Startseite IL-1 family cytokines in cancer immunity – a matter of life and death
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

IL-1 family cytokines in cancer immunity – a matter of life and death

  • Javier Mora und Andreas Weigert EMAIL logo
Veröffentlicht/Copyright: 13. Juli 2016

Abstract

IL-1 cytokines constitute a family of biologically active proteins with pleiotropic function especially in immunity. Both protective as well as deleterious properties of individual IL-1 family cytokines in tumor biology have been described. The function of IL-1-family cytokines depends on the producing source, the present (inflammatory) microenvironment and N-terminal proteolytical processing. Each of these determinants is shaped by different modes of cell death. Here we summarize the properties of IL-1 family cytokines in tumor biology, and how they are modulated by cell death.

Acknowledgments

We apologize to researchers whose primary observations could not be cited due to space limitations, which resulted in referring mainly to current reviews. Our work was supported by grants from Deutsche Forschungsgemeinschaft (SFB 1039 TP B06, Excellence Cluster Cardiopulmonary System), Deutsche Krebshilfe (110637), Else Kröner-Fresenius Foundation (EKFS) Research Training Groups Translational Research Innovation – Pharma (TRIP) and Else Kröner-Fresenius-Stiftung (Else Kröner-Fresenius-Graduate School, EKF-GK). J.M. was supported by Deutscher Akademischer Austauschdienst (DAAD) and the University of Costa Rica.

References

Afonina, I.S., Muller, C., Martin, S.J., and Beyaert, R. (2015). Proteolytic processing of interleukin-1 family cytokines: variations on a common theme. Immunity 42, 991–1004.10.1016/j.immuni.2015.06.003Suche in Google Scholar PubMed

Akita, K., Ohtsuki, T., Nukada, Y., Tanimoto, T., Namba, M., Okura, T., Takakura-Yamamoto, R., Torigoe, K., Gu, Y., Su, MS., et al. (1997). Involvement of caspase-1 and caspase-3 in the production and processing of mature human interleukin 18 in monocytic THP.1 cells. J. Biol. Chem. 272, 26595–26603.10.1074/jbc.272.42.26595Suche in Google Scholar PubMed

Bailey, S.R., Nelson, M.H., Himes, R.A., Li, Z., Mehrotra, S., and Paulos, C.M. (2014). Th17 cells in cancer: the ultimate identity crisis. Front. Immunol. 5, 276.10.3389/fimmu.2014.00276Suche in Google Scholar PubMed PubMed Central

Bensen, J.T., Dawson, P.A., Mychaleckyj, J.C., and Bowden, D.W. (2001). Identification of a novel human cytokine gene in the interleukin gene cluster on chromosome 2q12-14. J. Interferon. Cytokine Res. 21, 899–904.10.1089/107999001753289505Suche in Google Scholar PubMed

Bergis, D., Kassis, V., and Radeke, H.H. (2016). High plasma sST2 levels in gastric cancer and their association with metastatic disease. Cancer Biomark. 16, 117–125.10.3233/CBM-150547Suche in Google Scholar PubMed

Bergis, D., Kassis, V., Ranglack, A., Koeberle, V., Piiper, A., Kronenberger, B., Zeuzem, S., Waidmann, O., and Radeke, H.H. (2013). High serum levels of the interleukin-33 receptor soluble ST2 as a negative prognostic factor in hepatocellular carcinoma. Transl. Oncol. 6, 311–318.10.1593/tlo.12418Suche in Google Scholar PubMed PubMed Central

Dinarello, C.A., Nold-Petry, C., Nold, M., Fujita, M., Li, S., Kim, S., and Bufler, P. (2016). Suppression of innate inflammation and immunity by interleukin-37. Eur. J. Immunol. 46, 1067–1081.10.1002/eji.201545828Suche in Google Scholar PubMed PubMed Central

