search in Google Scholar

Fittschen, C., Sandhaus, R.A., Worthen, G.S., and Henson, P.M. (1988). Bacterial lipopolysaccharide enhances chemoattractant-induced elastase secretion by human neutrophils. J. Leukoc. Biol. 43, 547–556.10.1002/jlb.43.6.547Search in Google Scholar PubMed

Goldstein, I.M. and Weissmann, G. (1974). Generation of C5-derived lysosomal enzyme releasing activity (C5a) by lysates of leukocyte lysosomes. J. Immunol. 113, 1583–1588.10.4049/jimmunol.113.5.1583Search in Google Scholar

Grøn, H., Meldal, M., and Breddam, K. (1992). Extensive comparison of the substrate preferences of two subtilisins as determined with peptide substrates which are based on the principle of intramolecular quenching. Biochemistry 31, 6011–6018.10.1021/bi00141a008Search in Google Scholar PubMed

Guo, R.F., Riedemann, N.C., Bernacki, K.D., Sarma, V.J., Laudes, I.J., Reuben, J.S., Younkin, E.M., Neff, T.A., Paulauskis, J.D., Zetoune, F.S., et al. (2003). Neutrophil C5a receptor and the outcome in a rat model of sepsis. FASEB J. 13, 1889–1891.10.1096/fj.03-0009fjeSearch in Google Scholar PubMed

Halkier, T. (1991). Mechanisms in Blood Coagulation, Fibrinolysis and the Complement System (Cambridge, UK: Cambridge University Press).Search in Google Scholar

Harpel, P.C. (1973). Studies on human plasma α2-macroglobulin-enzyme interactions: evidence for proteolytic modification of the subunit chain structure. J. Exp. Med. 138, 508–521.10.1084/jem.138.3.508Search in Google Scholar PubMed PubMed Central

Harris, T.O., Shelver, D.W., Bohnsack, J.F., and Rubens, C.E. (2003). A novel streptococcal surface protease promotes virulence, resistance to opsonophagocytosis, and cleavage of human fibrinogen. J. Clin. Invest. 111, 61–70.10.1172/JCI200316270Search in Google Scholar

Haycox, C.L., Odland, P.D., Coltrera, M.D., and Raugi, G.J. (1995). Indications and complications of medicinal leech therapy. J. Am. Acad. Dermatol. 33, 1053–1055.10.1016/0190-9622(95)90320-8Search in Google Scholar

Herwald, H., Collin, M., Müller-Esterl, W., and Björck, L. (1996). Streptococcal cysteine protease releases kinins: a novel virulence mechanism. J. Exp. Med. 184, 665–673.10.1084/jem.184.2.665Search in Google Scholar PubMed PubMed Central

Hesselvik, J.F., Blombäck, M., Brodin, B., and Maller, R. (1989). Coagulation, fibrinolysis, and kallikrein systems in sepsis: relation to outcome. Crit. Care Med. 17, 724–733.10.1097/00003246-198908000-00002Search in Google Scholar PubMed

Holyoak, T., Wilson, M.A., Fenn, T.D., Kettner, C.A., Petsko, G.A., Fuller, R.S., and Ringe, D. (2003). 2.4 Å resolution crystal structure of the prototypical hormone-processing protease Kex2 in complex with an Ala-Lys-Arg boronic acid inhibitor. Biochemistry 42, 6709–6718.10.1021/bi034434tSearch in Google Scholar PubMed

Huber-Lang, M.S., Younkin, E.M., Sarma, J.V., McGuire, S.R., Lu, K.T., Guo, R.F., Padgaonkar, V.A., Curnutte, J.T., Erickson, R., and Ward, P.A. (2002). Complement-induced impairment of innate immunity during sepsis. J. Immunol. 169, 3223–3231.10.4049/jimmunol.169.6.3223Search in Google Scholar PubMed

Husslein, V., Bergbauer, H., and Chakraborty, T. (1991). Studies on aerolysin and a serine protease from Aeromonas trota sp. nov. Experientia 47, 420 – 421.Search in Google Scholar

Ikeda, K., Nagasawa, K., Horiuchi, T., Tsuru, T., Nishizaka, H., and Niho, Y. (1997). C5a induces tissue factor activity on endothelial cells. Thromb. Haemost. 77, 394–398.10.1055/s-0038-1655974Search in Google Scholar

