Structural and lipid-binding characterization of human annexin A13a reveals strong differences with its long A13b isoform
-
Sara Fernández-Lizarbe
Abstract
Annexin A13 is the founder member of the vertebrate family of annexins, which are comprised of a tetrad of unique conserved domains responsible for calcium-dependent binding to membranes. Its expression is restricted to epithelial intestinal and kidney cells. Alternative splicing in the N-terminal region generates two isoforms, A13a and A13b, differing in a deletion of 41 residues in the former. We have confirmed the expression of both isoforms in human colon adenocarcinoma cells at the mRNA and protein levels. We have cloned, expressed, and purified human annexin A13a for the first time to analyze its structural characteristics. Its secondary structure and thermal stability differs greatly from the A13b isoform. The only tryptophan residue (Trp186) is buried in the protein core in the absence of calcium but is exposed to the solvent after calcium binding even though circular dichroism spectra are quite similar. Non-myristoylated annexin A13a binds in a calcium-dependent manner to acidic phospholipids but not to neutral or raft-like liposomes. Calcium requirements for binding to phosphatidylserine are around 6-fold lower than those required by the A13b isoform. This fact could account for the different subcellular localization of both annexins as binding to basolateral membranes seems to be calcium-dependent and myristoylation-independent.
Acknowledgments
We are thankful to the staff from the Genomics and Proteomics Center from the Complutense University of Madrid for their skillful assistance. This work was supported by the Ministerio de Ciencia e Innovación (MICINN), Spain (grant number BFU2008-04758).
References
Arboledas, D., Olmo, N., Lizarbe, M.A., and Turnay, J. (1997). Role of the N-terminus in the structure and stability of chicken annexin V. FEBS Lett. 416, 217–220.10.1016/S0014-5793(97)01207-6Search in Google Scholar
Ayala-Sanmartin, J., Vincent, M., Sopkova, J., and Gallay, J. (2000). Modulation by Ca2+ and by membrane binding of the dynamics of domain III of annexin 2 (p36) and the annexin 2-p11 complex (p90): implications for their biochemical properties. Biochemistry 39, 15179–15189.10.1021/bi000501xSearch in Google Scholar PubMed
Bouter, A., Carmeille, R., Gounou, C., Bouvet, F., Degrelle, S.A., Evain-Brion, D., and Brisson, A.R. (2015). Review: annexin-A5 and cell membrane repair. Placenta 36 (Suppl. 1), S43–S49.10.1016/j.placenta.2015.01.193Search in Google Scholar PubMed
Campos, B., Mo, Y.D., Mealy, T.R., Li, C.W., Swairjo, M.A., Balch, C., Head, J.F., Retzinger, G., Dedman, J.R., and Seaton, B.A. (1998). Mutational and crystallographic analyses of interfacial residues in annexin V suggest direct interactions with phospholipid membrane components. Biochemistry 37, 8004–8010.10.1021/bi973142nSearch in Google Scholar PubMed
D’Acquisto, F., Piras, G., and Rattazzi, L. (2013). Pro-inflammatory and pathogenic properties of Annexin-A1: the whole is greater than the sum of its parts. Biochem. Pharmacol. 85, 1213–1218.10.1016/j.bcp.2013.02.011Search in Google Scholar PubMed
Dolman, N.J. and Tepikin, A.V. (2006). Calcium gradients and the Golgi. Cell Calcium 40, 505–512.10.1016/j.ceca.2006.08.012Search in Google Scholar PubMed
Fiedler, K., Lafont, F., Parton, R.G., and Simons, K. (1995). Annexin XIIIb: a novel epithelial specific annexin is implicated in vesicular traffic to the apical plasma membrane. J. Cell Biol. 128, 1043–1053.10.1083/jcb.128.6.1043Search in Google Scholar PubMed PubMed Central
Gerke, V. and Moss, S.E. (2002). Annexins: from structure to function. Physiol. Rev. 82, 331–371.10.1152/physrev.00030.2001Search in Google Scholar PubMed
Hofer, A.M. (2005). Another dimension to calcium signaling: a look at extracellular calcium. J. Cell Sci. 118, 855–862.10.1242/jcs.01705Search in Google Scholar PubMed