Dupaul-Chicoine, J., Arabzadeh, A., Dagenais, M., Douglas, T., Champagne, C., Morizot, A., Rodrigue-Gervais, I.G., Breton, V., Colpitts, S.L., Beauchemin, N., et al. (2015). The Nlrp3 inflammasome suppresses colorectal cancer metastatic growth in the liver by promoting natural killer cell tumoricidal activity. Immunity 43, 751–763.10.1016/j.immuni.2015.08.013Suche in Google Scholar PubMed

Eder, C. (2009). Mechanisms of interleukin-1beta release. Immunobiology 214, 543–553.10.1016/j.imbio.2008.11.007Suche in Google Scholar PubMed

Fabbi, M., Carbotti, G., and Ferrini, S. (2015). Context-dependent role of IL-18 in cancer biology and counter-regulation by IL-18BP. J. Leukoc. Biol. 97, 665–675.10.1189/jlb.5RU0714-360RRSuche in Google Scholar PubMed

Gao, W., Kumar, S., Lotze, M.T., Hanning, C., Robbins, P.D., and Gambotto, A. (2003). Innate immunity mediated by the cytokine IL-1 homologue 4 (IL-1H4/IL-1F7) induces IL-12-dependent adaptive and profound antitumor immunity. J. Immunol. 170, 107–113.10.4049/jimmunol.170.1.107Suche in Google Scholar PubMed

Gao, K., Li, X., Zhang, L., Bai, L., Dong, W., Gao, K., Shi, G., Xia, X., Wu, L., and Zhang, L. (2013). Transgenic expression of IL-33 activates CD8+ T cells and NK cells and inhibits tumor growth and metastasis in mice. Cancer Lett. 335, 463–471.10.1016/j.canlet.2013.03.002Suche in Google Scholar PubMed

Gao, X., Wang, X., Yang, Q., Zhao, X., Wen, W., Li, G., Lu, J., Qin, W., Qi, Y., Xie, F., et al. (2015). Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells. J. Immunol. 194, 438–445.10.4049/jimmunol.1401344Suche in Google Scholar PubMed PubMed Central

Garlanda, C., Dinarello, C.A., and Mantovani, A. (2013). The interleukin-1 family: back to the future. Immunity 39, 1003–1018.10.1016/j.immuni.2013.11.010Suche in Google Scholar PubMed PubMed Central

Ge, G., Wang, A., Yang, J., Chen, Y., Yang, J., Li, Y., and Xue, Y. (2016). Interleukin-37 suppresses tumor growth through inhibition of angiogenesis in non-small cell lung cancer. J. Exp. Clin. Cancer Res. 35, 13.10.1186/s13046-016-0293-3Suche in Google Scholar PubMed PubMed Central

Ishikawa, K., Yagi-Nakanishi, S., Nakanishi, Y., Kondo, S., Tsuji, A., Endo, K., Wakisaka, N., Murono, S., and Yoshizaki, T. (2014). Expression of interleukin-33 is correlated with poor prognosis of patients with squamous cell carcinoma of the tongue. Auris Nasus Larynx 41, 552–557.10.1016/j.anl.2014.08.007Suche in Google Scholar PubMed

Jiang, Y., Wang, Y., Liang, L., Gao, Y., Chen, J., Sun, Y., Cheng, Y., and Xu, Y. (2015). IL-37 mediates the antitumor activity in renal cell carcinoma. Med. Oncol. 32, 250.10.1007/s12032-015-0695-7Suche in Google Scholar PubMed

Jovanovic, I.P., Pejnovic, N.N., Radosavljevic, G.D., Pantic, J.M., Milovanovic, M.Z., Arsenijevic, N.N., and Lukic, M.L. (2014). Interleukin-33/ST2 axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells. Int. J. Cancer 134, 1669–1682.10.1002/ijc.28481Suche in Google Scholar PubMed

Keller, M., Ruegg, A., Werner, S., and Beer, H.D. (2008). Active caspase-1 is a regulator of unconventional protein secretion. Cell 132, 818–831.10.1016/j.cell.2007.12.040Suche in Google Scholar PubMed