Imamura, T. (2014). Staphopains in Staphylococcus aureus bacteremia: virulence activities related to the onset of septic shock, coagulation disorders, and infectious endocarditis. J. Oral Biosci. 56, 81–85.10.1016/j.job.2014.04.001Search in Google Scholar

Imamura, T., Yamamoto, T., and Kambara, T. (1984). Guinea pig plasma kallikrein as a vascular permeability enhancement factor: its dependence on kinin generation and regulation mechanisms in vivo. Am. J. Pathol. 115, 92–101.Search in Google Scholar

Imamura, T., Potempa, J., Pike, R.N., and Travis, J. (1995). Effect of free and vesicle-bound cysteine proteinases of Porphyromonas gingivalis on plasma clot formation: implications for bleeding tendency at periodontitis sites. Infect. Immun. 63, 4877–4882.10.1128/iai.63.12.4877-4882.1995Search in Google Scholar PubMed PubMed Central

Imamura, T., Banbula, A., Pereira, P.J.B., Travis, J., and Potempa, J. (2001) Activation of human prothrombin by arginine-specific cysteine proteases (gingipain R) from Porphyromonas gingivalis. J. Biol. Chem. 276, 18984–18991.10.1074/jbc.M006760200Search in Google Scholar PubMed

Imamura, T., Tanase, S., Szmyd, G., Kozik, A, Travis, J., and Potempa, J. (2005). Induction of vascular leakage through release of bradykinin and a novel kinin by cysteine proteinases from Staphylococcus aureus. J. Exp. Med. 201, 1669 –1676.10.1084/jem.20042041Search in Google Scholar PubMed PubMed Central

Imamura, T., Kobayashi, H., Khan, R., Nitta, H., and Okamoto, K. (2006). Induction of vascular leakage and blood pressure lowering through kinin release by a serine protease from Aeromonas sobria. J. Immunol. 177, 8723–8729.10.4049/jimmunol.177.12.8723Search in Google Scholar PubMed

Imamura, T., Nitta, H., Wada, Y., Kobayashi, H., and Okamoto, K. (2008). Impaired plasma clottability induction through fibrinogen degradation byASP, a serine protease released from Aeromonas sobria. FEMS Microbiol. Lett. 284, 35–42.10.1111/j.1574-6968.2008.01184.xSearch in Google Scholar PubMed PubMed Central

Janda, J.M. (1991). Recent advances in the study of the taxonomy, pathogenicity, and infectious syndromes associated with the genus Aeromonas. Clin. Microbiol. Rev. 4, 397–410.10.1128/CMR.4.4.397Search in Google Scholar PubMed PubMed Central

Janda, J.M. and Brenden, R. (1987). Importance of Aeromonas sobria in Aeromonas bacteremia. J. Infect. Dis. 155, 589–591.10.1093/infdis/155.3.589Search in Google Scholar PubMed

Janda, J.M. and Duffey, P.S. (1988). Mesophilic aeromonads in human disease: current taxonomy, laboratory identification, and infectious disease spectrum. Rev. Infect. Dis. 10, 980–997.10.1093/clinids/10.5.980Search in Google Scholar PubMed

Janda, J.M. and Abbott, S.L. (1996). Human pathogens. In: The Genus Aeromonas. B. Austin, M. Altwegg, P.J. Gosling and S. Joseph, eds. (Chichester, UK: John Wiley & Sons), pp. 151–173.Search in Google Scholar

Janda, J.M. and Abbott, S.L. (1998). Evolving concepts regarding the genus Aeromonas: an expanding panorama of species, disease presentations, and unanswered questions. Clin. Infect. Dis. 27, 332–344.10.1086/514652Search in Google Scholar PubMed

Janda, J.M. and Abbott, S.L. (2010). The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev. 23, 35–73.10.1128/CMR.00039-09Search in Google Scholar PubMed PubMed Central

Janda, J.M., Reitano, M., and Bottone, E.J. (1984). Biotyping of Aeromonas isolates as a correlate to delineating a species-associated disease spectrum. J. Clin. Microbiol. 19, 44–47.10.1128/jcm.19.1.44-47.1984Search in Google Scholar PubMed PubMed Central

Janda, J.M., Guthertz, L.S., Kokka, R.P., and Shimada, T. (1994). Aeromonas species in septicemia: laboratory characteristics and clinical observations. Clin. Infect. Dis. 19, 77–83.10.1093/clinids/19.1.77Search in Google Scholar PubMed