Iglesias, J.M., Morgan, R.O., Jenkins, N.A., Copeland, N.G., Gilbert, D.J., and Fernández, M.P. (2002). Comparative genetics and evolution of annexin A13 as the founder gene of vertebrate annexins. Mol. Biol. Evol. 19, 608–618.10.1093/oxfordjournals.molbev.a004120Search in Google Scholar PubMed
Kaetzel, M.A., Hazarika, P., and Dedman, J.R. (1989). Differential tissue expression of three 35-kDa annexin calcium-dependent phospholipid-binding proteins. J. Biol. Chem. 264, 14463–14770.10.1016/S0021-9258(18)71701-8Search in Google Scholar
Kodavali, P.K., Dudkiewicz, M., Pikula, S., and Pawlowski, K. (2014). Bioinformatics analysis of bacterial annexins – putative ancestral relatives of eukaryotic annexins. PLoS One 9, e85428.10.1371/journal.pone.0085428Search in Google Scholar
Koradi, R., Billeter, M., and Wuthrich, K. (1996). MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51-5, 29–32.10.1016/0263-7855(96)00009-4Search in Google Scholar
Lafont, F., Lecat, S., Verkade, P., and Simons, K. (1998). Annexin XIIIb associates with lipid microdomains to function in apical delivery. J. Cell Biol. 142, 1413–1427.10.1083/jcb.142.6.1413Search in Google Scholar PubMed PubMed Central
Lakowicz, J.R. (2006) Quenching of fluorescence. In: Principles of Fluorescence Spectroscopy, J.R. Lakowicz, ed. (New York, USA: Springer), pp. 278–320.10.1007/978-0-387-46312-4Search in Google Scholar
Lecat, S., Verkade, P., Thiele, C., Fiedler, K., Simons, K., and Lafont, F. (2000). Different properties of two isoforms of annexin XIII in MDCK cells. J. Cell Sci. 113, 2607–2618.10.1242/jcs.113.14.2607Search in Google Scholar PubMed
Lecona, E., Turnay, J., Olmo, N., Guzmán-Aránguez, A., Morgan, R.O., Fernández, M.P., and Lizarbe, M.A. (2003). Structural and functional characterization of recombinant mouse annexin A11: influence of calcium binding. Biochem. J. 373, 437–449.10.1042/bj20021721Search in Google Scholar
Lecona, E., Olmo, N., Turnay, J., Santiago-Gómez, A., López de Silanes, I., Gorospe, M., and Lizarbe, M.A. (2008). Kinetic analysis of butyrate transport in human colon adenocarcinoma cells reveals two different carrier-mediated mechanisms. Biochem. J. 409, 311–320.10.1042/BJ20070374Search in Google Scholar PubMed PubMed Central
Leipziger, J., Nitschke, R., and Greger, R. (1996). Regulation of the intracellular calcium concentration in epithelial cells. Kidney Blood Press Res. 19, 148–150.10.1159/000174062Search in Google Scholar PubMed
Liemann, S. and Huber, R. (1997). Three-dimensional structure of annexins. Cell. Mol. Life Sci. 53, 516–521.10.1007/s000180050065Search in Google Scholar PubMed
Lizarbe, M.A., Barrasa, J.I., Olmo, N., Gavilanes, F., and Turnay, J. (2013). Annexin-phospholipid interactions. Functional implications. Int. J. Mol. Sci. 14, 2652–2683.10.3390/ijms14022652Search in Google Scholar
Massey-Harroche, D. (2000). Epithelial cell polarity as reflected in enterocytes. Microsc. Res. Tech. 49, 353–362.10.1002/(SICI)1097-0029(20000515)49:4<353::AID-JEMT4>3.0.CO;2-8Search in Google Scholar
Massey-Harroche, D., Mayran, N., and Maroux, S. (1998). Polarized localizations of annexins I, II, VI and XIII in epithelial cells of intestinal, hepatic and pancreatic tissues. J. Cell Sci. 111, 3007–3015.10.1242/jcs.111.20.3007Search in Google Scholar
Maurer-Stroh, S., Eisenhaber, B., and Eisenhaber, F. (2002). N-terminal N-myristoylation of proteins: refinement of the sequence motif and its taxon-specific differences. J. Mol. Biol. 317, 523–540.10.1006/jmbi.2002.5425Search in Google Scholar
Misasi, R., Capozzi, A., Longo, A., Recalchi, S., Lococo, E., Alessandri, C., Conti, F., Valesini, G., and Sorice, M. (2015). “New” antigenic targets and methodological approaches for refining laboratory diagnosis of antiphospholipid syndrome. J. Immunol. Res. 2015, 858542.10.1155/2015/858542Search in Google Scholar