Khan, J.A., Brint, E.K., O’Neill, L.A., and Tong, L. (2004). Crystal structure of the Toll/interleukin-1 receptor domain of human IL-1RAPL. J. Biol. Chem. 279, 31664–31670.10.1074/jbc.M403434200Suche in Google Scholar PubMed

Komai-Koma, M., Wang, E., Kurowska-Stolarska, M., Li, D., McSharry, C., and Xu, D. (2016). Interleukin-33 promoting Th1 lymphocyte differentiation dependents on IL-12. Immunobiology 221, 412–417.10.1016/j.imbio.2015.11.013Suche in Google Scholar PubMed PubMed Central

Kuraishy, A., Karin, M., and Grivennikov, S.I. (2011). Tumor promotion via injury- and death-induced inflammation. Immunity 35, 467–477.10.1016/j.immuni.2011.09.006Suche in Google Scholar PubMed PubMed Central

Lauber, K., Ernst, A., Orth, M., Herrmann, M., and Belka, C. (2012). Dying cell clearance and its impact on the outcome of tumor radiotherapy. Front. Oncol. 2, 116.10.3389/fonc.2012.00116Suche in Google Scholar PubMed PubMed Central

Liang, Y., Jie, Z., Hou, L., Yi, P., Wang, W., Kwota, Z., Salvato, M., de Waal Malefyt, R., Soong, L., and Sun, J. (2015). IL-33 promotes innate IFN-gamma production and modulates dendritic cell response in LCMV-induced hepatitis in mice. Eur. J. Immunol. 45, 3052–3063.10.1002/eji.201545696Suche in Google Scholar PubMed PubMed Central

Lin, H., Ho, A.S., Haley-Vicente, D., Zhang, J., Bernal-Fussell, J., Pace, A.M., Hansen, D., Schweighofer, K., Mize, N.K., and Ford, J.E. (2001). Cloning and characterization of IL-1HY2, a novel interleukin-1 family member. J. Biol. Chem. 276, 20597–20602.10.1074/jbc.M010095200Suche in Google Scholar PubMed

Liu, J., Shen, J.X., Hu, J.L., Huang, W.H., and Zhang, G.J. (2014a). Significance of interleukin-33 and its related cytokines in patients with breast cancers. Front. Immunol. 5, 141.10.3389/fimmu.2014.00141Suche in Google Scholar PubMed PubMed Central

Liu, X., Zhu, L., Lu, X., Bian, H., Wu, X., Yang, W., and Qin, Q. (2014b). IL-33/ST2 pathway contributes to metastasis of human colorectal cancer. Biochem. Biophys Res. Commun. 453, 486–492.10.1016/j.bbrc.2014.09.106Suche in Google Scholar PubMed

Lu, B., Yang, M., and Wang, Q. (2016). Interleukin-33 in tumorigenesis, tumor immune evasion, and cancer immunotherapy. J. Mol. Med. (Berl) 94, 535–543.10.1007/s00109-016-1397-0Suche in Google Scholar PubMed

Ma, Y., Aymeric, L., Locher, C., Mattarollo, S.R., Delahaye, N.F., Pereira, P., Boucontet, L., Apetoh, L., Ghiringhelli, F., Casares, N., et al. (2011). Contribution of IL-17-producing γδ T cells to the efficacy of anticancer chemotherapy. J. Exp. Med. 208, 491–503.10.1084/jem.20100269Suche in Google Scholar PubMed PubMed Central

Ma, Z., Li, W., Yoshiya, S., Xu, Y., Hata, M., El-Darawish, Y., Markova, T., Yamanishi, K., Yamanishi, H., Tahara, H., et al. (2016). Augmentation of immune checkpoint cancer immunotherapy with IL18. Clin. Cancer Res. 22, 2969–2980.10.1158/1078-0432.CCR-15-1655Suche in Google Scholar PubMed