Janda, J.M., Abbott, S.L., Khashe, S., Kellogg, G.H., and Shimada, T. (1996). Further studies on biochemical characteristics and serologic properties of the genus Aeromonas. J. Clin. Microbiol. 34, 1930–1933.10.1128/jcm.34.8.1930-1933.1996Search in Google Scholar PubMed PubMed Central

Jones, B.L. and Wilcox, M.H. (1995). Aeromonas infection and their treatment. J. Antimicrob. Chemother. 35, 453–461.10.1093/jac/35.4.453Search in Google Scholar PubMed

Kalter, E.S., Daha, M.R., ten Cate, J.W., Verhoef, J., and Bouma, B.N. (1985). Activation and inhibition of Hageman factor-dependent pathways and the complement system in uncomplicated bacteremia or bacterial shock. J. Infect. Dis. 151, 1019–1027.10.1093/infdis/151.6.1019Search in Google Scholar PubMed

Kaminishi, H., Hamatake, H., Cho, T., Tamaki, T., Suenaga, N., Fujii, T., Hagihara, Y., and Maeda, H. (1994). Activation of blood clotting factors by microbial proteases. FEMS Microbiol. Lett. 121, 327–332.10.1111/j.1574-6968.1994.tb07121.xSearch in Google Scholar PubMed

Kikuchi, Y. and Kaplan, A.P. (2002). A role for C5a in augmenting IgG-dependent histamine release from basophils in chronic urticaria. J. Allergy Clin. Immunol. 109, 114–118.10.1067/mai.2002.120954Search in Google Scholar PubMed

Kobayashi, H., Takahashi, E., Oguma, K., Fujii, Y., Yamanaka, H., Negishi, T., Arimoto-Kobayashi, S., Tsuji, T., and Okamoto, K. (2006). Cleavage specificity of the serine protease of Aeromonas sobria, a member of the kexin family of subtilases. FEMS Microbiol. Lett. 256, 165–170.10.1111/j.1574-6968.2006.00134.xSearch in Google Scholar PubMed

Kobayashi, H., Utsunomiya, H, Yamanaka, H., Sei, Y., Katunuma, N., Okamoto, K., and Tsuge, H. (2009a). Structural basis for the kexin-like serine protease from Aeromonas sobria as sepsis-causing factor. J. Biol. Chem. 284, 27655–2763.10.1074/jbc.M109.006114Search in Google Scholar PubMed PubMed Central

Kobayashi, H., Tateishi, A., Tsuge, H., Takahashi, E., Okamoto, K., and Yamanaka, H. (2009b). The carboxy-terminal tail of Aeromonas sobria serine protease is associated with the chaperone. Microbiol. Immunol. 53, 647–657.10.1111/j.1348-0421.2009.00175.xSearch in Google Scholar PubMed

Kobayashi, H., Yoshida, T., Miyakawa, T., Tashiro, M., Okamoto, K., Yamanaka, H., Tanokura, M., and Tsuge, H. (2015). Structural basis for action of the external chaperone for a propeptide-deficient serine protease from Aeromonas sobria. J. Biol. Chem. 290, 11130–11143.10.1074/jbc.M114.622852Search in Google Scholar PubMed PubMed Central

Kollman, J.M., Pandi, L., Sawaya, M.R., Riley, M., and Doolittle, R.F. (2009). Crystal structure of human fibrinogen. Biochemistry 48, 3877–3886.10.1021/bi802205gSearch in Google Scholar PubMed

Konteatis, Z.D., Siciliano, S.J., Riper, G.V., Molineaux, C.J., Pandya, S., Fischer, P., Rosen, H., Mumford, R.A., and Springer, M.S. (1994). Development of C5a receptor antagonists: differential loss of functional responses. J. Immunol. 153, 4200–4205.10.4049/jimmunol.153.9.4200Search in Google Scholar

Kurachi, K. and Davie, E.W. (1982). Isolation and characterization of a cDNA clone for human factor IX. Proc. Natl. Acad. Sci. USA 79, 6461–6464.10.1073/pnas.79.21.6461Search in Google Scholar

Leeb-Lundberg, L.M.F., Marceau, F., Müller-Esterl, W., Pettibone, D.J., and Zuraw. B.L. (2005). International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol. Rev. 57: 27–77.10.1124/pr.57.1.2Search in Google Scholar

Levi, M. (2001). Pathogenesis and treatment of disseminated intravascular coagulation in the septic patient. J. Crit. Care 16, 167–177.10.1053/jcrc.2001.30666Search in Google Scholar