Montaville, P., Neumann, J.M., Russo-Marie, F., Ochsenbein, F., and Sanson, A. (2002). A new consensus sequence for phosphatidylserine recognition by annexins. J. Biol. Chem. 277, 24684–24693.10.1074/jbc.M109595200Search in Google Scholar
Morgan, R.O., Bell, D.W., Testa, J.R., and Fernández, M.P. (1998). Genomic locations of ANX11 and ANX13 and the evolutionary genetics of human annexins. Genomics 48, 100–110.10.1006/geno.1997.5148Search in Google Scholar
Morgan, R.O., Martin-Almedina, S., Garcia, M., Jhoncon-Kooyip, J., and Fernandez, M.P. (2006). Deciphering function and mechanism of calcium-binding proteins from their evolutionary imprints. Biochim. Biophys. Acta 1763, 1238–1249.10.1016/j.bbamcr.2006.09.028Search in Google Scholar
Mussunoor, S. and Murray, G.I. (2008). The role of annexins in tumour development and progression. J. Pathol. 216, 131–140.10.1002/path.2400Search in Google Scholar
Peitzsch, R.M. and McLaughlin, S. (1993). Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins. Biochemistry 32, 10436–10443.10.1021/bi00090a020Search in Google Scholar
Perczel, A., Park, K., and Fasman, G.D. (1992). Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm: a practical guide. Anal. Biochem. 203, 83–93.10.1016/0003-2697(92)90046-ASearch in Google Scholar
Pizzo, P., Lissandron, V., Capitanio, P., and Pozzan, T. (2011). Ca2+ signalling in the Golgi apparatus. Cell Calcium 50, 184–192.10.1016/j.ceca.2011.01.006Search in Google Scholar
Plant, P.J., Lafont, F., Lecat, S., Verkade, P., Simons, K., and Rotin, D. (2000). Apical membrane targeting of Nedd4 is mediated by an association of its C2 domain with annexin XIIIb. J. Cell Biol. 149, 1473–1484.10.1083/jcb.149.7.1473Search in Google Scholar
Raynal, P. and Pollard, H.B. (1994). Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim. Biophys. Acta 1197, 63–93.10.1016/0304-4157(94)90019-1Search in Google Scholar
Reiske, H., Sui, B., Ung-Medoff, H., Donahue, R., Li, W.B., Goldblatt, M., Li, L., and Kinch, M.S. (2010). Identification of annexin A13 as a regulator of chemotherapy resistance using random homozygous gene perturbation. Anal. Quant. Cytol. Histol. 32, 61–69.Search in Google Scholar
Rosengarth, A., Rosgen, J., Hinz, H.J., and Gerke, V. (1999). A comparison of the energetics of annexin I and annexin V. J. Mol. Biol. 288, 1013–1025.10.1006/jmbi.1999.2732Search in Google Scholar
Santiago-Gómez, A., Barrasa, J.I., Olmo, N., Lecona, E., Burghardt, H., Palacín, M., Lizarbe, M.A., and Turnay, J. (2013). 4F2hc-silencing impairs tumorigenicity of HeLa cells via modulation of galectin-3 and β-catenin signaling, and MMP-2 expression. Biochim. Biophys. Acta 1833, 2045–2056.10.1016/j.bbamcr.2013.04.017Search in Google Scholar
Sopkova-De Oliveira Santos, J., Vincent, M., Tabaries, S., Chevalier, A., Kerboeuf, D., Russo-Marie, F., Lewit-Bentley, A., and Gallay, J. (2001). Annexin A5 D226K structure and dynamics: identification of a molecular switch for the large-scale conformational change of domain III. FEBS Lett. 493, 122–128.10.1016/S0014-5793(01)02285-2Search in Google Scholar
Sopkova, J., Vincent, M., Takahashi, M., Lewit-Bentley, A., and Gallay, J. (1998). Conformational flexibility of domain III of annexin V studied by fluorescence of tryptophan 187 and circular dichroism: the effect of pH. Biochemistry 37, 11962–11970.10.1021/bi980773oSearch in Google Scholar
Swairjo, M.A. and Seaton, B.A. (1994). Annexin structure and membrane interactions: a molecular perspective. Annu. Rev. Biophys. Biomol. Struct. 23, 193–213.10.1146/annurev.bb.23.060194.001205Search in Google Scholar
Turnay, J., Olmo, N., Gasset, M., Iloro, I., Arrondo, J.L., and Lizarbe, M.A. (2002). Calcium-dependent conformational rearrangements and protein stability in chicken annexin A5. Biophys. J. 83, 2280–2291.10.1016/S0006-3495(02)73988-XSearch in Google Scholar