McNamee, E.N., Masterson, J.C., Jedlicka, P., McManus, M., Grenz, A., Collins, C.B., Nold, M.F., Nold-Petry, C., Bufler, P., Dinarello, C.A., et al. (2011). Interleukin 37 expression protects mice from colitis. Proc. Natl. Acad. Sci. USA 108, 16711–16716.10.1073/pnas.1111982108Suche in Google Scholar PubMed PubMed Central

Mora, J., Schlemmer, A., Wittig, I., Richter, F., Putyrski, M., Frank, A.C., Han, Y., Jung, M., Ernst, A., Weigert, A., et al. (2016). Interleukin-38 is released from apoptotic cells to limit inflammatory macrophage responses. J. Mol. Cell Biol., Epub ahead of print.10.1093/jmcb/mjw006Suche in Google Scholar PubMed

Netea, M.G., van de Veerdonk, F.L., van der Meer, J.W., Dinarello, C.A., and Joosten, L.A. (2015). Inflammasome-independent regulation of IL-1-family cytokines. Annu. Rev. Immunol. 33, 49–77.10.1146/annurev-immunol-032414-112306Suche in Google Scholar PubMed

Pan, Q.Z., Pan, K., Zhao, J.J., Chen, J.G., Li, J.J., Lv, L., Wang, D.D., Zheng, H.X., Jiang, S.S., Zhang, X.F., et al. (2013). Decreased expression of interleukin-36alpha correlates with poor prognosis in hepatocellular carcinoma. Cancer Immunol. Immunother. 62, 1675–1685.10.1007/s00262-013-1471-1Suche in Google Scholar PubMed

Pavlowsky, A., Zanchi, A., Pallotto, M., Giustetto, M., Chelly, J., Sala, C., and Billuart, P. (2010). Neuronal JNK pathway activation by IL-1 is mediated through IL1RAPL1, a protein required for development of cognitive functions. Commun. Integr. Biol. 3, 245–247.10.4161/cib.3.3.11414Suche in Google Scholar PubMed PubMed Central

Tong, X., Barbour, M., Hou, K., Gao, C., Cao, S., Zheng, J., Zhao, Y., Mu, R., and Jiang, H.R. (2016). Interleukin-33 predicts poor prognosis and promotes ovarian cancer cell growth and metastasis through regulating ERK and JNK signaling pathways. Mol. Oncol. 10, 113–125.10.1016/j.molonc.2015.06.004Suche in Google Scholar PubMed PubMed Central

Trinchieri, G. (2012). Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu. Rev. Immunol. 30, 677–706.10.1146/annurev-immunol-020711-075008Suche in Google Scholar PubMed

Tsuda, H., Komine, M., Karakawa, M., Etoh, T., Tominaga, S., and Ohtsuki, M. (2012). Novel splice variants of IL-33: differential expression in normal and transformed cells. J. Invest. Dermatol. 132, 2661–2664.10.1038/jid.2012.180Suche in Google Scholar PubMed

van de Veerdonk, F.L., Stoeckman, A.K., Wu, G., Boeckermann, A.N., Azam, T., Netea, M.G., Joosten, L.A., van der Meer, J.W., Hao, R., Kalabokis, V., et al. (2012). IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist. Proc. Natl. Acad. Sci. USA 109, 3001–3005.10.1073/pnas.1121534109Suche in Google Scholar PubMed PubMed Central

Villarreal, D.O. and Weiner, D.B. (2014). Interleukin 33: a switch-hitting cytokine. Curr. Opin. Immunol. 28, 102–106.10.1016/j.coi.2014.03.004Suche in Google Scholar PubMed PubMed Central

Voronov, E., Dotan, S., Krelin, Y., Song, X., Elkabets, M., Carmi, Y., Rider, P., Idan, C., Romzova, M., Kaplanov, I., et al. (2013). Unique versus redundant functions of IL-1α and IL-1β in the tumor microenvironment. Front. Immunol. 4, 177.10.3389/fimmu.2013.00177Suche in Google Scholar PubMed PubMed Central