Levi, M. and ten Cate, H. (1999). Disseminated intravascula coagulation. N. Engl. J. Med. 341, 586–592.10.1056/NEJM199908193410807Search in Google Scholar

Leytus, S.P., Chung, D.W., Kisiel, W., Sasagawa, T., Howald, W.N., Kwa, E.Y., and Weinstein, B. (1984). Characterization of a cDNA coding for human blood coagulation factor X. Proc. Natl. Acad. Sci. USA 81, 3699–3702.10.1073/pnas.81.12.3699Search in Google Scholar

Lin, S.-H, Shieh, S.-D., Lin, Y.-F., De Bauer, E., Van Landuyt, H.W., Gordts, B., and Boelaert, J.R. (1996). Fatal Aeromonas hydrophila bacteremia in a hemodialysis patient treated with deferoxamine. Am. J. Kidney Dis. 27, 733–735.10.1016/S0272-6386(96)90112-2Search in Google Scholar

Mann, K.G.R. and Lundblad, L. (1987). Biochemistry of thrombin. In: Hemostasis and Thrombosis: Basic Principles and Clinical Practice, 2nd edition. (R.W. Colman, J. Hirsh and V.J. Marder, eds. (Philadelphia, PA: JB Lippincott), pp. 148–161.Search in Google Scholar

Marder, S.R., Chenoweth, D.E., Goldstein, I.M., and Perez, H.D. (1985). Chemotactic responses of human peripheral blood monocytes to the complement-derived peptides C5a and C5a des Arg. J. Immunol. 134, 3325–3331.10.4049/jimmunol.134.5.3325Search in Google Scholar

Marshall, J.C. (1997). Inflammation, coagulopathy, and the pathogenesis of multiple organ dysfunction and anticoagulant mechanisms in sepsis and endotoxaemia. Eur. J. Clin. Invest. 27, 3–9.Search in Google Scholar

Maruo, K., T. Akaike, T., Inada, Y., Ohkubo, I., Ono, T., and H. Maeda. (1993). Effect of microbial and mite proteases on low and high molecular weight kininogens: generation of kinin and inactivation of thiol protease inhibitory activity. J. Biol. Chem. 268, 17711–17715.10.1016/S0021-9258(17)46762-7Search in Google Scholar

Maruo, K., Akaike, T., Ono, T., Okamoto, T., and Maeda, H. (1997). Generation of anaphylatoxins through proteolytic processing of C3 and C5 by house dust mite protease. J. Allergy Clin. Immunol. 100, 253–26010.1016/S0091-6749(97)70233-1Search in Google Scholar

Mollnes, T.E., Brekke, O.L., Fung, M., Fure, H., Christiansen, D., Bergseth, G., Videm, V., Lappegård, K.T., Köhl, J., and Lambris, J.D. (2002). Essential role of the C5a receptor in E. coli induced oxidative burst and phagocytosis revealed by a novel lepirudin-based human whole blood model of inflammation. Blood 100, 1869–1877.Search in Google Scholar

Muhlfelder, T.W., Niemetz, J., Kreutzer, D., Beebe, D., Ward, P.A., and Rosenfeld, S.I. (1979). C5 chemotactic fragment induces leukocyte production of tissue factor activity: a link between complement and coagulation. J. Clin. Invest. 63, 147–150.10.1172/JCI109269Search in Google Scholar PubMed PubMed Central

Müller-Esterl, W. (1986). Kininogens. In: Methods of Enzymatic Analysis: Proteins and Peptides, Vol. 9, 3rd Ed., H.U. Bergmeyer, J. Bergmeyer and M. Graßl, eds. (Weinheim, Germany: VCH), pp. 304–316.Search in Google Scholar

Murakami, Y., Wada, Y., Kobayashi, H., Hasegawa, M., Okamoto, K., Eto, M., and Imamura, T. (2012a). The tail nick augments Aeromonas sobria serine protease (ASP) activity in plasma through retarding inhibition by α2-macroglobulin. FEBS Lett. 586, 3613–3617.10.1016/j.febslet.2012.08.004Search in Google Scholar PubMed

Murakami, Y., Wada, Y., Kobayashi, H., Irie, A., Hasegawa, M., Yamanaka, H., Okamoto, K., Eto, M., and Imamura, T. (2012b). Inhibition of Aeromonas sobria serine protease (ASP) by α2-macroglobulin. Biol. Chem. 393, 1193–1200.10.1515/hsz-2012-0117Search in Google Scholar