Turnay, J., Guzmán-Aránguez, A., Lecona, E., Pérez-Ramos, P., Fernández-Lizarbe, S., Olmo, N., and Lizarbe, M.A. (2003a). Influence of the N-terminal domain of annexins in their functional properties. Recent Res. Dev. Biochem. 4, 53–78.Search in Google Scholar
Turnay, J., Lecona, E., Guzmán-Aránguez, A., Pérez-Ramos, P., Fernández-Lizarbe, S., Olmo, N., and Lizarbe, M.A. (2003b). Annexins: structural characteristics of the N-terminus and influence on the overall structure of the protein. Recent Res. Dev. Biochem. 4, 79–95.Search in Google Scholar
Turnay, J., Lecona, E., Fernández-Lizarbe, S., Guzmán-Aránguez, A., Fernández, M.P., Olmo, N., and Lizarbe, M.A. (2005). Structure-function relationship in annexin A13, the founder member of the vertebrate family of annexins. Biochem J. 389, 899–911.10.1042/BJ20041918Search in Google Scholar PubMed PubMed Central
Turnay, J., Guzmán-Aránguez, A., Lecona, E., Barrasa, J.I., Olmo, N., and Lizarbe, M.A. (2009). Key role of the N-terminus of chicken annexin A5 in vesicle aggregation. Protein Sci. 18, 1095–1106.10.1002/pro.119Search in Google Scholar PubMed PubMed Central
Wang, C.Y. and Lin, C.F. (2014). Annexin A2: its molecular regulation and cellular expression in cancer development. Dis. Markers 2014, 308976.10.1155/2014/308976Search in Google Scholar PubMed PubMed Central
Wei, B., Guo, C., Liu, S., and Sun, M.Z. (2015). Annexin A4 and cancer. Clin. Chim. Acta 447, 72–78.10.1016/j.cca.2015.05.016Search in Google Scholar PubMed
Wice, B.M. and Gordon, J.I. (1992). A strategy for isolation of cDNAs encoding proteins affecting human intestinal epithelial cell growth and differentiation: characterization of a novel gut-specific N-myristoylated annexin. J. Cell Biol. 116, 405–422.10.1083/jcb.116.2.405Search in Google Scholar PubMed PubMed Central
Supplemental Material:
The online version of this article (DOI: 10.1515/hsz-2016-0242) offers supplementary material, available to authorized users.
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Reviews
- Lysosomes in programmed cell death pathways: from initiators to amplifiers
- Mitochondrial carriers in inflammation induced by bacterial endotoxin and cytokines
- Recent insights into nitrite signaling processes in blood
- Research Articles/Short Communications
- Genes and Nucleic Acids
- Pokemon decreases the transcriptional activity of RARα in the absence of ligand
- Protein Structure and Function
- Comparison of enzymatic properties and small molecule inhibition of γ–glutamyltranspeptidases from pathogenic and commensal bacteria
- Structural and lipid-binding characterization of human annexin A13a reveals strong differences with its long A13b isoform
- Proteolysis
- A role for the metalloprotease invadolysin in insulin signaling and adipogenesis
- Mirolysin, a LysargiNase from Tannerella forsythia, proteolytically inactivates the human cathelicidin, LL-37
Articles in the same Issue
- Frontmatter
- Reviews
- Lysosomes in programmed cell death pathways: from initiators to amplifiers
- Mitochondrial carriers in inflammation induced by bacterial endotoxin and cytokines
- Recent insights into nitrite signaling processes in blood
- Research Articles/Short Communications
- Genes and Nucleic Acids
- Pokemon decreases the transcriptional activity of RARα in the absence of ligand
- Protein Structure and Function
- Comparison of enzymatic properties and small molecule inhibition of γ–glutamyltranspeptidases from pathogenic and commensal bacteria
- Structural and lipid-binding characterization of human annexin A13a reveals strong differences with its long A13b isoform
- Proteolysis
- A role for the metalloprotease invadolysin in insulin signaling and adipogenesis
- Mirolysin, a LysargiNase from Tannerella forsythia, proteolytically inactivates the human cathelicidin, LL-37