Wang, Z.S., Cong, Z.J., Luo, Y., Mu, Y.F., Qin, S.L., Zhong, M., and Chen, J.J. (2014). Decreased expression of interleukin-36α predicts poor prognosis in colorectal cancer patients. Int. J. Clin. Exp. Pathol. 7, 8077–8081.Suche in Google Scholar

Wang, S., An, W., Yao, Y., Chen, R., Zheng, X., Yang, W., Zhao, Y., Hu, X., Jiang, E., Bie, Y., et al. (2015a). Interleukin 37 expression inhibits STAT3 to suppress the proliferation and invasion of human cervical cancer cells. J. Cancer 6, 962–969.10.7150/jca.12266Suche in Google Scholar PubMed PubMed Central

Wang, X., Zhao, X., Feng, C., Weinstein, A., Xia, R., Wen, W., Lv, Q., Zuo, S., Tang, P., Yang, X., et al. (2015b). IL-36γ transforms the tumor microenvironment and promotes type 1 lymphocyte-mediated antitumor immune responses. Cancer Cell 28, 296–306.10.1016/j.ccell.2015.07.014Suche in Google Scholar PubMed PubMed Central

Willems, J.J., Arnold, B.P., and Gregory, C.D. (2014). Sinister self-sacrifice: the contribution of apoptosis to malignancy. Front. Immunol. 5, 299.10.3389/fimmu.2014.00299Suche in Google Scholar PubMed PubMed Central

Xu, D., Chan, W.L., Leung, B.P., Huang, F., Wheeler, R., Piedrafita, D., Robinson, J.H., and Liew, F.Y. (1998). Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells. J. Exp. Med. 187, 787–794.10.1084/jem.187.5.787Suche in Google Scholar PubMed PubMed Central

Yang, Q., Li, G., Zhu, Y., Liu, L., Chen, E., Turnquist, H., Zhang, X., Finn, O.J., Chen, X., and Lu, B. (2011). IL-33 synergizes with TCR and IL-12 signaling to promote the effector function of CD8+ T cells. Eur. J. Immunol. 41, 3351–3360.10.1002/eji.201141629Suche in Google Scholar PubMed PubMed Central

Yang, Z.P., Ling, D.Y., Xie, Y.H., Wu, W.X., Li, J.R., Jiang, J., Zheng, J.L., Fan, Y.H., and Zhang, Y. (2015). The association of serum IL-33 and sST2 with breast cancer. Dis. Markers 2015, 516895.10.1155/2015/516895Suche in Google Scholar PubMed PubMed Central

Yu, X.X., Hu, Z., Shen, X., Dong, L.Y., Zhou, W.Z., and Hu, W.H. (2015). IL-33 promotes gastric cancer cell invasion and migration via ST2-ERK1/2 pathway. Dig. Dis. Sci. 60, 1265–1272.10.1007/s10620-014-3463-1Suche in Google Scholar PubMed

Zhao, J.J., Pan, Q.Z., Pan, K., Weng, D.S., Wang, Q.J., Li, J.J., Lv, L., Wang, D.D., Zheng, H.X., Jiang, S.S., et al. (2014). Interleukin-37 mediates the antitumor activity in hepatocellular carcinoma: role for CD57+ NK cells. Sci. Rep. 4, 5177.10.1038/srep05177Suche in Google Scholar PubMed PubMed Central

Zitvogel, L., Kepp, O., and Kroemer, G. (2011). Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat. Rev. Clin. Oncol. 8, 151–160.10.1038/nrclinonc.2010.223Suche in Google Scholar PubMed

Zitvogel, L., Kepp, O., Galluzzi, L., and Kroemer, G. (2012). Inflammasomes in carcinogenesis and anticancer immune responses. Nat. Immunol. 13, 343–351.10.1038/ni.2224Suche in Google Scholar PubMed

Received: 2016-5-18
Accepted: 2016-7-6
Published Online: 2016-7-13
Published in Print: 2016-11-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2016-0215/html?lang=de
Button zum nach oben scrollen