Nakae, H., Endo, S., Inada, K., Takakuwa, T., Kasai, T., and Yoshida, M. (1994). Serum complement levels and severity of sepsis. Res. Commun. Chem. Pathol. Pharmacol. 84, 189–195.Search in Google Scholar

Nemerson, Y. (1988). Tissue factor and hemostasis. Blood 71, 1–8.10.1182/blood.V71.1.1.1Search in Google Scholar

Nitta, H., Kobayashi, H., Irie, A., Baba, H., Okamoto, K., and Imamura, T. (2007). Activation of prothrombin by ASP, a serine protease released from Aeromonas sobria. FEBS Lett. 581, 5935–5939.10.1016/j.febslet.2007.11.076Search in Google Scholar

Nitta, H., Imamura, T., Wada, Y., Irie, A., Kobayashi, H., Okamoto, K., and Baba, H. (2008). Production of C5a by ASP, a Serine Protease Released from Aeromonas sobria. J. Immunol. 181, 3602–3608.10.4049/jimmunol.181.5.3602Search in Google Scholar

Nomura, T., Fujii, Y., Yamanaka, Y., Kobayashi, H., and Okamoto, K. (2002). The protein encoded at the 30 end of the serine protease gene of Aeromonas sobria functions as a chaperone in the production of the protease. J. Bacteriol. 184, 7058–7061.10.1128/JB.184.24.7058-7061.2002Search in Google Scholar

Ohbayashi, T., Irie, A., Murakami, Y., Nowak, M., Potempa, J., Nishimiura, Y., Shinohara, M., and Imamura, T. (2011). Degradation of fibrinogen and collagen by staphopains, cysteine proteases released from Staphylococcus aureus. Microbiology 157, 786–792.10.1099/mic.0.044503-0Search in Google Scholar

Okamoto, K., Nomura, T., Hamada, M., Fukuda, T., Noguchi, Y., and Fujii, Y. (2000). Production of serine protease of Aeromonas sobria is controlled by the protein encoded by the gene lying adjacent to the 3′ end of the protease gene. Microbiol. Immunol. 44, 787–798.10.1111/j.1348-0421.2000.tb02565.xSearch in Google Scholar

Pixley, R.A., DeLa Cadena, R.A., Page, J.D., Kaufman, N., Wyshock, E.G., R. Colman, W., Chang, A., and Taylor, Jr, F.B. (1992). Activation of the contact system in lethal hypotensive bacteremia in a baboon model. Am. J. Pathol. 140, 897–906.Search in Google Scholar

Pixley, R.A., DeLa Cadena, R.A., Page, J.D., Kaufman, N., Wyshock, E.G., Chang, A., Taylor, Jr., F.B., and Colman, R.W. (1993). The contact system contributes to hypotension but not disseminated intravascular coagulation in lethal bacteremia: in vivo use of a monoclonal anti-factor XII antibody to block contact activation in baboons. J. Clin. Invest. 91, 61–68.10.1172/JCI116201Search in Google Scholar

Pixley, R.A., Zellis, S., Bankes, P., DeLa Cadena, R.A., Page, J.D., Scott, C.F., Kappelmayer, J., Wyshock, E.G., Kelly, J.J., and Colman, R.W. (1995). Prognostic value of assessing contact system activation and factor V in systemic inflammatory response syndrome. Crit. Care Med. 23, 41–51.10.1097/00003246-199501000-00010Search in Google Scholar

Pizzo, S.V., Schwartz, M.L., Hill, R.L., and McKee, P.A. (1972). The effect of plasmin on the subunit structure of human fibrinogen. J. Biol. Chem. 247, 636–645.10.1016/S0021-9258(19)45656-1Search in Google Scholar

Regoli, D. and Barabé, J. (1980). Pharmacology of bradykinin and related kinins. Pharmacol. Rev. 32, 1–46.Search in Google Scholar

Rhaleb, N.-E., Rouissi, N., Jukic, D., Regoli, D., Henke, S., Breipohl, G., and Knolle, J. (1992). Pharmacological characterization of a new highly potent B2 receptor antagonist (HOE 140: D-Arg-(Hyp3, Thi5, D-Tic7, Oic8)bradykinin). Eur. J. Pharmacol. 210, 115–120.10.1016/0014-2999(92)90661-MSearch in Google Scholar

Rheinnecker, M., Baker, G., Eder, J., and Fersht, A.R. (1993). Engineering a novel spcificity in subtilisin BPN’. Biohemistry 32, 1199–1203.10.1021/bi00056a001Search in Google Scholar

Rockwell, M. and Fuller, R.S. (1998). Interplay between S1 and S4 subsites in kex2 protease: Kex2 exhibits dual specificity for the P4 side chain. Biohemistry 37, 3386–3391.10.1021/bi972534rSearch in Google Scholar

Rockwell, N.C., Krysan, D.J., Komiyama, T., and Fuller, R.S. (2002). Precursor processing by Kex2/Furin proteases. Chem. Rev. 102, 4525–4548.10.1021/cr010168iSearch in Google Scholar

Rosing, J., Zwaal, R.F.A., and Tans, G. (1986). Formation of meizothrombin as intermediate in factor Xa-catalyzed prothrombin activation. J. Biol. Chem. 261, 4224–4228.10.1016/S0021-9258(17)35651-XSearch in Google Scholar

Sacks, T., Moldow, C.F., Craddock, P.R., Bowers, T.K., and Jacob, H.S. (1978). Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes: an in vitro model of immune vascular damage. J. Clin. Invest. 61, 1161–1167.10.1172/JCI109031Search in Google Scholar

Schiavano, G.F., Bruscolini, F., Albano, A., and Brandi, G. (1998). Virulence factors in Aeromonas spp. and their association with gastrointestinal disease. New Microbiol. 21, 23–30.Search in Google Scholar

Siezen, R.J. and Leunissen, J.A. (1997). Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci. 6, 501–523.10.1002/pro.5560060301Search in Google Scholar

Smith-Erichsen, N., Aasen, A.O., Gallimore, M.J., and Amundsen, E. (1982). Studies of components of the coagulation systems in normal individuals and septic shock patients. Circ. Shock 9, 491–497.Search in Google Scholar

Takagaki, Y., Kitamura, N., and Nakanishi, S. (1985). Cloning and sequence analysis of cDNAs for human high molecular weight and low molecular weight prekininogens. J. Biol. Chem. 260, 8601–8609.10.1016/S0021-9258(17)39515-7Search in Google Scholar

Wegrzynowicz, Z., Heczko, P.B., Drapeau, G.R., Jeljaszewicz, J., and Pulverer, G. (1981). Prothrombin activation by a metalloprotease from Staphylococcus aureus. J. Clin. Microbiol. 12, 138–139.10.1128/jcm.12.2.138-139.1980Search in Google Scholar PubMed PubMed Central

Wirth, K., Hock, F.J., Albus, U., Linz, W., Alpermann, H.G., Anagnostopoulos, H., Henke, S., Breipohl, G., Knolle, J., and Schölkens, B.A. (1991). Hoe 140 a new potent and long acting bradykinin-antagonist: in vivo studies. Br. J. Pharmacol. 102, 774–777.10.1111/j.1476-5381.1991.tb12249.xSearch in Google Scholar PubMed PubMed Central

Wingrove, J.A., DiScipio, R.G., Chen, Z., Potempa, J., Travis, J., and Hugli, T.E. (1992). Activation of complement components C3 and C5 by a cysteine proteinase (gingipain-1) from Porphyromonas (Bacteroides) gingivalis. J. Biol. Chem. 267, 18902–18907.10.1016/S0021-9258(19)37046-2Search in Google Scholar

Wöhrl, S., Hemmer, W., Focke, M., Rappersberger, K., and Jarisch, R. (2004). Histamine intolerance-like symptoms in healthy volunteers after oral provocation with liquid histamine. Allergy Asthma Proc. 25, 305–311.Search in Google Scholar

Wuepper, K.D. and Cochrane, C.G. (1972). Plasma prekallikrein: isolation, characterization, and mechanism of activation. J. Exp. Med. 135, 1–20.10.1084/jem.135.1.1Search in Google Scholar PubMed PubMed Central

Yokoyama, R., Fujii, Y., Noguchi, Y., Nomura, T., Akita, M., Setsu, K., Yamamoto, S., and Okamoto, K. (2002). Physicochemical and biological properties of an extracellular serine protease of Aeromonas sobria. Microbiol. Immunol. 46, 383–390.10.1111/j.1348-0421.2002.tb02710.xSearch in Google Scholar PubMed

Zhu, X.L., Ohta, Y., Jordan, F., and Inouye, M. (1989). Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process. Nature 339, 483–484.10.1038/339483a0Search in Google Scholar PubMed

Received: 2016-12-29
Accepted: 2017-4-7
Published Online: 2017-4-21
Published in Print: 2017-9-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2016-0344/html
Scroll to top button